

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 31x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp505t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.1.1 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Enable for PORTx register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs, other than VDD, by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

3.6.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx registers control the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx registers have a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module. When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

3.6.2.1 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

The following registers are in the PORT module:

- Register 3-23: ANSELx (one per port)
- Register 3-24: TRISx (one per port)
- Register 3-25: PORTx (one per port)
- Register 3-26: LATx (one per port)
- Register 3-27: ODCx (one per port)
- Register 3-28: CNPUx (one per port)
- Register 3-29: CNPDx (one per port)
- Register 3-30: CNCONx (one per port optional)
- Register 3-31: CNEN0x (one per port)
- Register 3-32: CNSTATx (one per port optional)
- Register 3-33: CNEN1x (one per port)
- Register 3-34: CNFx (one per port)

Input Name ⁽¹⁾	Function Name	Register	Register Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
External Interrupt 3	INT3	RPINR1	INT3R<7:0>
Timer1 External Clock	T1CK	RPINR2	T1CK<7:0>
SCCP Timer1	TCKI1	RPINR3	TCKI1R<7:0>
SCCP Capture 1	ICM1	RPINR3	ICM1R<7:0>
SCCP Timer2	TCKI2	RPINR4	TCKI2R<7:0>
SCCP Capture 2	ICM2	RPINR4	ICM2R<7:0>
SCCP Timer3	TCKI3	RPINR5	TCKI3R<7:0>
SCCP Capture 3	ICM3	RPINR5	ICM3R<7:0>
SCCP Timer4	TCKI4	RPINR6	TCKI4R<7:0>
SCCP Capture 4	ICM4	RPINR6	ICM4R<7:0>
SCCP Timer5	TCKI5	RPINR7	TCKI5R<7:0>
SCCP Capture 5	ICM5	RPINR7	ICM5R<7:0>
SCCP Timer6	TCKI6	RPINR8	TCKI6R<7:0>
SCCP Capture 6	ICM6	RPINR8	ICM6R<7:0>
SCCP Timer7	TCKI7	RPINR9	TCKI7R<7:0>
SCCP Capture 7	ICM7	RPINR9	ICM7R<7:0>
SCCP Timer8	TCKI8	RPINR10	TCKI8R<7:0>
SCCP Capture 8	ICM8	RPINR10	ICM8R<7:0>
SCCP Fault A	OCFA	RPINR11	OCFAR<7:0>
SCCP Fault B	OCFB	RPINR11	OCFBR<7:0>
PWM Input 8	PCI8	RPINR12	PCI8R<7:0>
PWM Input 9	PCI9	RPINR12	PCI9R<7:0>
PWM Input 10	PCI10	RPINR13	PCI10R<7:0>
PWM Input 11	PCI11	RPINR13	PCI11R<7:0>
QEI Input A	QEIA1	RPINR14	QEIA1R<7:0>
QEI Input B	QEIB1	RPINR14	QEIB1R<7:0>
QEI Index 1 Input	QEINDX1	RPINR15	QEINDX1R<7:0>
QEI Home 1 Input	QEIHOM1	RPINR15	QEIHOM1R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART1 Data-Set-Ready	U1DSR	RPINR18	U1DSRR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
UART2 Data-Set-Ready	U2DSR	RPINR19	U2DSRR<7:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<7:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<7:0>
SPI1 Slave Select	SS1	RPINR21	SS1R<7:0>
Reference Clock Input	REFOI	RPINR21	REFOIR<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
UART1 Clear-to-Send	U1CTS	RPINR23	U1CTSR<7:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

REGISTER 3-95: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown			

bit 15-0 **COUNTER<15:0>:** Read Current Contents of Lower DMT Counter bits

REGISTER 3-96: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 COUNTER<31:16>: Read Current Contents of Higher DMT Counter bits

