

Welcome to E-XFL.COM

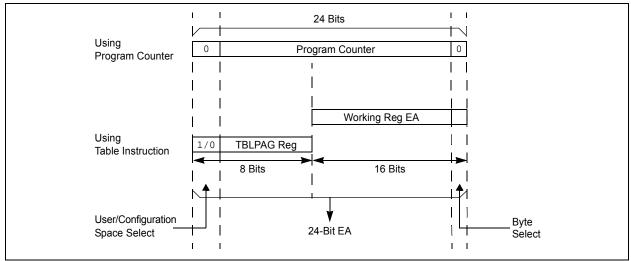
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	27
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	· ·
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp503-i-m5


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0		R/W-0	R/C-0	R-0	R/W-0	R/W-0
	-	R/W-1		IPL3 ⁽²⁾	-	-	-
SATA bit 7	SATB	SATDW	ACCSAT	IPL3 ⁽⁻⁾	SFA	RND	IF bit 0
							bit 0
Legend:		C = Clearable	e bit				
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	id as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	1 = Variable e	e Exception Pro exception proce	essing is enab	led			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed	Control bits			
	01 = DSP eng	d gine multiplies gine multiplies gine multiplies	are unsigned	٦			
bit 11	EDT: Early DO Loop Termination Control bit ⁽¹⁾						
	1 = Terminate 0 = No effect	es executing DO	loop at the e	nd of the curre	nt loop iteratio	n	
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = Seven	DO loops are a	ctive				
		o loop is active o loops are act					
bit 7	SATA: ACCA	Saturation En	able bit				
		itor A saturatio itor A saturatio					
bit 6	SATB: ACCB	Saturation En	able bit				
		itor B saturatio itor B saturatio					
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit		
	 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled 						
bit 4	1 = 9.31 satu	cumulator Satu ration (super s ration (normal	aturation)	Select bit			
bit 3	IPL3: CPU In	terrupt Priority	-				

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 3-14: ADDRESSING FOR TABLE REGISTERS

3.4.2 RESET CONTROL REGISTER

REGISTER 3-15: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
TRAPR	IOPUWR	—	—	_	—	CM	VREGS	
bit 15							bit 8	
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
EXTR	SWR		WDTO	SLEEP	IDLE	BOR	POR	
bit 7	own		WBIO	OLLLI	IDEE	Bolt	bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
		Deest Flee bit						
bit 15		Reset Flag bit						
		onflict Reset ha		d				
bit 14	•				ess Reset Flag	bit		
					ode or Uninitial		er used as a	
	Address	Pointer caused	l a Reset			-		
	•	•		Register Reset	has not occurre	d		
oit 13-10	-	Unimplemented: Read as '0'						
oit 9	•	ation Mismatch	•					
		ration Mismato						
oit 8	VREGS: Volta	age Regulator	Standby Durin	ig Sleep bit				
	•	egulator is acti equlator goes i	•	ep node during Sle	еер			
oit 7	-	al Reset (MCL		3 -	1-			
		Clear (pin) Res Clear (pin) Res						
bit 6		re RESET (Inst						
	1 = A reset i	instruction has instruction has	been execute	ed				
oit 5		ted: Read as '						
oit 4	-	hdog Timer Tin		ŀ				
		e-out has occur		-				
	0 = WDT time	e-out has not o	ccurred					
bit 3	SLEEP: Wake	e-up from Slee	p Flag bit					
		is been in Slee is not been in S	-					
bit 2	IDLE: Wake-u	IDLE: Wake-up from Idle Flag bit						
	1 = Device ha	s been in Idle	mode					
L:1 A		is not been in I						
bit 1		out Reset Flag						
		out Reset has out Reset has						
Note 1: All	of the Reset sta	tue hite can he	set or cleared	t in coffwara. S	etting one of th	oso hite in coft	wara daga na	

cause a device Reset.

REGISTER 3-99: DMTPSINTVL: DMT POST-CONFIGURE INTERVAL STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	⁻ V<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSIN	TV<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 **PSINTV<15:0>:** Lower DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTL Configuration register.

REGISTER 3-100: DMTPSINTVH: DMT POST-CONFIGURE INTERVAL STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	V<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	V<23:16>			
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit,					nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk				nown			

bit 15-0 **PSINTV<31:16>:** Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTH Configuration register.

