

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp506-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1.1 Program Memory Organization

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 3-5).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented, by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

3.2.1.2 Interrupt and Trap Vectors

All dsPIC33CH128MP508 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in Section 3.5 "Master Interrupt Controller".

FIGURE 3-5: PROGRAM MEMORY ORGANIZATION

3.2.2 UNIQUE DEVICE IDENTIFIER (UDID)

All dsPIC33CH128MP508 family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. The UDID cannot be erased by a bulk erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- · Tracking the device
- · Unique serial number
- · Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x801200 and 0x801208 in the device configuration space. Table 3-3 lists the addresses of the identifier words and shows their contents

TABLE 3-3: UDID ADDRESSES

UDID	Address	Description
UDID1	0x801200	UDID Word 1
UDID2	0x801202	UDID Word 2
UDID3	0x801204	UDID Word 3
UDID4	0x801206	UDID Word 4
UDID5	0x801208	UDID Word 5

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

3.6.8 CONTROLLING CONFIGURATION CHANGES

Because peripheral mapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. The dsPIC33CH128MP508 devices have implemented the control register lock sequence.

3.6.8.1 CONTROL REGISTER LOCK

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (RPCON<11>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, the NVMKEY unlock sequence must be executed:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Clear (or set) IOLOCK as a single operation.

IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all of the control registers. Then, IOLOCK can be set with a second lock sequence.

Note: MPLAB[®] C30 provides a built-in C language function for unlocking and modifying the RPCON register: __builtin_write_RPCON(value); For more information, see the MPLAB C30 Help files.

3.6.9 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that most users would never think of otherwise. This is particularly true for several common peripherals, which are only available as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. More specifically, because all RPINRx registers reset to '1's and RPORx registers reset to '0's, this means all PPS inputs are tied to Vss, while all PPS outputs are disconnected. This means that before any other application code is executed, the user must initialize the device with the proper peripheral configuration. Because the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is always better to set IOLOCK and lock the configuration after writing to the control registers.

The NVMKEY unlock sequence must be executed as an Assembly language routine. If the bulk of the application is written in C, or another high-level language, the unlock sequence should be performed by writing in-line assembly or by using the __builtin_write_RPCON(value) function provided by the compiler.

Choosing the configuration requires a review of all Peripheral Pin Selects and their pin assignments, particularly those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

3.6.10 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping. Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit index value maps the RPn pin with the corresponding value, or internal signal, to that peripheral. See Table 3-30 for a list of available inputs.

For example, Figure 3-20 illustrates remappable pin selection for the U1RX input.

3.6.17 PERIPHERAL PIN SELECT REGISTERS

REGISTER 3-35: RPCON: PERIPHERAL REMAPPING CONFIGURATION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	IOLOCK	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		_		_	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'	

bit 11 **IOLOCK:** Peripheral Remapping Register Lock bit 1 = All Peripheral Remapping registers are locked and cannot be written 0 = All Peripheral Remapping registers are unlocked and can be written

bit 10-0 Unimplemented: Read as '0'

Note 1: Writing to this register needs an unlock sequence.

REGISTER 3-36: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 Unimplemented: Read as '0'