REGISTER 3-102: C1CONH: CAN CONTROL REGISTER HIGH (CONTINUED)

bit 4	TXQEN: Enable Transmit Queue bit ⁽¹⁾
	1 = Enables Transmit Message Queue (TXQ) and reserves space in RAM
	0 = Does not reserve space in RAM for TXQ
bit 3	STEF: Store in Transmit Event FIFO bit ⁽¹⁾
	1 = Saves transmitted messages in TEF
	0 = Does not save transmitted messages in TEF
bit 2	SERRLOM: Transition to Listen Only Mode on System Error bit ⁽¹⁾
	1 = Transitions to Listen Only mode
	0 = Transitions to Restricted Operation mode
bit 1	ESIGM: Transmit ESI in Gateway Mode bit ⁽¹⁾
	1 = ESI is transmitted as recessive when ESI of the message is high or CAN controller is error passive
	0 = ESI reflects error status of CAN controller
bit 0	RTXAT: Restrict Retransmission Attempts bit ⁽¹⁾
	1 = Restricted retransmission attempts, uses TXAT<1:0> bits (C1TXQCONH<6:5>)
	0 = Unlimited number of retransmission attempts, TXAT<1:0> bits will be ignored

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 3-178: ADTRIGNL AND ADTRIGNH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 19; n = 0 TO 4)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	-	TRGSRC(x+1)4	TRGSRC(x+1)3	TRGSRC(x+1)2	TRGSRC(x+1)1	TRGSRC(x+1)0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_	TRGSRCx4	TRGSRCx3	TRGSRCx2	TRGSRCx1	TRGSRCx0
bit 7							bit 0

.

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8	TRGSRC(x+1)<4:0>: Trigger Source Selection for Corresponding Analog Input bits (TRGSRC1 to TRGSRC19 – Odd)
	11111 = ADTRG31 (PPS input)
	11110 = Master PTG
	11101 = Slave CLC1
	11100 = Master CLC1
	11011 = Slave PWM8 Trigger 2
	11010 = Slave PWM5 Trigger 2
	11001 = Slave PWM3 Trigger 2
	11000 = Slave PWM1 Trigger 2
	10111 = Master SCCP4 PWM interrupt
	10110 = Master SCCP3 PWM interrupt
	10101 = Master SCCP2 PWM interrupt
	10100 = Master SCCP1 PWM interrupt
	10011 = Reserved
	10010 = Reserved
	10001 = Reserved
	10000 = Reserved
	01111 = Reserved
	01110 = Reserved
	01101 = Reserved
	01100 = Reserved
	01011 = Master PWM4 Trigger 2
	01010 = Master PWM4 Trigger 1
	01001 = Master PWM3 Trigger 2
	01000 = Master PWM3 Trigger 1
	00111 = Master PWM2 Trigger 2
	00110 = Master PWM2 Trigger 1
	00101 = Master PWM1 Trigger 2
	00100 = Master PWM1 Trigger 1
	00011 = Reserved
	00010 = Level software trigger
	00001 = Common software trigger
	00000 = No trigger is enabled
bit 7-5	Unimplemented: Read as '0'

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ICM3R7 | ICM3R6 | ICM3R5 | ICM3R4 | ICM3R3 | ICM3R2 | ICM3R1 | ICM3R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
TCKI3R7	TCKI3R6	TCKI3R5	TCKI3R4	TCKI3R3	TCKI3R2	TCKI3R1	TCKI3R0
bit 7				•		•	bit 0

REGISTER 4-41: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM3R<7:0>: Assign SCCP Capture 3 (S1ICM3) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **TCKI3R<7:0>:** Assign SCCP Timer3 (S1TCKI3) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-42: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM4R7 | ICM4R6 | ICM4R5 | ICM4R4 | ICM4R3 | ICM4R2 | ICM4R1 | ICM4R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI4R7 | TCKI4R6 | TCKI4R5 | TCKI4R4 | TCKI4R3 | TCKI4R2 | TCKI4R1 | TCKI4R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM4R<7:0>: Assign SCCP Capture 4 (S1ICM4) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **TCKI4R<7:0>:** Assign SCCP Timer4 (S1TCKI4) to the Corresponding S1RPn Pin bits See Table 4-27.