REGISTER 3-158: ADCON1H: ADC CONTROL REGISTER 1 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0
FORM	SHRRES1	SHRRES0	_	—			
bit 7							bit 0
Legend:							
R = Readable bit W =		W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as 'd)'				
bit 7	FORM: Fracti	onal Data Outp	out Format bit				
	1 = Fractional 0 = Integer						
bit 6-5	sit 6-5 SHRRES<1:0>: Shared ADC Core Resolution Selection bits						
	 11 = 12-bit resolution 10 = 10-bit resolution 01 = 8-bit resolution 00 = 6-bit resolution 						
bit 4-0	Unimplemented: Read as '0'						

4.2.5 INSTRUCTION ADDRESSING MODES

The addressing modes shown in Table 4-17 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.2.5.1 File Register Instructions

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.2.5.2 MCU Instructions

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

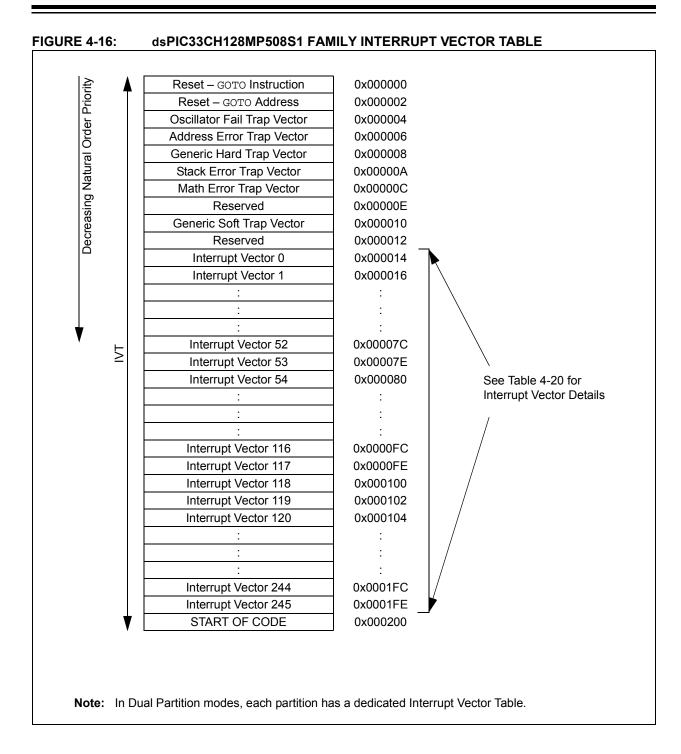
- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-17: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

REGISTER 4-11: ECCADDRL: ECC FAULT INJECT ADDRESS COMPARE REGISTER LOW


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCAE	DDR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCA	DDR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		
•							

bit 15-0 ECCADDR<15:0>: ECC Fault Injection Memory Address Match Compare bits

REGISTER 4-12: ECCADDRH: ECC FAULT INJECT ADDRESS COMPARE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ECCAD	DR<31:24>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ECCAD	DR<23:16>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x				x = Bit is unkr	nown			

bit 15-0 ECCADDR<31:16>: ECC Fault Injection Memory Address Match Compare bits

4.6.6 I/O HELPFUL TIPS

- 1. In some cases, certain pins, as defined in Table 24-18 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or lesser than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins, by default, after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Select for PORTx registers, in the I/O ports module (i.e., ANSELx), by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0×0 , while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 24.0 "Electrical Characteristics" of this data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted.

REGISTER 4-47: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEIHOM1R7 | QEIHOM1R6 | QEIHOM1R5 | QEIHOM1R4 | QEIHOM1R3 | QEIHOM1R2 | QEIHOM1R1 | QEIHOM1R0 |
| bit 15 | • | | | | | • | bit 8 |

