

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp502-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	Master Core	Slave Core	Shared
Core Frequency	90 MIPS @ 180 MHz	100 MIPS @ 200 MHz	—
Program Memory	64K-128 Kbytes	24 Kbytes (PRAM) ⁽²⁾	_
Internal Data RAM	16 Kbytes	4 Kbytes	—
16-Bit Timer	1	1	_
DMA	6	2	—
SCCP (Capture/Compare/Timer)	8	4	—
UART	2	1	—
SPI/I ² S	2	1	—
I ² C	2	1	—
CAN FD	1	-	—
SENT	2	-	—
CRC	1	—	—
QEI	1	1	—
PTG	1	-	—
CLC	4	4	—
16-Bit High-Speed PWM	4	8	—
ADC 12-Bit	1	3	—
Digital Comparator	4	4	—
12-Bit DAC/Analog CMP Module	1	3	—
Watchdog Timer	1	1	—
Deadman Timer	1	—	—
Input/Output	69	69	69
Simple Breakpoints	5	2	—
PGAs ⁽¹⁾	—	3	3
DAC Output Buffer	_	_	1
Oscillator	1	1	1

TABLE 1: MASTER AND SLAVE CORE FEATURES

Note 1: Slave owns the peripheral/feature, but it is shared with the Master.

2: Dual Partition feature is available on Slave PRAM.

dsPIC33CH128MP508 FAMILY

FIGURE 2-6: OFF-LINE UPS

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I/O Ports (Cor	ntinued)		CNCONB	E2A	00	LATD	E5A	*****
ANSELA	E00	11111	CNEN0B	E2C	000000000000000000000000000000000000000	ODCD	E5C	0000000000000000000
TRISA	E02	11111	CNSTATB	E2E	000000000000000000000000000000000000000	CNPUD	E5E	0000000000000000000
PORTA	E04	xxxxx	CNEN1B	E30	000000000000000000000000000000000000000	CNPDD	E60	000000000000000000
LATA	E06	xxxxx	CNFB	E32	000000000000000000000000000000000000000	CNCOND	E62	00
ODCA	E08	00000	ANSELC	E38	11111	CNEN0D	E64	000000000000000000
CNPUA	E0A	00000	TRISC	E3A	111111111111111111	CNSTATD	E66	000000000000000000
CNPDA	E0C	00000	PORTC	E3C	*****	CNEN1D	E68	000000000000000000
CNCONA	E0E	00	LATC	E3E	*****	CNFD	E6A	000000000000000000
CNEN0A	E10	00000	ODCC	E40	000000000000000000000000000000000000000	TRISE	E72	11111111111111111
CNSTATA	E12	00000	CNPUC	E42	000000000000000000000000000000000000000	PORTE	E74	*****
CNEN1A	E14	00000	CNPDC	E44	000000000000000000000000000000000000000	LATE	E76	*****
CNFA	E16	00000	CNCONC	E46	00	ODCE	E78	0000000000000000000
ANSELB	E1C	1111111	CNEN0C	E48	000000000000000000000000000000000000000	CNPUE	E7A	0000000000000000000
TRISB	E1E	111111111111111111	CNSTATC	E4A	000000000000000000000000000000000000000	CNPDE	E7C	0000000000000000000
PORTB	E20	*****	CNEN1C	E4C	000000000000000000000000000000000000000	CNCONE	E7E	00
LATB	E22	*****	CNFC	E4E	000000000000000000000000000000000000000	CNEN0E	E80	000000000000000000
ODCB	E24	000000000000000000	ANSELD	E54	1	CNSTATE	E82	000000000000000000
CNPUB	E26	000000000000000000	TRISD	E56	111111111111111111	CNEN1E	E84	000000000000000000
CNPDB	E28	000000000000000000000000000000000000000	PORTD	E58	****	CNFE	E86	000000000000000000000000000000000000000

