

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp506t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 9:80-PIN TQFP

Pin #	Master Core	Slave Core
1	RP46 /PWM1H/RB14	S1RP46/S1RB14
2	RE0	S1RE0
3	RP47 /PWM1L/RB15	S1RP47 /S1RB15
4	RE1	S1RE1
5	RP60/PWM4H/RC12	S1RP60 /S1RC12
6	RP61/PWM4L/RC13	S1RP61/S1RC13
7	RP62/RC14	S1RP62/S1PWM7H/S1RC14
8	RP63 /RC15	S1RP63/S1PWM7L/S1RC15
9	MCLR	_
10	PCI22/RD15	S1PCI22/S1RD15
11	Vss	Vss
12	Vdd	VDD
13	PCI21/RD14	S1ANN1/S1PGA2N2/S1PCI21/S1RD14
14	RD13	S1ANN0/S1PGA1N2/S1RD13
15	AN12/IBIAS3/ RP48 /RC0	S1AN10/ S1RP48 /S1RC0
16	AN0/CMP1A/RA0	S1RA0
17	RE2	S1RE2
18	AN1/RA1	S1AN15/S1RA1
19	RE3	S1RE3
20	AN2/RA2	S1AN16/S1RA2
21	AN3/IBIAS0/RA3	S1AN0/S1CMP1A/S1PGA1P1/S1RA3
22	RE4	S1RE4
23	AN4/IBIAS1/RA4	S1MCLR3/S1AN1/S1CMP2A/S1PGA2P1/S1PGA3P2/S1RA4
24	RE5	S1RE5
25	AVDD	AVdd
26	AVss	AVss
27	RD12	S1AN14/S1PGA2P2/S1RD12
28	AN13/ISRC0/ RP49 /RC1	S1ANA1/ S1RP49 /S1RC1
29	AN14/ISRC1/ RP50 /RC2	S1ANA0/ S1RP50 /S1RC2
30	RP54 /RC6	S1AN11/S1CMP1B/ S1RP54 /S1RC6
31	Vdd	VDD
32	Vss	Vss
33	CMP1B/ RP51 /RC3	S1AN8/S1CMP3B/ S1RP51 /S1RC3
34	OSCI/CLKI/AN5/ RP32 /RB0	S1AN5/ S1RP32 /S1RB0
35	OSCO/CLKO/AN6/IBIAS2/ RP33 /RB1	S1AN4/ S1RP33 /S1RB1
36	RD11	S1AN17/S1PGA1P2/S1RD11
37	RE6	S1PGA3N2/S1RE6
38	ISRC3/RD10	S1AN13/S1CMP2B/S1RD10
39	RE7	S1RE7
40	AN15/ISRC2/ RP55 /RC7	S1AN12/ S1RP55 /S1RC7
41	DACOUT/AN7/CMP1D/ RP34 /INT0/RB2	S1MCLR2/S1AN3/S1ANC0/S1ANC1/S1CMP1D/S1CMP2D/S1CMP3D/ S1RP34 / S1INT0/S1RB2
42	RE8	S1RE8
43	PGD2/AN8/ RP35 /RB3	S1PGD2/S1AN18/S1CMP3A/S1PGA3P1/ S1RP35 /S1RB3
44	RE9	S1RE9
45	PGC2/ RP36 /RB4	S1PGC2/S1AN9/S1RP36/S1PWM5L/S1RB4
46	RP56/ASDA1/SCK2/RC8	S1RP56/S1ASDA1/S1SCK1/S1RC8
47	RP57/ASCL1/SDI2/RC9	S1RP57/S1ASCL1/S1SDI1/S1RC9
48	PCI20/RD9	S1PCI20/S1RD9
49	SDO2/PCI19/RD8	S1SDO1/S1PCI19/S1RD8
50	Vss	Vss

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

3.2.3 DATA ADDRESS SPACE (MASTER)

The dsPIC33CH128MP508 family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory map is shown in Figure 3-6.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

The dsPIC33CH128MP508 family devices implement up to 16 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

3.2.3.1 Data Space Width

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

3.2.3.2 Data Memory Organization and Alignment

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33CH128MP508 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

3.2.3.3 SFR Space

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33CH128MP508 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