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEINDX1R7 | QEINDX1R6 | QEINDX1R5 | QEINDX1R4 | QEINDX1R3 | QEINDX1R2 | QEINDX1R1 | QEINDX1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIHOM1R<7:0>:** Assign QEI Home 1 Input (S1QEIHOM1) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-48: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1DSRR7 | U1DSRR6 | U1DSRR5 | U1DSRR4 | U1DSRR3 | U1DSRR2 | U1DSRR1 | U1DSRR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U1RXR7 | U1RXR6 | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **U1DSRR<7:0>:** Assign UART1 Data-Set-Ready (S1U1DSR) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **U1RXR<7:0>:** Assign UART1 Receive (S1U1RX) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **QEINDX1R<7:0>:** Assign QEI Index 1 Input (S1QEINDX1) to the Corresponding S1RPn Pin bits See Table 4-27.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0		
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
SHREN						C1EN	C0EN		
bit 7 bit 0									
<u> </u>									
Legend:						(a)			
R = Readable		W = Writable k	bit	•	ented bit, read				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	IOWN		
bit 15-14	CLKSEL<1:0 11 = FvCo/4 10 = AFvCoDI 01 = Fosc	>: ADC Module	Clock Source	Selection bits					
	00 = FP (Fost	c/2)							
	module clock TCORESRC clo register or the 111111 = 64 000011 = 4 S 000010 = 3 S 000001 = 2 S 000000 = 1 S	source selected ock to get a cor SHRADCS<6: Source Clock Pe Source Clock Pe Source Clock Pe Source Clock Pe Source Clock Pe	d by the CLKS e-specific TAD 0> bits in the A Periods eriods eriods eriods eriod	y all ADC cores EL<1:0> bits. T CORE clock usii ADCON2L regis	hen, each ADC ng the ADCS<	core individua	ally divides the		
bit 7	1 = Shared Al	red ADC Core I DC core is enal DC core is disa	bled						
bit 6-2	Unimplement	ted: Read as 'o	,						
bit 1	C1EN: Dedicated ADC Core 1 Enable bits 1 = Dedicated ADC Core 1 is enabled								
bit 0	 0 = Dedicated ADC Core 1 is disabled C0EN: Dedicated ADC Core 0 Enable bits 1 = Dedicated ADC Core 0 is enabled 0 = Dedicated ADC Core 0 is disabled 								

REGISTER 4-88: ADCON3H: ADC CONTROL REGISTER 3 HIGH

REGISTER 14-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 7		SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
		1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the Slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6		CKP: Clock Polarity Select bit
		 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5		MSTEN: Master Mode Enable bit
		1 = Master mode 0 = Slave mode
bit 4		DISSDI: Disable SDIx Input Port bit
		 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3		DISSCK: Disable SCKx Output Port bit
		 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2		MCLKEN: Master Clock Enable bit ⁽³⁾
		1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG
bit 1		SPIFE: Frame Sync Pulse Edge Select bit
		 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0		ENHBUF: Enhanced Buffer Enable bit
		 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note	1:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.
	2:	When FRMEN = 1, SSEN is not used.

- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

NOTES:

REGISTER 21-16: FMBXM CONFIGURATION REGISTER (CONTINUED)

bit 9	 MBXM9: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #9 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #9 is configured for Master data write (Master to Slave data transfer)
bit 8	 MBXM8: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #8 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #8 is configured for Master data write (Master to Slave data transfer)
bit 7	 MBXM7: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #7 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #7 is configured for Master data write (Master to Slave data transfer)
bit 6	 MBXM6: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #6 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #6 is configured for Master data write (Master to Slave data transfer)
bit 5	MBXM5: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #5 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #5 is configured for Master data write (Master to Slave data transfer)
bit 4	 MBXM4: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #4 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #4 is configured for Master data write (Master to Slave data transfer)
bit 3	MBXM3: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #3 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #3 is configured for Master data write (Master to Slave data transfer)
bit 2	 MBXM2: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #2 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #2 is configured for Master data write (Master to Slave data transfer)
bit 1	 MBXM1: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #1 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #1 is configured for Master data write (Master to Slave data transfer)
bit 0	 MBXM0: Mailbox Data Register Channel Direction Fuses bits 1 = Mailbox Register #0 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #0 is configured for Master data write (Master to Slave data transfer)

REGISTER 21-30: FS1DEVOPT CONFIGURATION REGISTER (SLAVE)