dsPIC33CH128MP508 FAMILY

HS/C-0) <u>HS/C-0</u>	HS/C-0	HS/C-0	R-0	R-0	U-0	U-0
IVMIF ⁽¹) WAKIF ⁽¹⁾	CERRIF ⁽¹⁾	SERRIF ⁽¹⁾	RXOVIF	TXATIF		_
bit 15							bit 8
U-0	U-0	U-0	R-0	HS/C-0	HS/C-0	R-0	R-0
			TEFIF	MODIF ⁽¹⁾	TBCIF ⁽¹⁾	RXIF	TXIF
bit 7							bit 0
Lenende		O Ola anabia	L :4				
Legena:	hla hit			HS = Hardwa	are Settable bit		
R = Reada		vv = vvritable c	DIL	0 = 0 of the second	mented bit, rea	uas u v - Ritic unk	nown
	alfur	I – DILIS SEL			areu		nown
bit 15	IVMIF: Invalid	l Message Inter	rupt Flag bit ⁽¹⁾)			
	1 = Invalid me	essage interrupt	toccurred				
	0 = No invalid	l message inter	rupt				
bit 14	WAKIF: Bus	Wake-up Activit	y Interrupt Fla	g bit ⁽¹⁾			
	1 = Wake-up	activity interrup	t occurred				
bit 12		A Rue Error Inten	upi rrunt Elag bit('	1)			
DIL 15	1 = CAN bus	error interrupt o	in upt Flag bit.	,			
	0 = No CAN b	ous error interru	pt				
bit 12	SERRIF: Sys	tem Error Interr	upt Flag bit ⁽¹⁾				
	1 = System e	rror interrupt oc	curred				
1.11.4.4	0 = No system	n error interrupt	6 1 1 1				
DIT 11		ceive Buffer Ove	erriow interrup	t Flag bit			
	1 = Receive L 0 = No receive	e buffer overflow	w interrupt	ieu			
bit 10	TXATIF: Tran	ismit Attempt In	terrupt Flag bi	t			
	1 = Transmit a	attempt interrup	t occurred				
	0 = No Transi	mit Attempt Inte	rrupt				
bit 9-5	Unimplemen	ted: Read as '0		1.11			
DIT 4	1 = Tronomit	mit Event FIFO	Interrupt Flag	DIT			
	0 = No transm	nit event FIFO inte	nterrupt				
bit 3	MODIF: CAN	Mode Change	Interrupt Flag	bit ⁽¹⁾			
	1 = CAN mod 0 = No mode	lule mode chang change occurre	ge occurred (C	OPMOD<2:0>	have changed	to reflect REQ0	OP<2:0>)
bit 2	TBCIF: CAN	Timer Overflow	Interrupt Flag	bit ⁽¹⁾			
	1 = TBC has	overflowed					
	0 = TBC has	not overflowed					
bit 1	RXIF: Receive	e Object Interru	pt Flag bit				
	1 = Receive c 0 = No receiv	object interrupt i e object interrup	s pending ots are pendin	g			
bit 0	TXIF: Transm	nit Object Interru	pt Flag bit				
	1 = Transmit	object interrupt	is pending				
	0 = No transn	nit object interru	ipts are pendir	ng			
Note 1:	C1INTL: Flags are	set by hardwar	e and cleared	by application	1.		

REGISTER 3-117: C1INTL: CAN INTERRUPT REGISTER LOW

4.2.5 INSTRUCTION ADDRESSING MODES

The addressing modes shown in Table 4-17 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.2.5.1 File Register Instructions

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.2.5.2 MCU Instructions

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-17: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

REGISTER 4-7: NVMKEY: SLAVE NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 4-8: NVMSRCADR: SLAVE NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	ADR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	ADR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit		x = Bit is unk	nown				

bit 15-0 NVMSRCADR<15:0>: NVM Source Data Address bits The RAM address of the data to be programmed into PRAM when the NVMOP<3:0> bits are set to row programming.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				

REGISTER 4-17: CORCON: SLAVE CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable exception processing is enabled

