

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	88KB (88K × 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 31x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp505-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Master Flash Program Memory

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: This section refers to the "Dual Partition Flash Program Memory" (DS70005156) in the "dsPIC33/PIC24 Family Reference Manual", but the Dual Partition is not implemented in the Master Flash.

The dsPIC33CH128MP508 family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33CH128MP508 family device to be serially programmed while in the end application circuit. This is done with a Programming Clock and Programming Data (PGCx/PGDx) line, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive, to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification. RTSP allows the Master Flash user application code to update itself during run time. The feature is capable of writing a single program memory word (two instructions) or an entire row as needed.

3.3.1 FLASH PROGRAMMING OPERATIONS

For ICSP and RTSP programming of the Master Flash, TBLWTL and TBLWTH instructions are used to write to the NVM write latches. An NVM write operation then writes the contents of both latches to the Flash, starting at the address defined by the contents of TBLPAG, and the NVMADR and NVMADRU registers.

Programmers can program two adjacent words (24 bits x 2) of Program Flash Memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete.

Regardless of the method used to program the Flash, a few basic requirements should be met:

- A full 48-bit double instruction word should always be programmed to a Flash location. Either instruction may simply be a NOP to fulfill this requirement. This ensures a valid ECC value is generated for each pair of instructions written.
- Assuming the above step is followed, the last 24-bit location in implemented program space should never be executed. The penultimate instruction must contain a program flow change instruction, such as a RETURN or BRA instruction.

REGISTER 3-51: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEIHOM1R7 | QEIHOM1R6 | QEIHOM1R5 | QEIHOM1R4 | QEIHOM1R3 | QEIHOM1R2 | QEIHOM1R1 | QEIHOM1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEINDX1R7 | QEINDX1R6 | QEINDX1R5 | QEINDX1R4 | QEINDX1R3 | QEINDX1R2 | QEINDX1R1 | QEINDX1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIHOM1R<7:0>:** Assign QEI Home 1 Input (QEIHOM1) to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-52: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1DSRR7 | U1DSRR6 | U1DSRR5 | U1DSRR4 | U1DSRR3 | U1DSRR2 | U1DSRR1 | U1DSRR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U1RXR7 | U1RXR6 | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **U1DSRR<7:0>:** Assign UART1 Data-Set-Ready (U1DSR) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **U1RXR<7:0>:** Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **QEINDX1R<7:0>:** Assign QEI Index 1 Input (QEINDX1) to the Corresponding RPn Pin bits See Table 3-30.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
CON	—	SIDL	BRSDIS	BUSY	WFT1	WFT0	WAKFIL ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLKSEL ⁽¹⁾	PXEDIS ⁽¹⁾	ISOCRCEN ⁽¹⁾	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0
bit 7				1			bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	CON: CAN E	nable bit					
	1 = CAN mod	ule is enabled ule is disabled					
bit 14	Unimplemen	ted: Read as '0'					
bit 13	SIDL: CAN S	top in Idle Contro	l bit				
		dule operation in stop module ope		mode			
bit 12		Rate Switching (E	,				
		Switching is disab Switching depend				ssage object	
bit 11		Nodule is Busy bi	t				
		module is active module is inactiv	e				
bit 10-9		electable Wake-ι	ip Filter Time	e bits			
	11 = T11FILTE 10 = T10FILTE 01 = T01FILTE 00 = T00FILTE	R					
bit 8	WAKFIL: Ena	able CAN Bus Lin	e Wake-up F	ilter bit ⁽¹⁾			
		N bus line filter fo line filter is not us		·up			
bit 7	CLKSEL: Mo	dule Clock Sourc	e Select bit ⁽¹)			
		selected as the selected as the selected as the sol					
bit 6	PXEDIS: Prot	ocol Exception E	vent Detection	on Disabled bit	(1)		
	1 = Protocol E	eserved bit" follo Exception is treat col Exception is d	ed as a form	error		-	
bit 5		Enable ISO CRC				gotato	
	1 = Includes s	stuff bit count in C include stuff bit c	RC field and	l uses non-zer			all zeros
bit 4-0	DNCNT<4:0>	: DeviceNet™ Fi	lter Bit Numb	er bits			
		1 = Invalid select pares up to Data			s of data with E	ID)	
		pares up to Data s not compare da		with EID0			