TABLE 3-17: MASTER SFR BLOCK E00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IFS0	800h	INT1IF	NVMIF	ECCSBEIF	U1TXIF	U1RXIF	SPI1TXIF	SPI1RXIF	DMA1IF	CCT1IF	CCP1IF	_	DMA0IF	CNBIF	CNAIF	T1IF	INTOIF
IFS1	802h	C1RXIF	SPI2TXIF	SPI2RXIF	U2TXIF	U2RXIF	INT3IF	C1IF	CCT2IF	CCP2IF	DMA4IF	DMA3IF	INT2IF	CNCIF	DMA2IF	MI2C1IF	SI2C1IF
IFS2	804h	CCT6IF	CCP6IF	DMTIF	CCT5IF	CCP5IF	—	CCT4IF	CCP4IF	—	MI2C2IF	SI2C2IF	CCT3IF	CCP3IF	DMA5IF	—	—
IFS3	806h	PTGSTEPIF	JTAGIF	ICDIF	—	—	—	—	—	—	—		C1TXIF	CRCIF	U2EIF	U1EIF	QEI1IF
IFS4	808h	—	—	CMP1IF	CNEIF	CNDIF	—	—	—	—	PWM4IF	PWM3IF	PWM2IF	PWM1IF	—	I2C2BCIF	I2C1BCIF
IFS5	80Ah	ADCAN4IF	ADCAN3IF	ADCAN2IF	ADCAN1IF	ADCAN0IF	ADCIF	SENT2EIF	SENT2IF	SENT1EIF	SENT1IF	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	
IFS6	80Ch	ADCAN20IF	ADCAN19IF	ADCAN18IF	ADCAN17IF	ADCAN16IF	ADCAN15IF	ADCAN14IF	ADCAN13IF	ADCAN12IF	ADCAN11IF	ADCAN10IF	ADCAN9IF	ADCAN8IF	ADCAN7IF	ADCAN6IF	ADCAN5IF
IFS7	80Eh	SPI2GIF	SPI1GIF	CLC2PIF	CLC1PIF	ADFLTR3IF	ADFLTR2IF	ADFLTR1IF	ADFLTR0IF	ADCMP3IF	ADCMP2IF	ADCMP1IF	ADCMP0IF	ADFLTIF	—	—	—
IFS8	810h	—	—	S1SRSTIF	MSIFLTIF	MSIWFEIF	MSIDTIF	MSIHIF	MSIGIF	MSIFIF	MSIEIF	MSIDIF	MSICIF	MSIBIF	MSIAIF	MSIS1IF	—
IFS9	812h	—	—	S1CLKFIF	—	—	—	CCT8IF	CCP8IF	—	CCT7IF	CCP7IF	_	—	S1BRKIF	—	—
IFS10	814h	CLC3PIF	PEVTFIF	PEVTEIF	PEVTDIF	PEVTCIF	PEVTBIF	PEVTAIF	ADFIFOIF	_	_	_		_	_	_	_
IFS11	816h	_	U2EVTIF	U1EVTIF	_	_	_	_	_	_	_	_	CLC4NIF	CLC3NIF	CLC2NPIF	CLC1NIF	CLC4PIF

Legend: — = Unimplemented.

TABLE 3-25: MASTER INTERRUPT ENABLE REGISTERS

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IEC0	820h	INT1IE	NVMIE	ECCSBEIE	U1TXIE	U1RXIE	SPI1TXIE	SPI1RXIE	DMA1IE	CCT1IE	CCP1IE	_	DMA0IE	CNBIE	CNAIE	T1IE	INTOIE
IEC1	822h	C1RXIE	SPI2TXIE	SPI2RXIE	U2TXIE	U2RXIE	INT3IE	C1IE	CCT2IE	CCP2IE	DMA4IE	DMA3IE	INT2IE	CNCIE	DMA2IE	MI2C1IE	SI2C1IE
IEC2	824h	CCT6IE	CCP6IE	DMTIE	CCT5IE	CCP5IE	—	CCT4IE	CCP4IE		MI2C2IE	SI2C2IE	CCT3IE	CCP3IE	DMA5IE		—
IEC3	826h	PTGSTEPIE	JTAGIE	ICDIE	—		—	—					C1TXIE	CRCIE	U2EIE	U1EIE	QEI1IE
IEC4	828h		—	CMP1IE	CNEIE	CNDIE	—	—			PWM4IE	PWM3IE	PWM2IE	PWM1IE	—	I2C2BCIE	I2C1BCIE
IEC5	82Ah	ADCAN4IE	ADCAN3IE	ADCAN2IE	ADCAN1IE	ADCAN0IE	ADCIE	SENT2EIE	SENT2IE	SENT1EIE	SENT1IE	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	—
IEC6	82Ch	ADCAN20IE	ADCAN19IE	ADCAN18IE	ADCAN17IE	ADCAN16IE	ADCAN15IE	ADCAN14IE	ADCAN13IE	ADCAN12IE	ADCAN11IE	ADCAN10IE	ADCAN9IE	ADCAN8IE	ADCAN7IE	ADCAN6IE	ADCAN5IE
IEC7	82Eh	SPI2GIE	SPI1GIE	CLC2PIE	CLC1PIE	ADFLTR3IE	ADFLTR2IE	ADFLTR1IE	ADFLTR0IE	ADCMP3IE	ADCMP2IE	ADCMP1IE	ADCMP0IE	ADFLTIE	_		—
IEC8	830h		—	S1SRSTIE	MSIFLTIE	MSIWFEIE	MSIDTIE	MSIHIE	MSIGIE	MSIFIE	MSIEIE	MSIDIE	MSICIE	MSIBIE	MSIAIE	MSIS1IE	—
IEC9	832h		—	S1CLKFIE	—		—	CCT8IE	CCP8IE		CCT7IE	CCP7IE	—		S1BRKIE		—
IEC10	834h	CLC3PIE	PEVTFIE	PEVTEIE	PEVTDIE	PEVTCIE	PEVTBIE	PEVTAIE	ADFIFOIE	_	_	_	_	_	_	_	_
IEC11	836h		U2EVTIE	U1EVTIE	_		-	-					CLC4NIE	CLC3NIE	CLC2NIE	CLC1NIE	CLC4PIE