3.2.3.4 Near Data Space

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

						1		
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
High-Speed I	PWM		PG1TRIGB	356	000000000000000000	PG3FFPCIH	3AE	0000-00000000000
PCLKCON	300	000000	PG1TRIGC	358	000000000000000000	PG3SPCIL	3B0	000000000000000000
FSCL	302	000000000000000000000000000000000000000	PG1DTL	35A	0000000000000000	PG3SPCIH	3B2	0000-00000000000
FSMINPER	304	000000000000000000000000000000000000000	PG1DTH	35C	0000000000000000	PG3LEBL	3B4	000000000000000000
MPHASE	306	000000000000000000000000000000000000000	PG1CAP	35E	000000000000000000	PG3LEBH	3B6	0000000
MDC	308	000000000000000000000000000000000000000	PG2CONL	360	0-000000000000000	PG3PHASE	3B8	00000000000000000
MPER	30A	000000000000000000000000000000000000000	PG2CONH	362	000-0000000000	PG3DC	3BA	00000000000000000
LFSR	30C	000000000000000000000000000000000000000	PG2STAT	364	000000000000000000	PG3DCA	3BC	00000000
CMBTRIGL	30E	00000000	PG2IOCONL	366	000000000000000000	PG3PER	3BE	00000000000000000
CMBTRIGH	310	00000000	PG2IOCONH	368	-00000-000000	PG3TRIGA	3C0	00000000000000000
LOGCONA	312	000000000000000000000000000000000000000	PG2EVTL	36A	000000000000	PG3TRIGB	3C2	000000000000000000
LOGCONB	314	000000000000000000000000000000000000000	PG2EVTH	36C	0000000000000	PG3TRIGC	3C4	000000000000000000
LOGCONC	316	000000000000000000000000000000000000000	PG2FPCIL	36E	000000000000000000	PG3DTL	3C6	000000000000000
LOGCOND	318	000000000000000000000000000000000000000	PG2FPCIH	370	0000-00000000000	PG3DTH	3C8	0000000000000000
LOGCONE	31A	000000000000000000000000000000000000000	PG2CLPCIL	372	000000000000000000	PG3CAP	3CA	000000000000000000
LOGCONF	31C	000000000000000000000000000000000000000	PG2CLPCIH	374	0000-00000000000	PG4CONL	3CC	0-000000000000000
PWMEVTA	31E	00000000-000	PG2FFPCIL	376	000000000000000000000000000000000000000	PG4CONH	3CE	000-0000000000
PWMEVTB	320	00000000-000	PG2FFPCIH	378	0000-00000000000	PG4STAT	3D0	000000000000000000000000000000000000000
PWMEVTC	322	00000000-000	PG2SPCIL	37A	000000000000000000000000000000000000000	PG4IOCONL	3D2	000000000000000000000000000000000000000
PWMEVTD	324	00000000-000	PG2SPCIH	37C	0000-00000000000	PG4IOCONH	3D4	-0000-000000
PWMEVTE	326	00000000-000	PG2LEBL	37E	000000000000000000000000000000000000000	PG4EVTL	3D6	000000000000
PWMEVTF	328	00000000-000	PG2LEBH	380	0000000	PG4EVTH	3D8	00000000000000
PG1CONL	32A	0-00000000000000	PG2PHASE	382	000000000000000000000000000000000000000	PG4FPCIL	3DA	000000000000000000000000000000000000000
PG1CONH	32C	000-0000000000	PG2DC	384	000000000000000000000000000000000000000	PG4FPCIH	3DC	0000-00000000000
PG1STAT	32E	000000000000000000000000000000000000000	PG2DCA	386	00000000	PG4CLPCIL	3DE	000000000000000000000000000000000000000
PG1IOCONL	330	000000000000000000000000000000000000000	PG2PER	388	000000000000000000	PG4CLPCIH	3E0	0000-00000000000
PG1IOCONH	332	-0000-000000	PG2TRIGA	38A	000000000000000000	PG4FFPCIL	3E2	000000000000000000
PG1EVTL	334	0000000000000	PG2TRIGB	38C	000000000000000000	PG4FFPCIH	3E4	0000-00000000000
PG1EVTH	336	0000000000000	PG2TRIGC	38E	000000000000000000	PG4SPCIL	3E6	000000000000000000
PG1FPCIL	338	000000000000000000000000000000000000000	PG2DTL	390	0000000000000000	PG4SPCIH	3E8	0000-00000000000
PG1FPCIH	33A	0000-0000000000	PG2DTH	392	000000000000000	PG4LEBL	3EA	000000000000000000
PG1CLPCIL	33C	000000000000000000000000000000000000000	PG2CAP	394	000000000000000000	PG4LEBH	3EC	0000000
PG1CLPCIH	33E	0000-0000000000	PG3CONL	396	0-000000000000000	PG4PHASE	3EE	000000000000000000
PG1FFPCIL	340	000000000000000000000000000000000000000	PG3CONH	398	000-0000000000	PG4DC	3F0	000000000000000000
PG1FFPCIH	342	0000-0000000000	PG3STAT	39A	000000000000000000	PG4DCA	3F2	00000000
PG1SPCIL	344	000000000000000000000000000000000000000	PG3IOCONL	39C	000000000000000000	PG4PER	3F4	000000000000000000
PG1SPCIH	346	0000-0000000000	PG3IOCONH	39E	-0000-000000	PG4TRIGA	3F6	000000000000000000000000000000000000000
PG1LEBL	348	000000000000000000000000000000000000000	PG3EVTL	3A0	000000000000	PG4TRIGB	3F8	000000000000000000000000000000000000000
PG1LEBH	34A	0000000	PG3EVTH	3A2	00000000000000	PG4TRIGC	3FA	000000000000000000000000000000000000000
PG1PHASE	34C	000000000000000000000000000000000000000	PG3FPCIL	3A4	000000000000000000000000000000000000000	PG4DTL	3FC	0000000000000000
PG1DC	34E	000000000000000000000000000000000000000	PG3FPCIH	3A6	0000-00000000000	PG4DTH	3FE	0000000000000000
PG1DCA	350	00000000	PG3CLPCIL	3A8	000000000000000000000000000000000000000	PG4CAP	400	000000000000000000
PG1PER	352	000000000000000000000000000000000000000	PG3CLPCIH	3AA	0000-00000000000			
PG1TRIGA	354	000000000000000000	PG3FFPCIL	3AC	000000000000000000			