REGISTER 3-103: C1CONL: CAN CONTROL REGISTER LOW

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	\<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpleme	nted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknowr	ı

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

R/W-0 R bit 15	R/W-0	R/W-0	R/W-0 EFMSG	R/W-0 CNT<15:8>	R/W-0	R/W-0	R/W-0
bit 15			EFMSG	CNT<15:8>			
bit 15							
							bit 8
R/W-0 R	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EFMSG	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplem	ented bit, read	1 as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	iown

REGISTER 3-150: C1BDIAG1L: CAN BUS DIAGNOSTICS REGISTER 1 LOW

bit 15-0 EFMSGCNT<15:0>: Error-Free Message Counter bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HSC/R-0	R/W-0	HSC/R-0			
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH			
bit 15			I	I			bit 8			
R/W-0	HSC/R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSELO			
bit 7							bit C			
Legend:		U = Unimplen	nented bit, read	as '0'						
R = Readable		W = Writable			vare Settable/C					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	REFSEL<2:0	>: ADC Refere	nce Voltage Se	lection bits						
	Value	VREFH	VREFL							
	000	AVDD	AVss							
hit 10		nimplemented		hit.						
bit 12			iggers Disable r all ADC cores							
		ores can be tri								
bit 11	SUSPCIE: Su	spend All ADC	Cores Commo	on Interrupt En	able bit					
	1 = Common	interrupt will b	e generated wh	en ADC core	triggers are sus	pended (SUSF	PEND bit = 1)			
				•	bit becomes se	et)				
hit 10		-	t generated for	-	cores event					
bit 10			Suspended Flag		no conversions	in progress				
		•	is conversions i	,		in progress				
bit 9	SHRSAMP: S	Shared ADC Co	ore Sampling Di	irect Control bi	it					
					rsion trigger co					
					5:0> bits, to the					
	extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1').									
	1 = Shared Al	= Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits								
			y the shared AD							
bit 8			lual Channel Co							
					ed by the CNVC next instruction		ts; when the bit			
		•	conversion trigg			cycic				
bit 7			Sensitive Com							
					s with the softv	vare; level-sen	sitive common			
					DTRIGnH regist	ers				
1.1.0			itive common tr	iggers are gen	ierated					
bit 6		oftware Commo		als with the co	oftware; commo	n trigger coloct	ad as a source			
	in the AD		ADTRIGnH reg		the bit is set, i					
			next software co	ommon trigger						
bit 5-0	-	-			re Individual Ch	annel Convers	ion Trigger bits			
	These bits de	fine a channel	to be converted	I when the CN	VRTCH bit is se	et.				

REGISTER 3-161: ADCON3L: ADC CONTROL REGISTER 3 LOW

REGISTER 3-164: ADCON5H: ADC CONTROL REGISTER 5 HIGH

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—		WARMTIME3	WARMTIME2	WARMTIME1	WARMTIME
bit 15							bit
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
SHRCIE	<u> </u>	<u> </u>			_		
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at	It POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkno	own
bit 11-8		etermine the po		e Power-up Delay y in the number o		rce Clock Perio	ds (Tcoresro
bit 11-8	These bits de for all ADC c 1111 = 3276 1110 = 1638 1101 = 8192 1100 = 4096 1011 = 2048 1010 = 1024 1001 = 5123 1000 = 2563 0111 = 1283 0110 = 64 S 0101 = 32 S 0100 = 16 S	etermine the po	wer-up delay Periods Periods Periods Periods Periods eriods eriods eriods riods riods riods			rce Clock Perio	ds (TCORESRO
bit 11-8 bit 7	These bits da for all ADC o 1111 = 3276 1110 = 1638 1101 = 8192 1100 = 4096 1011 = 2048 1010 = 1024 1001 = 512 = 1000 = 256 = 0111 = 128 = 0110 = 64 S 0101 = 32 S 0100 = 16 S 00xx = 16 S SHRCIE: Sh 1 = Commor	etermine the po fores. 38 Source Clock 34 Source Clock 35 Source Clock 35 Source Clock 35 Source Clock P 35 Source Clock	wer-up delay C Periods Periods Periods Periods Periods Periods eriods eriods eriods riods riods riods riods eredy Corr e generated		f the Core Sou nable bit is powered and		