5.2 Slave MSI Control Registers

The following registers are associated with the Slave MSI module and are located in the Slave SFR space.

- Register 5-9: SI1CON
- Register 5-10: SI1STAT
- Register 5-11: SI1MBX
- Register 5-12: SI1MBXnD
- Register 5-13: SI1FIFOCS
- Register 5-14: SWMRFDATA
- Register 5-15: SRMWFDATA

REGISTER 5-9: SI1CON: MSI1 SLAVE CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	RFITSEL1	RFITSEL0	STMIRQ	MTSIACK
bit 15							bit 8

R/W-0	U-0						
MRSTIE	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'
bit 11-10	RFITSEL<1:0>: Read FIFO Interrupt Threshold Select bits
	 11 = Triggers data valid interrupt when FIFO is full after Slave write 10 = Triggers data valid interrupt when FIFO is 75% full after Slave write 01 = Triggers data valid interrupt when FIFO is 50% full after Slave write 00 = Triggers data valid interrupt when 1st FIFO entry is written by Slave
bit 9	STMIRQ: Slave to Master Interrupt Request bit
	 1 = Interrupts the Master 0 = Does not interrupt the Master
bit 8	MTSIACK: Slave to Acknowledge Master Interrupt bit
	 1 = If MTSIRQ = 1, Slave Acknowledges Master interrupt request, else protocol error 0 = If MTSIRQ = 0, Slave has not yet Acknowledged Master interrupt request, else no Master to Slave interrupt request is pending
bit 7	MRSTIE: Master Reset Event Interrupt Enable bit
	 1 = Slave Master Reset event interrupt occurs when Master enters Reset state 0 = Slave Master Reset event interrupt does not occur when Master enters Reset state

bit 6-0 Unimplemented: Read as '0'

REGISTER 9-25: PGxDCA: PWM GENERATOR x DUTY CYCLE ADJUSTMENT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxD	CA<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 PGxDCA<7:0>: PWM Generator x Duty Cycle Adjustment Value bits

Depending on the state of the selected PCI source, the PGxDCA value will be added to the value in the PGxDC register to create the effective duty cycle. When the PCI source is active, PGxDCA is added. When the PCI source is inactive, no adjustment is made. Duty cycle adjustment is disabled when PGxDCA<7:0> = 0. The PCI source is selected using the DTCMPSEL bit.

REGISTER 9-26: PGxPER: PWM GENERATOR x PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PGxPER<15:8> ⁽¹⁾							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PGxPER<7:0> ⁽¹⁾							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PGxPER<15:0>:** PWM Generator x Period Register bits⁽¹⁾

Note 1: Period values less than '0x0010' should not be selected.

SYNC<4:0>	Synchronization Source
00000	None; Timer with Rollover on CCPxPR Match or FFFFh
00001	Module's Own Timer Sync Out
00010	Sync Output SCCP1
00011	Sync Output SCCP2
00100	Sync Output SCCP3
00101	Sync Output SCCP4
00110	Sync Output SCCP5
00111	Sync Output SCCP6
01000	Sync Output SCCP7
01001	INTO
01010	INT1
01011	INT2
01100-01111	Reserved
10000	Master CLC1 Output
10001	Master CLC2 Output
10010	Slave CLC1 Output
10011	Slave CLC2 Output
10100-10110	Reserved
10111	Comparator 1 Output
11000	Slave Comparator 1 Output
11001	Slave Comparator 2 Output
11010	Slave Comparator 3 Output
11011-11110	Reserved
11111	None; Timer with Auto-Rollover (FFFFh \rightarrow 0000h)

TABLE 10-6: SYNCHRONIZATION SOURCES (MASTER)

11.0 HIGH-SPEED ANALOG COMPARATOR WITH SLOPE COMPENSATION DAC

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator Module" (DS70005280) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 3.2 "Master Memory Organization" in this data sheet for device-specific register and bit information.
 - 3: The comparator and DAC are identical for both Master core and Slave core. The module is similar for both Master core and Slave core (where the x represents the number of the specific modules being addressed in Master or Slave).