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_		—	_	—	_	—	_
bit 23	·						bit 16
R/PO-1	R/PO-1	R/PO-1	U-1	U-1	U-1	U-1	U-1
S1MSRE	S1SSRE	S1SPI1PIN ⁽¹⁾	_	_	—	—	_
bit 15							bit 8
U-1	U-1	U-1	U-1	R/PO-1	U-1	U-1	U-1
				S1ALTI2C1	—		
bit 7							bit 0
Legend:		PO = Program (Once bit				
R = Readab		W = Writable bit	t	U = Unimplem			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 23-16	-	nted: Read as '1'					
bit 15		aster Slave Rese			a a dia 10/atala d	T: T:	
		ster software-orie					but Reset, Trap
		ster software-orie					out Reset, Trap
	Reset, I	llegal Instruction I	Reset) will n	ot cause the Slav	ve subsystem	to reset	
bit 14		ave Reset Enable					
		nerated Resets w					
h:+ 40	-	nerated Resets w Slave SPI1 Fast			e dit in the IVIS	module	
bit 13		Plave SPIT Fast Pl1 uses PPS (I/O			ith dovice pipe		
		PI1 uses direct co				>	
bit 12-4		nted: Read as '1'					
bit 3	-	Alternate I2C1 P		bit			
		ocation for SCL1/					
		e location for SCL		s (ASCL1/ASDA1	l)		
bit 2-0	Unimpleme	nted: Read as '1'					

Note 1: Fixed pin option is only available for higher pin packages (48-pin, 64-pin and 80-pin).

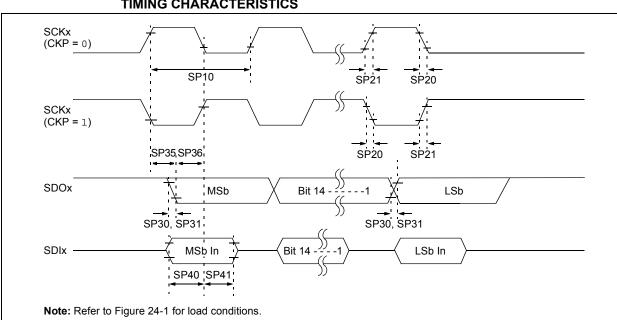

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
60	MIN	MIN Acc		If Accumulator A Less than B Load Accumulator with B or vice versa	1	1	N,OV,Z
		MIN.V	Acc, Wd	If Accumulator A Less than B Accumulator Force Minimum Data Range Limit with Limit Excess Result	1	1	N,OV,Z
		MINZ	Acc	Accumulator Force Minimum Data Range Limit	1	1	N,OV,Z
		MINZ.V	Acc, Wd	Accumulator Force Minimum Data Range Limit with Limit Excess Result	1	1	N,OV,Z
61	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
62	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit Literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit Literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
64	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None
65	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB SA,SB,SAB
66	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
67	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB SA,SB,SAB
68	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = Signed(Wb) * Signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = Signed(Wb) * Unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: Cycle times for Slave core are different for Master core, as shown in 2.

3: For dsPIC33CH128MP508 devices, the divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times

FIGURE 24-10: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-37:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions				
SP10	FscP	Maximum SCKx Frequency		_	15	MHz	Using PPS pins
			_	_	40	MHz	SPI2 dedicated pins
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 3)
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 3)
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 3)
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 3)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns	
SP36	TdoV2scH,	SDOx Data Output Setup to	30	—	_	ns	Using PPS pins
	TdoV2scL	First SCKx Edge	20	—		ns	SPI2 dedicated pins
SP40	TdiV2scH,	Setup Time of SDIx Data	30	—		ns	Using PPS pins
	TdiV2scL	Input to SCKx Edge	10	—	—	ns	SPI2 dedicated pins
SP41	TscH2diL,	Hold Time of SDIx Data Input	30	—	—	ns	Using PPS pins
	TscL2diL	to SCKx Edge	15	_	_	ns	SPI2 dedicated pins

 $\label{eq:Note 1: These parameters are characterized but not tested in manufacturing.$

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

TABLE 24-41:	I2Cx BUS DATA	TIMING REQUIREMENTS	(SLAVE MODE)
--------------	----------------------	---------------------	--------------