0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 4-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE		
bit 15							bit 8		
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is clea	red	x = Bit is unk	nown		
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit						
	1 = Interrupt	nesting is disa	abled						
h :+ 4 4		nesting is ena	ibled						
DIL 14	1 = Tran was	s caused by ov	overnow trap r	-lag bit mulator A					
	0 = Trap was	s not caused by	y overflow of A	ccumulator A					
bit 13	OVBERR: A	ccumulator B	Overflow Trap I	Flag bit					
	1 = Trap was	1 = Trap was caused by overflow of Accumulator B							
h# 40	0 = Irap was	s not caused b	y overflow of A	Councilator B	lee hit				
DIT 12	1 = Tran was	Accumulator A	tastrophic over	flow of Accumul	ag bit ator A				
	0 = Trap was	s not caused by	y catastrophic	overflow of Accu	imulator A				
bit 11	COVBERR:	Accumulator E	3 Catastrophic	Overflow Trap F	lag bit				
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	ator B				
bit 10		s not caused by s not caused by s	y calastrophic (verflow Tran En	able bit					
	1 = Trap ove	erflow of Accun	nulator A						
	0 = Trap is d	lisabled							
bit 9	OVBTE: Acc	cumulator B O	verflow Trap Er	able bit					
	1 = Trap ove 0 = Trap is d	erflow of Accun	nulator B						
bit 8	COVTE: Cat	tastrophic Ove	rflow Trap Enal	ble bit					
2.00	1 = Trap on	catastrophic o	verflow of Accu	mulator A or B is	s enabled				
	0 = Trap is d	lisabled							
bit 7	SFTACERR	: Shift Accumu	lator Error Stat	us bit					
	1 = Math err 0 = Math err	or trap was ca	used by an inva t caused by an	alid accumulator invalid accumul	shift ator shift				
bit 6	DIV0ERR: D)ivide-by-Zero	Error Status bit						
	1 = Math err	or trap was ca	used by a divid	e-by-zero					
	0 = Math err	or trap was no	t caused by a c	livide-by-zero					
bit 5	Unimpleme	nted: Read as	'O'						
bit 4	MATHERR:	Math Error Sta	itus bit						
	\perp = Math err 0 = Math err	or trap has oc	occurred						
bit 3	ADDRERR:	Address Error	Trap Status bit	t					
	1 = Address	error trap has	occurred						
	0 = Address	error trap has	not occurred						

REGISTER 4-18: INTCON1: SLAVE INTERRUPT CONTROL REGISTER 1

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a Built-In Self-Test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

4.6.7 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.6.7.1 Key Resources

- "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33CH128MP508 FAMILY

FIGURE 6-2: MASTER CORE OSCILLATOR SUBSYSTEM

9.0 HIGH-RESOLUTION PWM (HSPWM) WITH FINE EDGE PLACEMENT

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Resolution PWM with Fine Edge Placement" (DS70005320) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The PWM is identical for both Master core and Slave core. The x is common for both Master core and Slave core (where the x represents the number of the specific module being addressed). The number of HSPWM modules available on the Master core and Slave core is different and they are located in different SFR locations.
 - 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where the S1 indicates the Slave device. The Master is PWM1 to PWM4 and the Slave is PWM1 to PWM8.

Table 9-1 shows an overview of the PWM module.

TABLE 9-1: PWM MODULE OVERVIEW

	Number of PWM Modules	Identical (Modules)
Master Core	4	Yes
Slave Core	8	Yes

The High-Speed PWM (HSPWM) module is a Pulse-Width Modulated (PWM) module to support both motor control and power supply applications. This flexible module provides features to support many types of Motor Control (MC) and Power Control (PC) applications, including:

- AC-to-DC Converters
- DC-to-DC Converters
- AC and DC Motors: BLDC, PMSM, ACIM, SRM, etc.
- Inverters
- Battery Chargers
- Digital Lighting
- Power Factor Correction (PFC)

9.1 Features

- Up to Eight Independent PWM Generators for Slave Core, each with Dual Outputs
- Up to Four Independent PWM Generators for Master Core, each with Dual Outputs
- · Operating modes:
 - Independent Edge mode
 - Variable Phase PWM mode
 - Center-Aligned mode
 - Double Update Center-Aligned mode
 - Dual Edge Center-Aligned mode
 - Dual PWM mode
- Output modes:
 - Complementary
 - Independent
 - Push-Pull
- Dead-Time Generator
- Leading-Edge Blanking (LEB)
- Output Override for Fault Handling
- Flexible Period/Duty Cycle Updating Options
- Programmable Control Inputs (PCI)
- Advanced Triggering Options
- Six Combinatorial Logic Outputs
- · Six PWM Event Outputs