Legend: — = Unimplemented.

REGISTER 3-34: CNFx: INTERRUPT CHANGE NOTIFICATION FLAG FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	CNFx<15:8>									
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			CNFx	<7:0>						
bit 7							bit 0			
Legend:										

-ogonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15- CNFx<15:0>: Interrupt Change Notification Flag for PORTx bits

When CNSTYLE (CNCONx<11>) = 1:

1 = An enabled edge event occurred on the PORTx[n] pin

0 = An enabled edge event did not occur on the PORTx[n] pin

Register	RP Pin I/O Port		
RPOR0<5:0>	RP32	Port Pin RB0	
RPOR0<13:8>	RP33	Port Pin RB1	
RPOR1<5:0>	RP34	Port Pin RB2	
RPOR1<13:8>	RP35	Port Pin RB3	
RPOR2<5:0>	RP36	Port Pin RB4	
RPOR2<13:8>	RP37	Port Pin RB5	
RPOR3<5:0>	RP38	Port Pin RB6	
RPOR3<13:8>	RP39	Port Pin RB7	
RPOR4<5:0>	RP40	Port Pin RB8	
RPOR4<13:8>	RP41	Port Pin RB9	
RPOR5<5:0>	RP42	Port Pin RB10	
RPOR5<13:8>	RP43	Port Pin RB11	
RPOR6<5:0>	RP44	Port Pin RB12	
RPOR6<13:8>	RP45	Port Pin RB13	
RPOR7<5:0>	RP46	Port Pin RB14	
RPOR7<13:8>	RP47	Port Pin RB15	
RPOR8<5:0>	RP48	Port Pin RC0	
RPOR8<13:8>	RP49	Port Pin RC1	
RPOR9<5:0>	RP50	Port Pin RC2	
RPOR9<13:8>	RP51	Port Pin RC3	
RPOR10<5:0>	RP52	Port Pin RC4	
RPOR10<13:8>	RP53	Port Pin RC5	
RPOR11<5:0>	RP54	Port Pin RC6	
RPOR11<13:8>	RP55	Port Pin RC7	
RPOR12<5:0>	RP56	Port Pin RC8	
RPOR12<13:8>	RP57	Port Pin RC9	
RPOR13<5:0>	RP58	Port Pin RC10	
RPOR13<13:8>	RP59	Port Pin RC11	
RPOR14<5:0>	RP60	Port Pin RC12	
RPOR14<13:8>	RP61	Port Pin RC13	
RPOR15<5:0>	RP62	Port Pin RC14	
RPOR15<13:8>	RP63	Port Pin RC15	
RPOR16<5:0>	RP64	Port Pin RD0	
RPOR16<13:8>	RP65	Port Pin RD1	
RPOR17<5:0>	RP66	Port Pin RD2	
RPOR17<13:8>	RP67	Port Pin RD3	
RPOR18<5:0>	RP68	Port Pin RD4	
RPOR18<13:8>	RP69	Port Pin RD5	
RPOR19<5:0>	RP70	Port Pin RD6	
RPOR19<13:8>	RP71	Port Pin RD7	
	RP175-RP169	Reserved	
RPOR20<5:0>	RP176	Virtual Pin RPV0	
RPOR20<13:8>	RP177	Virtual Pin RPV1	
RPOR21<5:0>	RP178	Virtual Pin RPV2	
RPOR21<13:8>	RP179	Virtual Pin RPV3	
RPOR22<5:0>	RP180	Virtual Pin RPV4	
RPOR22<13:8>	RP181	Virtual Pin RPV5	