TABLE 3-7: MASTER SFR BLOCK 300h-400h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 6	DIV0ERR: Divide-by-Zero Error Status bit
	1 = Math error trap was caused by a divide-by-zero
	0 = Math error trap was not caused by a divide-by-zero
bit 5	DMACERR: DMA Controller Trap Status bit
	1 = DMAC error trap has occurred
	0 = DMAC error trap has not occurred
bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM5R7 | ICM5R6 | ICM5R5 | ICM5R4 | ICM5R3 | ICM5R2 | ICM5R1 | ICM5R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 3-43: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI5R7 | TCKI5R6 | TCKI5R5 | TCKI5R4 | TCKI5R3 | TCKI5R2 | TCKI5R1 | TCKI5R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM5R<7:0>: Assign SCCP Capture 5 (ICM5) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI5R<7:0>:** Assign SCCP Timer5 (TCKI5) Input to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-44: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM6R7 | ICM6R6 | ICM6R5 | ICM6R4 | ICM6R3 | ICM6R2 | ICM6R1 | ICM6R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI6R7 | TCKI6R6 | TCKI6R5 | TCKI6R4 | TCKI6R3 | TCKI6R2 | TCKI6R1 | TCKI6R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM6R<7:0>: Assign SCCP Capture 6 (ICM6) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI6R<7:0>:** Assign SCCP Timer6 (TCKI6) Input to the Corresponding RPn Pin bits See Table 3-30.