REGISTER 10-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
OENSYNC	—	—	—	—	—	—	OCAEN
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICGSM1	ICGSM0	—	AUXOUT1	AUXOUT0	ICS2 ⁽¹⁾	ICS1 ⁽¹⁾	ICS0 ⁽¹⁾
bit 7							bit 0

Legend:							
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read	d as '0'			
-n = Value at I	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	OENSYNC: C	utput Enable Synchronizatior	ı bit				
	1 = Update by 0 = Update by	y output enable bits occurs or y output enable bits occurs im	n the next Time Base Reset of Imediately	r rollover			
bit 14-9	Unimplement	ed: Read as '0'					
bit 8	OCAEN: Outp	out Enable/Steering Control bi	t				
	 1 = OCx pin is controlled by the CCPx module and produces an output compare or PWM signal 0 = OCx pin is not controlled by the CCPx module; the pin is available to the port logic or anoth peripheral multiplexed on the pin 						
bit 7-6	ICGSM<1:0>:	Input Capture Gating Source	Mode Control bits				
	 11 = Reserved 10 = One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1) 01 = One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0) 00 = Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will disable future capture events 						
bit 5	Unimplement	ed: Read as '0'					
bit 4-3	AUXOUT<1:0	>: Auxiliary Output Signal on	Event Selection bits				
	11 = Input cap 10 = Signal or 01 = Time bas 00 = Disabled	oture or output compare even utput is defined by module op se rollover event (all modes)	t; no signal in Timer mode erating mode (see Table 10-5)			
bit 2-0	ICS<2:0>: Inp	ut Capture Source Select bits	;(1)				
	111 = Slave C 110 = Slave C 101 = Master 100 = Master 011 = Slave C 010 = Slave C 001 = Master 000 = SCCP	CLC2 output CLC1 output CLC2 output CLC1 output Comparator 2 output Comparator 1 output Comparator 1 output nput Capture x (ICx) pin (PPS	δ)				

Note 1: Common for both the Master and the Slave.

TABLE 15-2: I2Cx RESERVED ADDRESSES	TABLE 15-2:	I2Cx RESERVED ADDRESSES ⁽¹⁾
-------------------------------------	-------------	--

Slave Address	R/W Bit	Description					
0000 000	0	General Call Address ⁽²⁾					
0000 000	1	Start Byte					
0000 001	x	Cbus Address					
0000 01x	x	Reserved					
0000 1xx	х	HS Mode Master Code					
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾					
1111 1xx	х	Reserved					

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 16-2: SENTxSTAT: SENTx STATUS REGISTER (CONTINUED)

bit 0 **SYNCTXEN:** SENTx Synchronization Period Status/Transmit Enable bit⁽¹⁾ Module in Receive Mode (RCVEN = 1):

1 = A valid synchronization period was detected; the module is receiving nibble data

0 = No synchronization period has been detected; the module is not receiving nibble data

Module in Asynchronous Transmit Mode (RCVEN = 0, TXM = 0):

The bit always reads as '1' when the module is enabled, indicating the module transmits SENTx data frames continuously. The bit reads '0' when the module is disabled.

Module in Synchronous Transmit Mode (RCVEN = 0, TXM = 1):

1 = The module is transmitting a SENTx data frame

- 0 = The module is not transmitting a data frame, user software may set SYNCTXEN to start another data frame transmission
- Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