The high-speed analog comparator module provides a method to monitor voltage, current and other critical signals in a power conversion application that may be too fast for the CPU and ADC to capture. There are a total of four comparator modules, one of which is controlled by the Master core and the remaining three by the Slave core. The analog comparator module can be used to implement Peak Current mode control, Critical Conduction mode (variable frequency) and Hysteretic Control mode. Table 11-1 shows an overview of the comparator/DAC module.

TABLE 11-1: COMPARATOR/DAC MODULE OVERVIEW

	Number of Comparator Modules	ldentical (Modules)	
Master Core	1	Yes	
Slave Core	3	Yes	

11.1 Overview

The high-speed analog comparator module is comprised of a high-speed comparator, Pulse Density Modulation (PDM) DAC and a slope compensation unit. The slope compensation unit provides a userdefined slope which can be used to alter the DAC output. This feature is useful in applications, such as Peak Current mode control, where slope compensation is required to maintain the stability of the power supply. The user simply specifies the direction and rate of change for the slope compensation and the output of the DAC is modified accordingly.

The DAC consists of a PDM unit, followed by a digitally controlled multiphase RC filter. The PDM unit uses a phase accumulator circuit to generate an output stream of pulses. The density of the pulse stream is proportional to the input data value, relative to the maximum value supported by the bit width of the accumulator. The output pulse density is representative of the desired output voltage. The pulse stream is filtered with an RC filter to yield an analog voltage. The output of the DAC is connected to the negative input of the comparator. The positive input of the comparator can be selected using a MUX from either of the input pins or the output of the PGAs. The comparator provides a high-speed operation with a typical delay of 15 ns.

The output of the comparator is processed by the pulse stretcher and the digital filter blocks, which prevent comparator response to unintended fast transients in the inputs. Figure 11-1 shows a block diagram of the high-speed analog comparator module. The DAC module can be operated in one of three modes: Slope Generation mode, Hysteretic mode and Triangle Wave mode. Each of these modes can be used in a variety of power supply applications.

Note:	The DACOUT pin can only be associated
	with a single DAC or PGA output at any
	given time. If more than one DACOEN bit
	is set, or the PGA Output Enable bit
	(PGAOEN) and the DACOEN bit are set,
	the DACOUT pin will be a combination of
	the signals.

Note: DAC input frequency needs to be 500 MHz.

REGISTER 12-21: QEIxGECL: QEIx GREATER THAN OR EQUAL COMPARE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QEIGEC<15:8>									
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIG	EC<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit	bit U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set	t is set '0' = Bit is cleared x = Bit is unknown				nown		

bit 15-0 **QEIGEC<15:0>:** QEIx Greater Than or Equal Compare bits

REGISTER 12-22: QEIXGECH: QEIX GREATER THAN OR EQUAL COMPARE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	QEIGEC<31:24>								
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIGE	C<23:16>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		

bit 15-0 **QEIGEC<31:16>:** QEIx Greater Than or Equal Compare bits

REGISTER 13-5: UxBRG: UARTx BAUD RATE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRG	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRG	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown

bit 15 BRG<15:0>: Baud Rate Divisor bits

REGISTER 13-6: UxBRGH: UARTx BAUD RATE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 15 bit 8								

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	—		BRG<	19:16>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3-0 BRG<19:16>: Baud Rate Divisor bits

REGISTER 14-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (Slave) 0 = Frame Sync pulse output (Master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	 1 = Frame Sync pulse/Slave select is active-high 0 = Frame Sync pulse/Slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	 1 = SPIx Slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode) 0 = Slave select SPIx support is disabled (SSx pin will be controlled by port I/O)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>) 0 = Frame Sync pulse is one clock (SCKx) wide
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse. 111 = Reserved 110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols) 000 = Generates a Frame Sync pulse on each serial word

Note 1: AUDEN can only be written when the SPIEN bit = 0.