AC CHA	RACTER	ISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No. Symbol		Characte	Min.	Max.	Units	Conditions		
IS10 TLO:SCL		Clock Low Time	100 kHz mode	4.7	_	μs		
			400 kHz mode	1.3	_	μs		
			1 MHz mode ⁽¹⁾	0.5	_	μs		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0		μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6		μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.28		μs		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 x (VDD/5.5V)	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	20 x (VDD/5.5V)	120	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	20 + 0.1 CB	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode		300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	120	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns		
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽¹⁾	50		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	_	μs		
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	_	μs	Only relevant for	
		Setup Time	400 kHz mode	0.6	_	μs	Repeated Start condition	
			1 MHz mode ⁽¹⁾	0.26		μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	_	μs	After this period, the first	
		Hold Time	400 kHz mode	0.6	_	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.26	—	μs		
IS33	TSU:STO	Stop Condition	100 kHz mode	4	—	μs		
		Setup Time	400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.26	_	μs		
IS34	THD:STO	Stop Condition	100 kHz mode	> 0	—	μs	_	
		Hold Time	400 kHz mode	> 0	—	μs		
			1 MHz mode ⁽¹⁾	> 0		μs		
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3540	ns	_	
		Clock	400 kHz mode	0	900	ns		
			1 MHz mode ⁽¹⁾	0	400	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3	—	μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	—	μs	can start	
IS50	Св	Bus Capacitive Lo		—	400	pF		
IS51	TPGD	Pulse Gobbler Del	ay	65	390	ns	(Note 2)	

Note 1: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: Typical value for this parameter is 130 ns.

3: These parameters are characterized but not tested in manufacturing.

AC/DC	CHARAC	TERISTICS		(unless ot	Operating C herwise sta temperature	$-40^{\circ}C \le TA$. ≤ +85°C	6∨ For Industrial C for Extended
Param No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Comments
PA01	Vin	Input Voltage Rang	е	AVss - 0.3	_	AVDD + 0.3	V	
PA02	Vсм	Common-Mode Inp Voltage Range	ut	AVss	_	AVDD – 1.6	V	
PA03	Vos	Input Offset Voltage	;	-2	_	+2	mV	Gain = 32x
PA04	Vos	Input Offset Voltage Drift with Temperature		_	±15	—	µV/°C	
PA05	Rin+	Input Impedance of Positive Input		—	>1M 7 pF	—	Ω pF	
PA06	Rin-	Input Impedance of Negative Input		—	10K 7 pF	—	Ω pF	
PA07	Gerr	Gain Error		-2	±0.5	+2	%	Gain = 4x, 8x,16x, 32x
PA08	Lerr	Gain Nonlinearity E	rror	_	—	0.5	%	% of full scale, Gain = 16x
PA09	IDD	Current Consumption	on	_	2.0	—	mA	Module is enabled with a 2-volt P-P output voltage swing
PA10a	BW	Small Signal	G = 4x	_	10	—	MHz	
PA10b		Bandwidth (-3 dB)	G = 8x	_	5	—	MHz	
PA10c			G = 16x	_	2.5	—	MHz	
PA10d			G = 32x	_	1.25	—	MHz	
PA11	OST	Output Settling Time to 1% of Final Value		—	0.4	—	μs	Gain = 16x, 100 mV input step change
PA12	SR	Output Slew Rate			40		V/µs	Gain = 16x
PA13	TGSEL	Gain Selection Time	e		1		μs	
PA14	TON	Module Turn-on/Set	ting Time			10	μs	

TABLE 24-48: PGAx MODULE SPECIFICATIONS

Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 24-49: CONSTANT-CURRENT SOURCE SPECIFICATIONS

		itions: 3.0V to 3.6V (unless of the table of the table of table o	⁻ Industria	al) ⁽¹⁾		
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
CC02	IREG	Current Regulation	_	±3	_	%	
CC03	Ιουτ	Current Output at Terminal		10		μA	ISRCx pin
				50		μA	IBIASx pin

Note 1: The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

Power-Saving Features	
Clock Frequency and Switching	471
Resources	
Power-Saving Features (Master and Slave)	471
PRAM for Slave dsPIC33CH128MP508S1 Devices	272
Program Address Space	272
Construction	295
Data Access from Program Memory Using	
Table Instructions	296
Program Memory	
Interfacing with Data Memory Spaces	295
Organization	273
Reset Vector	273
Programmable Gain Amplifier (PGA) Slave	412
Control Registers	415
Description	413
Resources	414
Programmable Gain Amplifier. See PGA.	
Programmer's Model	38
Register Descriptions	38
PTG	
Command Options	258
Control/Status Registers	248
Features	246
Input Descriptions	259
Output Descriptions	259
Step Command Format/Description	257

Q

QEI	
Control and Status Registers	
Overview	
Truth Table	
Quadrature Encoder Interface (QEI)	
Quadrature Encoder Interface. See QEI.	