REGISTER 18-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—		DS4<2:0>		—		DS3<2:0>	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
		DS2<2:0>		—		DS1<2:0>	
bit 7							bit 0
·							
Legend:	1.11		.,				
R = Readable	bit	W = Writable b	It		iented bit, rea	id as '0'	
-n = Value at I	POR	'1' = Bit is set		0^{\prime} = Bit is clea	ared	x = Bit is unkno	own
bit 15	Unimpleme	nted: Read as '0	1				
bit 14-12	DS4<2:0>: [Data Selection MI	JX 4 Signal S	Selection bits (M	aster)		
	111 = Maste	er SCCP3 auxiliar	y out				
	101 = Master	ND RP pin	y out				
	100 = Rese	rved	(4)				
	011 = Maste	er SPI1 Input (SD	(x) ⁽¹⁾				
	010 = Slave 001 = Maste	e Comparator 2 ou er CI C2 output	It				
	000 = Maste	er PWM event					
	DS4<2:0>: [Data Selection MI	JX 4 Signal S	Selection bits (SI	ave)		
	111 = Slave	SCCP3 auxiliary	out				
	110 = Slave 101 = Slave	SCCP1 auxiliary	out				
	100 = Rese	rved					
	011 = Slave	SPI1 Input (SDIx	₍₎ (1)				
	010 = Slave 001 = Slave	Comparator 2 ou	IT				
	000 = Slave	PWM event					
bit 11	Unimpleme	nted: Read as '0'					
bit 10-8	DS3<2:0>: [Data Selection MI	JX 3 Signal S	Selection bits (M	aster)		
	111 = Maste	er SCCP4 Compa	re Event Flag	g (CCP4IF)			
	110 = Masterna 101 = CLC4	er SCCP3 Compa	re Event Flag	g (CCP3IF)			
	100 = Maste	er UART1 RX out	out correspor	nding to CLCx m	nodule		
	011 = Maste	er SPI1 Output (S	DOx) corresp	conding to CLC	module		
	010 = Slave	e Comparator 1 ou er CLC1 output	itput				
	000 = Maste	er CLCINC I/O pir	1				
	DS3<2:0>: [Data Selection MI	JX 3 Signal S	Selection bits (SI	ave)		
	111 = Slave	SCCP4 Compare	e Event Flag	(CCP4IF)			
	110 = Slave	SCCP3 Compare	e Event Flag	(CCP3IF)			
	101 = Slave 100 = Slave	: UART1 RX outo	ut correspond	ding to CLCy ma	odule		
	011 = Slave	SPI1 Output (SD	Ox) correspo	onding to CLCX inc	module		
	011 = Slave 010 = Slave	SPI1 Output (SD Comparator 1 ou	Ox) correspo itput	onding to CLCX inc	module		

Note 1: Valid only for the SPI with PPS selection.

20.0 CURRENT BIAS GENERATOR (CBG)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Current Bias Generator (CBG)" (DS70005253) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 3.2 "Master Memory Organization" in this data sheet for device-specific register and bit information.

The Current Bias Generator (CBG) consists of two classes of current sources: 10 μ A and 50 μ A sources. The major features of each current source are:

- 10 µA Current Sources:
 - Current sourcing only
 - Up to four independent sources
- 50 µA Current Sources:
 - Selectable current sourcing or sinking
 - Selectable current mirroring for sourcing and sinking

A simplified block diagram of the CBG module is shown in Figure 20-1.

REGISTER 21-15: FALTREG CONFIGURATION REGISTER (CONTINUED)

- bit 2-0 **CTXT1<2:0>:** Specifies the Alternate Working Register Set #1 with Interrupt Priority Levels (IPL) bits 111 = Not assigned
 - 110 = Alternate Register Set #1 is assigned to IPL Level 7
 - 101 = Alternate Register Set #1 is assigned to IPL Level 6
 - 100 = Alternate Register Set #1 is assigned to IPL Level 5
 - 011 = Alternate Register Set #1 is assigned to IPL Level 4
 - 010 =Alternate Register Set #1 is assigned to IPL Level 3
 - 001 = Alternate Register Set #1 is assigned to IPL Level 2
 - 000 = Alternate Register Set #1 is assigned to IPL Level 1