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
_				RXCODE<6:0	>					
bit 15							bit 8			
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
—				TXCODE<6:0	>					
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable b	it	U = Unimpler	mented bit, re	ad as 'O'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	Unimpleme	nted: Read as '0	, 							
bit 14-8	RXCODE<6	:0>: Receive Inte	errupt Flag Co	de bits						
	1000001-1	111111 = Reser	ved							
	1000000 = 1	NO INTERPUPT	ved							
	0000111 =	FIFO 7 interrupt (RFIF7 is set)							
	0000010 =	FIFO 2 interrupt (RFIF2 IS SET)							
	0000000 =	Reserved; FIFO () cannot rece	ive						
bit 7	Unimpleme	nted: Read as '0	,							
bit 6-0	TXCODE<6	:0>: Transmit Inte	errupt Flag Co	ode bits						
	1000001-1	111111 = Reser	ved							
	1000000 =	No interrupt								
	0001000-0	111111 = Reser	ved							
	0000111 =	FIFO 7 interrupt (TFIF7 is set)							
	0000001 =	FIFO 1 interrupt (TFIF1 is set)							
	0000000 =	FIFO 0 interrupt (TFIF0 is set)							

REGISTER 3-114: C1VECH: CAN INTERRUPT CODE REGISTER HIGH

REGISTER 3-195: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—		—	—	—	_	
bit 15					- -	-	bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			PTGQPTR<4:)>		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the Step queue.

Note 1: These bits are read only when the module is executing step commands.

REGISTER 3-196: PTGQUEn: PTG STEP QUEUE n POINTER REGISTER (n = 0-15)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STEP2n	+1<7:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STEP2n<7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 STEP2n+1<7:0>: PTG Command 4n+1 bits

A queue location for storage of the STEP2n+1 command byte, where 'n' is from PTGQUEn.

STEP2n<7:0>: PTG Command 4n+2 bits

A queue location for storage of the STEP2n command byte, where 'n' are the odd numbered Step Queue Pointers.

Note 1: These bits are read-only when the module is executing Step commands.

2: Refer to Table 3-1 for the Step command encoding.

bit

4.6.5 PERIPHERAL PIN SELECT (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

4.6.5.1 Available Pins

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "S1RPn", in their full pin designation, where "n" is the remappable pin number. "S1RP" is used to designate pins that support both remappable input and output functions.

4.6.5.2 Available Peripherals

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I²C modules. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

4.6.5.3 Controlling Peripheral Pin Select

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

REGISTER 4-106: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 19; n = 0 TO 4) (CONTINUED)

- bit 4-0 **TRGSRCx<4:0>:** Common Interrupt Enable for Corresponding Analog Inputs bits (TRGSRC0 to TRGSRC20 – Even) 11111 = ADTRG31 (PPS input)
 - 11110 = Master PTG 11101 = Slave CLC1
 - 11100 = Master CLC1
 - 11011 = Reserved
 - 11010 = Reserved
 - 11001 = Master PWM3 Trigger 2
 - 11000 = Master PWM1 Trigger 2
 - 10111 = Slave SCCP4 PWM/IC interrupt
 - 10110 = Slave SCCP3 PWM/IC interrupt
 - 10101 = Slave SCCP2 PWM/IC interrupt
 - 10100 = Slave SCCP1 PWM/IC interrupt
 - 10011 = Reserved
 - 10010 = Reserved
 - 10001 = Reserved
 - 10000 = Reserved
 - 01111 = Slave PWM8 Trigger 1
 - 01110 = Slave PWM7 Trigger 1
 - 01101 = Slave PWM6 Trigger 1
 - 01100 = Slave PWM5 Trigger 1
 - 01011 = Slave PWM4 Trigger 2
 - 01010 = Slave PWM4 Trigger 1
 - 01001 = Slave PWM3 Trigger 2
 - 01000 = Slave PWM3 Trigger 1
 - 00111 = Slave PWM2 Trigger 2 00110 = Slave PWM2 Trigger 1
 - 00101 = Slave PWM2 Trigger 2
 - 00100 = Slave PWM1 Trigger 1
 - 00011 = Reserved
 - 00010 = Level software trigger
 - 00001 = Common software trigger
 - 00000 = No trigger is enabled