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Logond:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
			FIFOUA	<15:8>				
bit 15							bit 8	
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
			FIFOU	A<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit	bit U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

4.2.4.2 Extended X Data Space

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Read Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x00. Consequently, DSRPAG is initialized to 0x001 at Reset.

- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

4.2.4.3 Software Stack

The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33CH128MP508S1 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-8 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-8. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-8: CALL STACK FRAME

4.2.8.1 Data Access from Program Memory Using Table Instructions

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper eight bits of a Program Space word as data.

This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to read byte or word-sized (16-bit) data from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>).
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, either the upper or lower byte of the upper program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'. When the upper byte is selected, the 'phantom' byte is read as '0'.

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. For these writes, data is written to a set of NVM latches and subsequently copied to the Program Space address using an NVM write operation. The details of their operation are explained in Section 4.3.2 "RTSP Operation".

	şə.	altuan ginana
	- 6×000000 0/020000	23 16 8 0 0000000 0000000 0000000 0000000 000000
		TBLEDELE (\$98<0> > 0) TBLEDELE (\$98<0> > 1) TBLEDLE (\$98<0> > 0) TBLEDLE (\$98<0> > 0) TBLEDLE (\$98<0> > 0)
	9,4800000	The addrate for the table constition is determined by the data EA within the party defined by the TBUAKG register. Only read operations are chosen; write constitutes are also valid in the true democy area.

FIGURE 4-12: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

ATUO DECIOT 4 00

		5.0		.	5.0	.					
U-0	<u> </u>	R-0	<u>U-0</u>	R-0	R-0	R-0	R-0				
	—	VHOLD		ILR3	ILR2	ILR1	ILR0				
bit 15							bit				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUMO				
bit 7							bit				
Legend: P = Peadable	e hit	M = M/ritable	hit	II – I Inimpler	mented hit read	1 ac 'O'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-14	Unimplemen	nted: Read as '	0'								
bit 13	VHOLD: Vect	tor Number Ca	pture Enable t	bit							
	1 = VECNUN	= VECNUM<7:0> bits read current value of vector number encoding tree (i.e., highest priority pending									
	interrupt)) umbor latchod i	nto VECNI IM	<7:0> at Interru	unt Acknowlodg	and rotained i	Intil poyt IAC				
hit 10				<1.07 at internu	ipt Acknowledge	e and retained t					
		neu. Redu as	U nat Dreieneite (Les)	al hita							
011 11-8	1111 - CDU	K<3:U>: New CPU Interrupt Priority Level Dits									
		Interrupt Phon	ly Levens 15								
	0001 = CPU Interrupt Priority Level is 1										
	0000 = CPU Interrupt Priority Level is 0										
bit 7-0	VECNUM<7:	0>: Vector Nun	nber of Pendir	ng Interrupt bits	3						
	11111111 = 255, Reserved; do not use										
			• • •								
	00001001 =	00001001 = 9, IC1 – Input Capture 1									
	00001000 =	00001000 = 8, INTO – External Interrupt 0									
	00000110 = 6 Generic soft error trap										
	00000110 =	5 Reserved d	o not use								
	00000100 =	4. Math error ti	ap								
	00000011 =	3, Stack error t	rap								
	00000010 =	2, Generic har	d trap								
	0000001=	1, Address erro	or trap								
	00000000 =	0, Oscillator fa	il trap								

4.6.8 PERIPHERAL PIN SELECT REGISTERS

REGISTER 4-35: RPCON: PERIPHERAL REMAPPING CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—			—	IOLOCK	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	-	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'
bit 11	IOLOCK: Peripheral Remapping Register Lock bit
	1 = All Peripheral Remapping registers are locked and cannot be written
	0 = All Peripheral Remapping registers are unlocked and can be written
bit 10-0	Unimplemented: Read as '0'

REGISTER 4-36: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15						•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un			x = Bit is unkr	nown			

bit 15-8 **INT1R<7:0>:** Assign External Interrupt 1 (S1INT1) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