- **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
- **3:** URDTEN is only valid when IGNTUR = 1.
- **4:** AUDMOD<1:0> can only be written when the SPIEN bit = 0 and is only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

REGISTER 14-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

11-0	11_0	11-0	11-0	11-0	11-0	[]_0	U_0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
							_
DIT 15							bit 8
U-0	<u>U-0</u>	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				W	LENGTH<4:0>	(1,2)	
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Rit is se	t	·0' = Bit is clea	ared	x = Bit is unkn	own
					area		own
		ted. Deed ee	101				
DIT 15-5	Unimpleme	nteo: Read as		(1.2)			
bit 4-0	WLENGTH<	4:0>: Variable	Word Length	oits ^(1,2)			
	11111 = 32-	bit data					
	11110 = 31-	bit data					
	11101 = 30	bit data					
	11011 = 28-	bit data					
	11011 = 20	bit data					
	11001 = 26-	bit data					
	11000 = 25-	bit data					
	10111 = 24 -	bit data					
	10110 = 23 -	bit data					
	10101 = 22 -	bit data					
	10100 = 21-	bit data					
	10011 = 20-	bit data					
	10010 = 19-	bit data					
	10001 - 16	bit data					
	01111 = 16-	bit data					
	01110 = 15-	bit data					
	01101 = 14 -	bit data					
	01100 = 13 -	bit data					
	01011 = 12 -	bit data					
	01010 = 11 -	bit data					
	01001 = 10-	bit data					
	01000 = 9-b	it data					
	00111 = 8-0	it data					
	00110 = 7-b	it data					
	00100 = 5-b	it data					
	00011 = 4 -b	it data					
	00010 = 3 -b	it data					
	00001 = 2-b	it data					
	00000 = Se e	e MODE<32.1	6> bits in SPIx	CON1L<11:10>			

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

15.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 15-1.

EQUATION 15-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3,4)

 $I2CxBRG = ((1/FSCL - Delay) \bullet FCY/2) - 2$

- **Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.
 - 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.
 - **3:** Typical value of delay varies from 110 ns to 150 ns.
 - 4: I2CxBRG values of 0 to 3 are expressly forbidden. The user should never program the I2CxBRG with a value of 0x0, 0x1, 0x2 or 0x3 as indeterminate results may occur.

15.3 Slave Address Masking

The I2CxMSK register (Register 15-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the Slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the Slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 15-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

For	Faci	I2CxBRG Value			
FCY	FSCL	Decimal	Hexadecimal		
100 MHz	1 MHz	41	29		
100 MHz	400 kHz	116	74		
100 MHz	100 kHz	491	1EB		
80 MHz	1 MHz	32	20		
80 MHz	400 kHz	92	5C		
80 MHz	100 kHz	392	188		
60 MHz	1 MHz	24	18		
60 MHz	400 kHz	69	45		
60 MHz	100 kHz	294	126		
40 MHz	1 MHz	15	0F		
40 MHz	400 kHz	45	2D		
40 MHz	100 kHz	195	C3		
20 MHz	1 MHz	7	7		
20 MHz	400 kHz	22	16		
20 MHz	100 kHz	97	61		

TABLE 15-1:I2Cx CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

REGISTER 16-3: SENTXDATL: SENTX RECEIVE DATA REGISTER LOW⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA4<3:0>			DATA5<3:0>				
bit 15							bit 8

R/VV-U	R/W-U	R/W-U	R/VV-U	R/W-U	R/W-0	R/VV-U	R/W-0	
	DATA6	<3:0>		CRC<3:0>				
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4<3:0>: Data Nibble 4 Data bits
bit 11-8	DATA5<3:0>: Data Nibble 5 Data bits
bit 7-4	DATA6<3:0>: Data Nibble 6 Data bits
bit 3-0	CRC<3:0>: CRC Nibble Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