	REGISTER 4-89:	ADCON4L: ADC CONTROL REGISTER 4 LOW
--	----------------	-------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	r-0	r-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SAMC1EN	SAMC0EN
bit 7							bit 0
Legend:		r = Reserved	bit				

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15-10 Unimplemented: Read as '0'
- bit 9-8 Reserved: Must be written as '0'
- bit 7-2 Unimplemented: Read as '0'
- bit 1 SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE1L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle
- bit 0 SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE0L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle

S1MSRE	S1SSRE	SLVEN Bit Reset Source	Application Effect
0	0	Master Resets ⁽¹⁾	 Slave is reset and disabled in the event of a POR, BOR or MCLR Reset. Master must re-enable Slave.
			 Slave Run-Time Resets will not disable Slave. Slave will reset and continue execution (and may optionally interrupt Master).
1	0	Master Resets ⁽¹⁾	 Slave is reset and disabled in the event of a POR, BOR or MCLR Reset. Master must re-enable Slave.
			 Slave Run-Time Resets will not disable Slave. Slave will reset and continue execution (and may optionally interrupt Master).
0	1	Master Resets ⁽¹⁾ and Slave Resets ⁽²⁾	 Slave is reset and disabled in the event of any Slave Run-Time Reset (and may optionally interrupt Master). Master must re-enable Slave to execute the Slave code.
			 Master Run-Time Resets will not affect Slave operation.
1	1	POR/BOR/MCLR ⁽¹⁾ Slave Resets ⁽²⁾	 Slave is reset and disabled in the event of any Slave Run-Time Reset or Master Reset. Master must re-enable Slave. This represents the default state (S1MSRE and S1SSRE are unprogrammed).

TABLE 5-1: APPLICATION MODE SLVEN RESET CONTROL TRUTH TABLE

Note 1: Master Resets include any Master Reset, such as POR/BOR/MCLR Resets.

2: Slave Resets include any Slave Reset, plus POR/BOR/MCLR Resets (in Application mode).

5.4.1 INTER-PROCESSOR INTERRUPT REQUEST AND ACKNOWLEDGE

The Master and Slave processors may interrupt each other directly. The Master may issue an interrupt request to the Slave by asserting the MTSIRQ (MSI1CON<9>) control bit. Similarly, the Slave may issue an interrupt request to the Master by asserting the STMIRQ (MSI1STAT<9>) control bit.

The interrupts are Acknowledged through the use of the Interrupt Acknowledge bits, MTSIACK (MSI1STAT<8>) for the Master to Slave interrupt request and STMIACK (MSI1CON<8>) for the Slave to Master interrupt request.

5.4.2 READ ADDRESS POINTERS FOR FIFOs

The MSI macro may also include a set of two FIFOs, one for data reads from the Slave and the other for data writes to the Slave. The Read Address Pointers for the Read and Write FIFOs are held in the RDPTR<6:0> bits (MSI1CON<6:0>) and WRPTR<6:0 bits (MSI1STAT<6:0>), respectively. These bits are accessible only from within Debug mode.

REGISTER 6-14: PLLFBD: PLL FEEDBACK DIVIDER REGISTER (SLAVE)

	-				(-	,				
U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0			
_										
bit 15							bit 8			
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0			
			PLLFBD	DIV<7:0>						
bit 7							bit 0			
Legend:		r = Reserved b	bit							
R = Readab	ole bit	W = Writable b	bit	U = Unimplemented bit, read as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown			
bit 15-12	Unimplemer	nted: Read as '0	3							
bit 11-8	Reserved: N	laintain as '0'								
bit 7-0	PLLFBDIV<7	7:0>: PLL Feedb	ack Divider bi	ts (also denote	d as 'M', PLL r	nultiplier)				
	11111111 =	Reserved								
	 11001000 =	200 maximum ⁽¹)							
	 10010110 = 150 (default)									
	 00010000 =	16 minimum ⁽¹⁾								
	 00000010 =	Reserved								

Note 1: The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power on the default feedback divider is 150 (decimal) with an 8 MHz FRC input clock. The VCO frequency is 1.2 GHz.