REGISTER 4-57: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-8 **CLCINAR<7:0>:** Assign CLC Input A (S1CLCINA) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

REGISTER 4-58: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (S1CLCINC) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (S1CLCINB) to the Corresponding S1RPn Pin bits See Table 4-27.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0			
bit 15							bit 8			
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
SHREN	—	—	—	—	—	C1EN	COEN			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 13-8 bit 7	CLKSEL<1:0>: ADC Module Clock Source Selection bits 11 = Fvco/4 10 = AFvcoDiv 01 = Fosc 00 = FP (Fosc/2) CLKDIV<5:0>: ADC Module Clock Source Divider bits The divider forms a TCORESRC clock used by all ADC cores (shared and dedicated) from the TSRC ADC module clock source selected by the CLKSEL<1:0> bits. Then, each ADC core individually divides the TCORESRC clock to get a core-specific TADCORE clock using the ADCS<6:0> bits in the ADCORExH register or the SHRADCS<6:0> bits in the ADCON2L register. 111111 = 64 Source Clock Periods 000011 = 4 Source Clock Periods 000001 = 2 Source Clock Periods 000001 = 2 Source Clock Periods									
Dit 7	1 = Shared A 0 = Shared A	DC core is ena	bled bled							
bit 6-2	Unimplemen	ted: Read as 'd)'							
bit 1	C1EN: Dedica	ated ADC Core	1 Enable bits							
	1 = Dedicated	d ADC Core 1 is	s enabled							
	0 = Dedicated	d ADC Core 1 is	s disabled							
bit 0	COEN: Dedica	ated ADC Core	0 Enable bits							
	1 = Dedicated	ADC Core 0 is	s enabled							
			s disabled							

REGISTER 4-88: ADCON3H: ADC CONTROL REGISTER 3 HIGH

REGISTER 4-90: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			C1CHS1	C1CHS0	C0CHS1	C0CHS0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-4	Unimplement	ted: Read as 'o)'				
bit 3-2	C1CHS<1:0>	: Dedicated AD	C Core 1 Inpu	t Channel Sele	ction bits		
	11 = S1ANC1						
	10 = SPGA2						
	01 = S1ANA1						
bit 1_0	UU - JIANI COCHE<1:0>: Dedicated ADC Care 0 Input Channel Selection hits						
bit 1-0					clion bits		
	10 = SPGA1	•					
	01 = S1ANA0)					
	00 = S1AN0						

U-0	U-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0				
_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN				
bit 15		·	•				bit 8				
HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0				
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN				
bit 7							bit 0				
Legend:		C = Clearable	bit	HS = Hardwai	re Settable bit						
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-14	Unimplemen	ted: Read as ')'								
bit 13	PCHEQIRQ:	Position Count	er Greater Tha	n Compare Sta	tus bit						
	1 = POSxCN	$T \ge QEIXGEC$									
hit 12		Position Count	er Greater Tha	n Compare Inte	rrunt Enable b	it					
51(12	1 = Interrupt i	is enabled				it.					
	0 = Interrupt i	is disabled									
bit 11	PCLEQIRQ:	Position Counter	er Less Than C	compare Status	bit						
	1 = POSxCNT ≤ QEIxLEC										
	0 = POSxCN	T > QEIxLEC	. – .	• •							
bit 10		Position Counte	er Less Than C	ompare Interru	pt Enable bit						
	0 = Interrupt i	is enabled									
bit 9	POSOVIRQ:	Position Count	er Overflow Sta	atus bit							
	1 = Overflow	has occurred									
	0 = No overflo	ow has occurre	d								
bit 8	POSOVIEN:	Position Counter	er Overflow Inte	errupt Enable b	it						
	1 = Interrupt i	is enabled									
hit 7	PCIIRO: Posi	ition Counter (H	lomina) Initializ	vation Process	Complete Stati	us hit(1)					
bit /	1 = POSxCN	T was reinitializ	ed								
	0 = POSxCN	T was not reinit	ialized								
bit 6	PCIIEN: Posi	PCIIEN: Position Counter (Homing) Initialization Process Complete Interrupt Enable bit									
	1 = Interrupt i	1 = Interrupt is enabled									
		is disabled									
bit 5		Velocity Counte	er Overflow Sta	tus bit							
	1 = Overnow 0 = No overflow	ow has occurre	d								
bit 4	VELOVIEN:	Velocity Counte	r Overflow Inte	errupt Enable bi	t						
	1 = Interrupt i	is enabled		·							
	0 = Interrupt i	is disabled									
bit 3	HOMIRQ: Sta	atus Flag for Ho	me Event Stat	us bit							
	1 = Home even	ent has occurre	d								