REGISTER 16-4: SENTxDATH: SENTx RECEIVE DATA REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STAT<3:0>				DATA	\1<3:0>			
bit 15						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DATA2<3:0>				DATA3<3:0>				
						bit 0		
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unk	nown		
	R/W-0 STAT R/W-0 DATA2	R/W-0 R/W-0 STAT<3:0> R/W-0 R/W-0 DATA2<3:0> U W = Writable V '1' = Bit is set	R/W-0 R/W-0 STAT<3:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 W = Writable bit W <td>R/W-0 R/W-0 R/W-0 R/W-0 STAT<3:0> </td> <td>R/W-0 R/W-0 R/W-0 R/W-0 STAT<3:0> DAT/ R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DATA2<3:0> DAT/ U U U U U U U U U U U U U U U U U U U U U</td> <td>R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STAT<3:0> DATA1<3:0> R/W-0 R/W-0 R/W-0 R/W-0 DATA2<3:0> DATA3<3:0> t W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown</td>	R/W-0 R/W-0 R/W-0 R/W-0 STAT<3:0>	R/W-0 R/W-0 R/W-0 R/W-0 STAT<3:0> DAT/ R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DATA2<3:0> DAT/ U U U U U U U U U U U U U U U U U U U U U	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STAT<3:0> DATA1<3:0> R/W-0 R/W-0 R/W-0 R/W-0 DATA2<3:0> DATA3<3:0> t W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown		

bit 15-12 STAT<3:0>: Status Nibble Data bits

bit 11-8 **DATA1<3:0>:** Data Nibble 1 Data bits

bit 7-4 DATA2<3:0>: Data Nibble 2 Data bits

bit 3-0 DATA3<3:0>: Data Nibble 3 Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

21.5 Regulator Control and Sleep Mode

As shown in Figure 21-1, both VREG1 and VREG2 together, share the total load for the Master and Slave.

The PLL for the Master and Slave is powered using a separate regulator, as shown for VREG3 (VREGPLL). The output voltages of these regulators can be controlled by the user, which gives eligibility to save power during Sleep mode.

As shown in Register 21-34, there are two control bits, VREGxOV<1:0>, to control the output voltages of these regulators. VREGCON<15> should be set to put the regulator in Low-Power mode before going to Sleep.

Before going to Sleep, the voltage regulator should be changed to 1V (or 0.8V). The voltage regulators communicate to the Slave or Master depending on the scenario below.

REGISTER 21-34: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER

r-0	U-0						
—	—	—	_	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	VREG3OV1	VREG3OV0	VREG2OV1	VREG2OV0	VREG10V1	VREG10V0
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Reserved: Maintain as '0'

bit 14-6 Unimplemented: Read as '0'

bit 5-4 VREG3OV<1:0>: Low-Power Mode Enable bits

11/00 = VOUT = 1.5 * VBG = 1.2V 10 = VOUT = 1.25 * VBG = 1.0V

01 = VOUT = VBG = 0.8V

bit 3-2 VREG2OV<1:0>: Low-Power Mode Enable bits

11/00 = VOUT = 1.5 * VBG = 1.2V 10 = VOUT = 1.25 * VBG = 1.0V

01 = VOUT = VBG = 0.8V

bit 1-0 **VREG10V<1:0>:** Low-Power Mode Enable bits 11/00 = Vout = 1.5 * VBG = 1.2V

10 = VOUT = 1.25 * VBG = 1.0V 01 = VOUT = VBG = 0.8V

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			WDTCLF	RKEY<15:8>			
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			WDTCL	RKEY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at POR (1' = Bit is set			'0' = Bit is clear	ed	x = Bit is unk	nown	

bit 15-0 WDTCLRKEY<15:0>: Watchdog Timer Clear Key bits

To clear the Watchdog Timer to prevent a time-out, software must write the value, 0x5743, to this location using a single 16-bit write.

25.0 PACKAGING INFORMATION

25.1 Package Marking Information

28-Lead SSOP (5.30 mm)

Example

28-Lead UQFN (6x6 mm)

Example

36-Lead UQFN (5x5 mm)

Example

Legend	: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the ever be carried characters	t the full Microchip part number cannot be marked on one line, it will over to the next line, thus limiting the number of available for customer-specific information.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoa, KEELoa logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-3175-6