00000001 = Reserved 00000000 = Reserved

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_		—	—	—	—		
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
CRCMD	_			—		I2C2MD	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15-8	Unimplemen	ted: Read as '	כ'					
bit 7	CRCMD: CRC Module Disable bit							
		lule is disabled						
	0 = CRC mod							
bit 6-2	Unimplemented: Read as '0'							
bit 1	I2C2MD: I2C2 Module Disable bit							

REGISTER 7-4: PMD3: MASTER PERIPHERAL MODULE DISABLE 3 CONTROL REGISTER LOW⁽¹⁾

bit 0 Unimplemented: Read as '0'

Note 1: This register is only available in the Master core.

1 = 12C2 module is disabled 0 = 12C2 module is enabled

8.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction. In addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- · Source and destination (SFRs and data RAM)
- Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks with or without Address Increment/Decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

8.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 0FFFh) or the data RAM space (Master is 1000h to 4FFFh and Slave is 1000 to 1FFFh) can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 8-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

8.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-size transactions. When byte-size transactions are chosen, the LSB of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

8.1.3 TRIGGER SOURCE

The DMA Controller can use 82 of the device's interrupt sources to initiate a transaction. The DMA trigger sources occur in reverse order from their natural interrupt priority and are shown in Table 8-2. Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

8.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger.

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value, automatically reloaded after the completion of a transaction.

8.1.5 ADDRESSING MODES

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range of source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA-capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

REGISTER 11-9: SLPxCONL: DACx SLOPE CONTROL LOW REGISTER (CONTINUED)

The selected Slope Stop A signal is logically OR'd with the selected Slope Stop B signal to terminate the slope function.

Slope Stop A Signal Selection	Master	Slave	
1111	1	1	
1110	Slave PWM2 Trigger 2	Master PWM8 Trigger 2	
1101	Slave PWM1 Trigger 2	Master PWM7 Trigger 2	
1000	Master PWM4 Trigger 2	Slave PWM8 Trigger 2	
0111	Master PWM3 Trigger 2	Slave PWM7 Trigger 2	
0110	Master PWM2 Trigger 2	Slave PWM6 Trigger 2	
0101	Master PWM1 Trigger 2	Slave PWM5 Trigger 2	
0100	Master PWM4 Trigger 1	Slave PWM4 Trigger 2	
0011	Master PWM3 Trigger 1	Slave PWM3 Trigger 2	
0010	Master PWM2 Trigger 1	Slave PWM2 Trigger 2	
0001	Master PWM1 Trigger 1	Slave PWM1 Trigger 2	
0000	0	0	

bit 7-4 SLPSTOPB<3:0>: Slope Stop B Signal Select bits

The selected Slope Stop B signal is logically OR'd with the selected Slope Stop A signal to terminate the slope function.

Slope Start B Signal Selection	Master	Slave
1111	1	1
0100	S1CMP3 Out	CMP1 Out
0011	S1CMP2 Out	S1CMP3 Out
0010	S1CMP1 Out	S1CMP2 Out
0001	CMP1 Out	S1CMP1 Out
0000	0	0

bit 3-0

SLPSTRT<3:0>: Slope Start Signal Select bits

Slope Start Signal Selection	Master	Slave		
1111	1	1		
1110	Slave PWM2 Trigger 1	Master PWM2 Trigger 1		
1101	Slave PWM1 Trigger 1	Master PWM1 Trigger 1		
1000	Master PWM4 Trigger 2	Slave PWM8 Trigger 1		
0111	Master PWM3 Trigger 2	Slave PWM7 Trigger 1		
0110	Master PWM2 Trigger 2	Slave PWM6 Trigger 1		
0101	Master PWM1 Trigger 2	Slave PWM5 Trigger 1		
0100	Master PWM4 Trigger 1	Slave PWM4 Trigger 1		
0011	Master PWM3 Trigger 1	Slave PWM3 Trigger 1		
0010	Master PWM2 Trigger 1	Slave PWM2 Trigger 1		
0001	Master PWM1 Trigger 1	Slave PWM1 Trigger 1		
0000	0	0		

© 2017-2018 Microchip Technology Inc.

bit 11-8 SLPSTOPA<3:0>: Slope Stop A Signal Select bits

REGISTER 12-21: QEIxGECL: QEIx GREATER THAN OR EQUAL COMPARE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGI	EC<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **QEIGEC<15:0>:** QEIx Greater Than or Equal Compare bits

REGISTER 12-22: QEIxGECH: QEIx GREATER THAN OR EQUAL COMPARE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknowr			nown

bit 15-0 **QEIGEC<31:16>:** QEIx Greater Than or Equal Compare bits

REGISTER 13-13: UxTXCHK: UARTx TRANSMIT CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	—	_	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			TXCH	<<7:0>				
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable t	pit	U = Unimplem	ented bit, read	as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unknown		
bit 15-8	Unimplemen	ted: Read as '0	,					
bit 7-0	TXCHK<7:0>	: Transmit Chec	ksum bits (cal	culated from T>	(words)			
	LIN Modes:				·			
		im of all transmi		,	Ų			
	C0EN = 0: Su	im of all transmi	tted data + ade	dition carries, e	xcluding PID.			
	LIN Slave:							

Cleared when Break is detected.