REGISTER 21-16: FMBXM CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

| R/PO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| MBXM15 | MBXM14 | MBXM13 | MBXM12 | MBXM11 | MBXM10 | MBXM9 | MBXM8 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/PO-1 |
| MBXM7 | MBXM6 | MBXM5 | MBXM4 | MBXM3 | MBXM2 | MBXM1 | MBXM0 |

Legend:	PO = Program Once bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-16	Unimplemented: Read as '1'
bit 15	MBXM15: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #15 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #15 is configured for Master data write (Master to Slave data transfer)
bit 14	MBXM14: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #14 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #14 is configured for Master data write (Master to Slave data transfer)
bit 13	MBXM13: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #13 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #13 is configured for Master data write (Master to Slave data transfer)
bit 12	MBXM12: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #12 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #12 is configured for Master data write (Master to Slave data transfer)
bit 11	MBXM11: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #11 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #11 is configured for Master data write (Master to Slave data transfer)
bit 10	MBXM10: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #10 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #10 is configured for Master data write (Master to Slave data transfer)

bit 7

bit 0

TABLE 24-11: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS	Master Sleep + Slave Sleep		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Units Conditions				
Power-Down Current (IPD) ⁽¹⁾							
DC60	3.2	4.8	mA	-40°C			
	3.4	8.2	mA	+25°C	2 2)/		
	3.7	14.3	mA	+85°C	5.5V		
	7.6	21.5	mA	+125°C			

Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and External Clock is active; OSCI is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- · JTAG is disabled

TABLE 24-12: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (\(\triangle WDT\))^{(1)}

DC CHARACTERISTICS	Master and Slave		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Conditions			
DC61d	2.9	—	μA	-40°C			
DC61a	2.7	_	μA	+25°C	2.21/		
DC61b	3.9	_	μA	+85°C	3.3V		
DC61c	5.5		μA	+125°C			

Note 1: The \triangle IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

AC/DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Comments
PA01	Vin	Input Voltage Range		AVss - 0.3	_	AVDD + 0.3	V	
PA02	Vсм	Common-Mode Input Voltage Range		AVss	—	AVDD - 1.6	V	
PA03	Vos	Input Offset Voltage	9	-2	_	+2	mV	Gain = 32x
PA04	Vos	Input Offset Voltage Drift with Temperature		—	±15	—	µV/∘C	
PA05	Rin+	Input Impedance of Positive Input		—	>1M 7 pF	—	Ω pF	
PA06	Rin-	Input Impedance of Negative Input		—	10K 7 pF	—	Ω pF	
PA07	Gerr	Gain Error		-2	±0.5	+2	%	Gain = 4x, 8x,16x, 32x
PA08	Lerr	Gain Nonlinearity Error		—	—	0.5	%	% of full scale, Gain = 16x
PA09	IDD	Current Consumption		—	2.0	—	mA	Module is enabled with a 2-volt P-P output voltage swing
PA10a	BW	Small Signal	G = 4x	—	10	—	MHz	
PA10b		Bandwidth (-3 dB)	G = 8x	_	5		MHz	
PA10c			G = 16x	_	2.5		MHz	
PA10d			G = 32x	—	1.25	—	MHz	
PA11	OST	Output Settling Time to 1% of Final Value		_	0.4	_	μs	Gain = 16x, 100 mV input step change
PA12	SR	Output Slew Rate		_	40	—	V/µs	Gain = 16x
PA13	TGSEL	Gain Selection Time		—	1	—	μs	
PA14	TON	Module Turn-on/Setting Time		_	_	10	μs	

TABLE 24-48: PGAx MODULE SPECIFICATIONS

Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 24-49: CONSTANT-CURRENT SOURCE SPECIFICATIONS

Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
CC02	IREG	Current Regulation	—	±3	_	%	
CC03	Ιουτ	Current Output at Terminal	—	10	—	μA	ISRCx pin
			—	50	—	μA	IBIASx pin

Note 1: The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.