R

Referenced Sources	20
Master Configuration	
Master Interrupt Enable	
Master Interrupt Flag	100
Master Interrupt Priority	
Master PMD	489
Master PPS Input Control	168
Master PPS Output Control	169
PORTA	136, 380
PORTB	. 136, 380
PORTC	. 137, 381
PORTD	. 137, 381
PORTE	. 138, 382
Slave Configuration	669
Slave Interrupt Enable	319
Slave Interrupt Flag	319
Slave Interrupt Priority	320
Slave PMD	
Slave PPS Input Control	
Slave PPS Output Control	352
Registers	
ACLKCON1 (Master Auxiliary Clock Control)	449
ACLKCON1 (Slave Auxiliary Clock Control)	
ADCAL1H (ADC Calibration 1 High)	407
ADCMPxCON (ADC Digital	
Comparator x Control)	.242, 408

ADCMPxENH (ADC Digital Comparator x	
Channel Enable High) 243	, 409
ADCMPxENL (ADC Digital Comparator x	
Channel Enable Low) 243	, 409
ADCON1H (ADC Control 1 High) 226	
ADCON1L (ADC Control 1 Low) 225	
ADCON2H (ADC Control 2 High)	
ADCON2L (ADC Control 2 Low)	
ADCON3H (ADC Control 3 High)	
ADCONST (ADC CONTOLS FIGH)	1, 392
ADCON3L (ADC Control 3 Low)	, 391
ADCON4H (ADC Control 4 High)	
ADCON4L (ADC Control 4 Low)	
ADCON5H (ADC Control 5 High) 232	
ADCON5L (ADC Control 5 Low) 231	, 395
ADCORExH (Dedicated ADC Core x	
Control High)	. 398
ADCORExL (Dedicated ADC Core x	
Control Low)	. 397
ADEIEH (ADC Early Interrupt Enable High) 234	
ADEIEL (ADC Early Interrupt Enable Low) 234	
ADEISTATH (ADC Early Interrupt	, 400
Status High)	: 101
Status Figit)	, 401
ADEISTATL (ADC Early Interrupt	
Status Low)	, 401
ADFLxCON (ADC Digital Filter x Control) 244	
ADIEH (ADC Interrupt Enable High) 238	
ADIEL (ADC Interrupt Enable Low) 238	, 403
ADLVLTRGH (ADC Level-Sensitive Trigger	
Control High) 233	, 399
ADLVLTRGL (ADC Level-Sensitive Trigger	
Control Low) 233	399
ADMOD0H (ADC Input Mode Control 0 High)	
ADMOD0L (ADC Input Mode	
Control 0 Low)	402
ADMOD1L (ADC Input Mode Control 1 Low)	
ADSTATH (ADC Data Ready Status High) 239	
ADSTATL (ADC Data Ready Status Figh) 239	. 404
	, 404
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x)	, 404
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 664
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 664 214
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 664 214 214
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 664 214 214 215
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 664 214 214 215 216
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 664 214 214 215 216 180
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 664 214 214 215 216 180
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 462 664 214 214 215 216 180 182
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 451 450 462 664 214 214 215 216 180 182
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)	9, 404 9, 405 6, 334 463 451 450 462 462 664 214 214 215 216 180 184
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)	9, 404 9, 405 6, 334 463 451 450 462 462 664 214 214 215 216 180 184
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 463 4451 4450 4450 4450 462 214 214 215 216 182 184 184
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 463 4451 4450 4450 4450 462 214 214 215 216 182 184 184
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 463 4451 4450 4451 4450 4451 4450 4451 214 214 218 184 184 198
 ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)	0, 404 0, 405 5, 334 463 463 462 664 214 216 182 184 184 184 198 198
 ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)	0, 404 0, 405 5, 334 463 463 462 664 214 216 182 184 184 184 198 198 198
 ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 463 462 462 462 462 462 462 462 462 463 462 184 184 184 198 198 198 198 202 203
 ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)), 404), 405), 334 463 463 462 462 462 462 462 462 462 184 214 184 184 198 198 198 202 203 205
 ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)	0, 404 0, 405 0, 334 463 463 451 462 462 462 462 462 462 462 184 184 184 184 198 198 198 202 210 2210 2210
 ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x) Selection Low/High)	0, 404 0, 405 0, 334 463 463 451 450 462 462 462 462 462 463 184 184 184 188 198 198 202 210