R-0	U-0	R-0	R-0	U-0	U-0	R-0	R-0		
MSTRST		MSTPWR1	MSTPWR0			MTSIRQ	STMIACK		
bit 15	-						bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	_		
bit 7							bit 0		
Levendu									
Legena:	L :4		:4			(0)			
R = Readable	DIT	vv = vvritable b	DIT		iented bit, read	as 'U'			
-n = value at F	POR	"1" = Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unki	nown		
bit 15	it 15 MSTRST: Master Reset Status bit Indicates when the Master is in Reset as the result of any Reset source. Generates a Master Reset								
	1 = Master is ir 0 = Master is n	n Reset ot in Reset	i the leading ed	uge of being se	a when STIMIRC	2 (SHCON<9)	>) = ⊥.		
bit 14	Unimplemente	ed: Read as '0'							
bit 13-12	MSTPWR<1:0	>: Master Low-	Power Operati	ng Mode Statu	s bits				
	11 = Reserved 10 = Master is 01 = Master is 00 = Master is	in Sleep mode in Idle mode not in a Low-P	ower mode						
bit 11-10	Unimplemente	ed: Read as '0'							
bit 9	MTSIRQ: Mast	ter interrupt Sla	ve bit						
	1 = Master has 0 = Master has	s issued an inte s not issued a S	rrupt request to lave interrupt r	o the Slave request					
bit 8	 STMIACK: Master Acknowledgment Status bit 1 = If STMIRQ = 1, Master Acknowledges Slave interrupt request, else protocol error 0 = If STMIRQ = 0, Master has not yet Acknowledged Slave interrupt request, else no Slave to Master interrupt request is pending 								
bit 7-0	Unimplemente	ed: Read as '0'							

REGISTER 5-10: SI1STAT: MSI1 SLAVE STATUS REGISTER

REGISTER 6-8: APLLDIV1: APLL OUTPUT DIVIDER REGISTER (MASTER)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	—	—	AVCODIV<1:0>		
bit 15 bit t								

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1	
—	APOST1DIV<2:0> ^(1,2)				APOST2DIV<2:0>(1,2)			
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 bit 9-8	Unimplemented: Read as '0' AVCODIV<1:0>: APLL VCO Output Divider Select bits 11 = AFvco 10 = AFvco/2 01 = AFvco/3 00 = AFvco/4
bit 7	Unimplemented: Read as '0'
bit 6-4	APOST1DIV<2:0>: APLL Output Divider #1 Ratio bits ^(1,2)
	APOST1DIV<2:0> can have a valid value, from 1 to 7 (the APOST1DIVx value should be greater than or equal to the APOST2DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.
bit 3	Unimplemented: Read as '0'
bit 2-0	APOST2DIV<2:0>: APLL Output Divider #2 Ratio bits ^(1,2)
	APOST2DIV<2:0> can have a valid value, from 1 to 7 (the APOST2DIVx value should be less than or equal to the APOST1DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

- Note 1: The APOST1DIVx and APOST2DIVx values must not be changed while the PLL is operating.
 - **2:** The default values for APOST1DIVx and APOST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0		
_	PGA3MD	—		_	PGA2MD	_			
bit 15				·			bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
_	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	pit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown		
bit 15	Unimplement	ted: Read as 'o)'						
bit 14	PGA3MD: PG	GA3 Module Dis	able bit						
	1 = PGA3 mo	dule is disabled	ł						
	0 = PGA3 mo	dule is enabled							
bit 13-11	Unimplement	ted: Read as '0)'						
bit 10	PGA2MD: PG	GA2 Module Dis	able bit						
	1 = PGA2 mo	dule is disabled	ł						
	0 = PGA2 mo	dule is enabled							
bit 9-6	Unimplement	ted: Read as '0)'						
bit 5	CLC4MD: CL	C4 Module Dis	able bit						
	$1 = CLC4 \mod 0$	dule is disabled							
bit 1			abla bit						
DIL 4	1 = CLC3 mod	dule is disabled							
	0 = CLC3 mo	dule is enabled	I						
bit 3	CLC2MD: CL	C2 Module Dis	able bit						
	1 = CLC2 mo	dule is disabled							
	0 = CLC2 mod	dule is enabled							
bit 2	CLC1MD: CL	C1 Module Disa	able bit						
	1 = CLC1 mod	dule is disabled							
	0 = CLC1 mod	dule is enabled							
bit 1-0	Unimplement	ted: Read as '0)'						