LIN Master/Slave:

Cleared when Break is detected.

Other Modes:

C0EN = 1: Sum of every byte transmitted + addition carries.

C0EN = 0: Value remains unchanged.

Base Instr #	Assembly Mnemonic			# of Words	# of Cycles ⁽¹⁾	Status Flags Affected	
89	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
91	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
92	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,
93	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,2
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,2
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
94	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,2
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
95	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
96	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5/3 ⁽²⁾	None
97	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5/3 ⁽²⁾	None
98	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
99	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
101	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
103	VFSLV	VFSLV	Wns,Wnd,lit2	Compare (Master) Ws to (Slave) Wd	1	1	None
104	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f.XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
105	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Cycle times for Slave core are different for Master core, as shown in 2. 2:

For dsPIC33CH128MP508 devices, the divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed 3: six consecutive times

DC CHARACTERISTICS		(Run) + (Run)	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No.	Тур.	Max.	Units Conditions				
Operating Current (IDD) ⁽¹⁾							
DC20	11.6	13.7	mA	-40°C			
	11.7	17.5	mA	+25°C	3.3V	10 MIPS (N = 1, N2 = 5, N3 = 2, M = 50. Fvco = 400 MHz.	
	11.9	23.5	mA	+85°C	3.3V	M = 50, FVCO = 400 MHz, FPLLO = 40 MHz)	
	15.8	30.0	mA	+125°C			
DC21	15.9	18.3	mA	-40°C			
	16.0	22.2	mA	+25°C	3.3V	20 MIPS (N = 1, N2 = 5, N3 = 1, M = 60. Fvco = 480 MHz.	
					J.3V	101 - 00. FVC0 = 400 VIIIZ.	

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (MASTER RUN/SLAVE RUN)

.

. .

. .

....

.

- ---

.

	16.1	28.0	mA	+85°C	5.5V	FPLLO = 280 MHz	
	20.0	34.3	mA	+125°C			
DC22	23.7	26.9	mA	-40°C			
	23.9	30.9	mA	+25°C	3.3V	40 MIPS (N = 1, N2 = 3, N3 = 1, M = 60, Fvco = 480 MHz,	
	25.9	36.6	mA	+85°C	5.3V	FPLLO = 160 MHz	
	27.8	42.1	mA	+125°C		,	
DC23	37.3	42.0	mA	-40°C			
	37.5	46.1	mA	+25°C	3.3V	70 MIPS (N = 1, N2 = 2, N3 = 1, M = 70, Fvco = 560 MHz,	
	37.2	51.1	mA	+85°C	5.5V	FPLLO = 280 MHz	
	41.1	55.7	mA	+125°C		,	
DC24	45.0	50.4	mA	-40°C	3.3V	90 MIPS (N = 1, N2 = 2, N3 = 1, M = 90, Fvco = 720 MHz, FPLLO = 360 MHz)	
	45.2	54.8	mA	+25°C			
	44.8	59.1	mA	+85°C	5.5V		
	48.3	63.1	mA	+125°C			
DC25	45.5	51.0	mA	-40°C		100 MIPS (N = 1, N2 = 1,	
	45.7	55.3	mA	+25°C		N3 = 1, M = 50,	
	45.3	59.6	mA	+85°C	3.3V	Fvco = 400 MHz, FPLLO = 400 MHz); Slave runs	
	48.9	63.6	mA	+125°C		at 100 MIPS but Master is still at 90 MIPS	