REGISTER 12-4: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

REGISTER 12-11: VELxHLDL: VELOCITY x COUNTER HOLD REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bi		t	U = Unimplemented bit, read as '0'		ad as '0'		
-n = Value at POR '1' = B		'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown

bit 15-0 VELHLD<15:0>: Velocity Counter Hold Value bits

REGISTER 12-12: VELXHLDH: VELOCITY x COUNTER HOLD REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELHLD)<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELHLD)<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 VELHLD<31:16>: Velocity Counter Hold Value bits

REGISTER 12-17: INDXxCNTL: INDEX x COUNTER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDX	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INDXCNT<15:0>: Index Counter Value bits

REGISTER 12-18: INDXxCNTH: INDEX x COUNTER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
INDXCNT<31:24>										
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			INDXCI	NT<23:16>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR		POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				

bit 15-0 INDXCNT<31:16>: Index Counter Value bits

13.5 UART Control/Status Registers

REGISTER 13-1: UxMODE: UARTx CONFIGURATION REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	HC/R/W-0 ⁽¹⁾				
UARTEN	—	USIDL	WAKE	RXBIMD	—	BRKOVR	UTXBRK				
bit 15		•				<u>.</u>	bit 8				
R/W-0	HC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BRGH	ABAUD	UTXEN	URXEN	MOD3	MOD2	MOD1	MOD0				
bit 7			•		·		bit 0				
Legend:		HC = Hardwar	e Clearable bit								
R = Readab	ole bit	W = Writable b	oit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15	UARTEN: UA	ART Enable bit									
	1 = UART is ı 0 = UART sta	ready to transm te machine, FIF	it and receive O Buffer Pointe	rs and counters	s are reset; regi	sters are reada	ble and writable				
bit 14	Unimplemen	ted: Read as 'o)'								
bit 13	USIDL: UAR	T Stop in Idle M	ode bit								
	1 = Discontin	ues module ope	eration when de	evice enters Id	le mode						
	0 = Continues	s module opera	tion in Idle mod	le							
bit 12	WAKE: Wake	e-up Enable bit									
	1 = Module v	1 = Module will continue to sample the RX pin – interrupt generated on falling edge, bit cleared in hard-									
	0 = RX pin is	ware on following rising edge; if ABAUD is set, Auto-Baud Detection (ABD) will begin immediately 0 = RX pin is not monitored nor rising edge detected									
bit 11	RXBIMD: Re	ceive Break Inte	errupt Mode bit								
	1 = RXBKIF detected	flag when a mi	nimum of 23 (I	DMX)/11 (asyr	nchronous or L	IN/J2602) low	bit periods are				
	0 = RXBKIF periods	flag when the E	Break makes a	low-to-high tra	ansition after b	eing low for at	least 23/11 bit				
bit 10	Unimplemen	ted: Read as 'o)'								
bit 9	BRKOVR: Se	end Break Softv	vare Override b	it							
	Overrides the	TX Data Line:									
	1 = Makes the 0 = TX line is	e TX line active driven by the s	(Output 0 whe hifter	n UTXINV = 0	, Output 1 whe	n UTXINV = 1))				
bit 8	UTXBRK: UA	ART Transmit B	reak bit ⁽¹⁾								
	1 = Sends Sy 0 = Sync Brea	nc Break on ne ak transmission	ext transmissior i is disabled or	n; cleared by has completed	ardware upon o 1	completion					
bit 7	BRGH: High	Baud Rate Sele	ect bit								
	1 = High Spe 0 = Low Spee	ed: Baud rate is ed: Baud rate is	baudclk/4 baudclk/16								
bit 6	ABAUD: Auto	o-Baud Detect B	Enable bit (read	d-only when M	OD<3:0> = 1x:	xx)					
	1 = Enables cleared in 0 = Baud rate	baud rate meas n hardware upo e measurement	surement on the on completion t is disabled or	e next charact	er – requires re	eception of a S	ync field (55h);				
Note 1: F	R/HS/HC in DMX	and LIN mode		F - /							

2: These modes are not available on all devices.

23.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

23.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