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

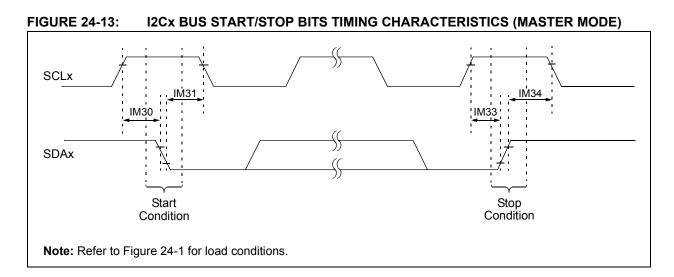
- FIN = 8 MHz, FPFD = 8 MHz
- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as output low
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- CPU is executing while (1) statement
- · JTAG is disabled

DC CHARACTERISTICS		(Sleep) + (Idle)	$\begin{array}{c} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур.	Typ. Max. Units Conditions						
Idle Current (IIDLE) ⁽¹⁾								
DC40b	6.0	7.8	mA	-40°C		10 MIPS (N = 1, N2 = 5,		
	6.2	11.4	mA	+25°C	- 3.3V	N3 = 2, M = 50,		
	6.4	17.5	mA	+85°C	3.3V	Fvco = 400 MHz,		
	10.4	24.4	mA	+125°C		FPLLO = 40 MHz)		
DC41b	6.6	8.4	mA	-40°C		20 MIPS (N = 1, N2 = 5,		
	6.8	12.0	mA	+25°C	3.3V	N3 = 1, M = 50,		
	7.0	18.1	mA	+85°C	3.3V	Fvco = 400 MHz,		
	11.0	25.0	mA	+125°C		FPLLO = 80 MHz)		
DC42b	8.3	10.1	mA	-40°C		40 MIPS (N = 1, N2 = 3,		
	8.5	13.8	mA	+25°C	3.3V	N3 = 1, M = 60,		
	8.7	19.9	mA	+85°C	3.3V	Fvco = 480 MHz,		
	12.6	26.7	mA	+125°C		FPLLO = 160 MHz)		
DC43b	10.6	12.6	mA	-40°C		70 MIPS (N = 1, N2 = 2,		
	10.8	16.3	mA	+25°C	2.21/	N3 = 1, M = 70,		
	10.9	22.3	mA	+85°C	3.3V	Fvco = 560 MHz,		
	14.9	29.0	mA	+125°C		FPLLO = 280 MHz)		
DC44b	12.6	14.7	mA	-40°C		90 MIPS (N = 1, N2 = 2,		
	12.7	18.4	mA	+25°C	3.3V	N3 = 1, M = 90,		
	12.9	23.6	mA	+85°C	3.3V	Fvco = 720 MHz,		
	16.8	30.9	mA	+125°C	1	FPLLO = 360 MHz)		
DC45b	11.7	13.8	mA	-40°C		100 MIPS (N = 1, N2 = 1,		
	11.9	17.6	mA	+25°C	2.21/	N3 = 1, M = 50,		
	12.1	24.4	mA	+85°C	3.3V	Fvco = 400 MHz,		
	16.0	30.1	mA	+125°C	1	FPLLO = 400 MHz)		

TABLE 24-10: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (MASTER SLEEP/SLAVE IDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

- FIN = 8 MHz, FPFD = 8 MHz
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- · No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- JTAG is disabled


TABLE 24-29: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Internal	FRC Accuracy @ FRC Fre	equency =	8 MHz ⁽¹⁾					
F20a	FRC	-3	_	+3	%	$-40^{\circ}C \le TA \le 0^{\circ}C$		
		-1.5	_	+1.5	%	$0^{\circ}C \le TA \le +85^{\circ}C$		
F20b	FRC	-2		+2	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$		
F22	BFRC	-17	_	+17	%	$-40^\circ C \le T_A \le +125^\circ C$		

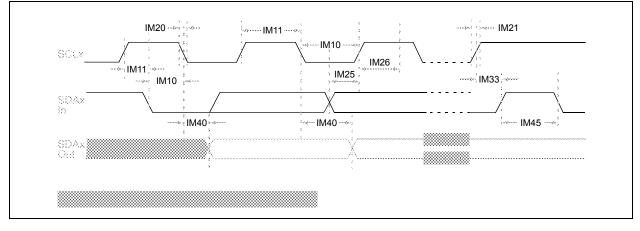

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 24-30: INTERNAL LPRC ACCURACY

АС СН	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions			
LPRC @ 32.768 kHz									
F21a	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V		
		-20		+20	%	$-10^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V		
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V		