REGISTER 7-15: PMD8: SLAVE PERIPHERAL MODULE DISABLE 8 CONTROL REGISTER

REGISTER 9-13: PGxCONH: PWM GENERATOR x CONTROL REGISTER HIGH

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
MDCSEI	_ MPERSEL	MPHSEL		MSTEN	UPDMOD2	UPDMOD1	UPDMOD0				
bit 15							bit 8				
			K								
U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	TRGMOD	—		SOCS3 ^(1,2,3)	SOCS2 ^(1,2,3)	SOCS1 ^(1,2,3)	SOCS0 ^(1,2,3)				
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimpleme	ented bit, read as	'0'					
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is clear	red	x = Bit is unkno	own				
bit 15 MDCSEL: Master Duty Cycle Register Select bit 1 = PWM Generator uses the MDC register instead of PGxDC 0 = PWM Generator uses the PGxDC register bit 14 MPERSEL: Master Period Register Select bit 1 = PWM Generator uses the MPER register instead of PGxPER 0 = PWM Generator uses the MPER register instead of PGxPER											
bit 13	MPHSEL: M 1 = PWM G 0 = PWM G	 MPHSEL: Master Phase Register Select bit 1 = PWM Generator uses the MPHASE register instead of PGxPHASE 0 = PWM Generator uses the PGxPHASE register 									
bit 12	Unimpleme	nted: Read a	s '0'								
bit 11	MSTEN: Ma	ister Update E	inable bit								
	1 = PWM G PWM G 0 = PWM G	Senerator broa Senerators Senerator does	adcasts softwa	are set/clear of t	he UPDATE status bit state or	IS bit and EOC	signal to other				
bit 10-8	 UPDMOD<2:0>: PWM Buffer Update Mode Selection bits Slaved immediate update Data registers immediately, or as soon as possible, when a Master update request is received. Master update request will be transmitted if MSTEN = 1 and UPDATE = 1 for the requesting PM Generator. Slaved SOC update Data registers at start of next cycle if a Master update request is received. A Master update request will be transmitted if MSTEN = 1 for the requesting PM Generator. Immediate update Immediately, or as soon as possible, if UPDATE = 1. The UPDATE status bit be cleared automatically after the update occurs (UPDATE = 1). The UPDATE status bit wil cleared automatically after the update occurs. 										
bit 7	Data Unimpleme	registers at st nted: Read a	art of next PV s '0'	VM cycle.							
Note 1:	The PCI selecters	ed Sync signa s if the PCI Sy	l is always ava	ailable to be OR enabled.	'd with the select	ed SOC signal (per the				
2:	The source sele Generator. If no synchronized to	CCS<3:0> bits if the PCI Sync function is enabled. ie source selected by the SOCS<3:0> bits MUST operate from the same clock source as the local PWM enerator. If not, the source must be routed through the PCI Sync logic so the trigger signal may be nchronized to the PWM Generator clock domain									

3: PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

REGISTER 12-13: INTxTMRL: INTERVAL x TIMER REGISTER LOW

D AAL A		DAM A	D 444 0		D 444 0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			INTT	/IR<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	INTTMR<7:0>									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bit	t	U = Unimpleme	ented bit, rea	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 INTTMR<15:0>: Interval Timer Value bits

REGISTER 12-14: INTxTMRH: INTERVAL x TIMER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			INTTM	R<31:24>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	INTTMR<23:16>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown					

bit 15-0 INTTMR<31:16>: Interval Timer Value bits

REGISTER 21-4: FOSCSEL CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1				
	—	—		—	_	—	—				
bit 23							bit 16				
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1				
bit 15							bit 8				
R/PO-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1				
IESO	<u> </u>				FNOSC2	FNOSC1	FNOSC0				
bit 7							bit 0				
Legend:		PO = Program	n Once bit			as '0' x = Bit is unknown					
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown				
bit 23-8	Unimplemen	ted: Read as '1	-								
bit 7	IESO: Interna	al External Swite	chover bit								
	1 = Internal E	xternal Switcho	ver mode is e	nabled (Two-Sp	beed Start-up is	enabled)					
		xternal Switcho	ver mode is di	Isabled (Two-S	peed Start-up is	s disabled)					
bit 6-3	Unimplemen	ited: Read as '1	_								
bit 2-0	FNOSC<2:0>	Initial Oscillat	or Source Sele	ection bits							
	111 = Interna	al Fast RC (FRC	c) Oscillator wi	th Postscaler							
	110 = Backup Fast RC (BFRC)										
	$101 = \mathbf{Reserved}$										
	011 = Primar	y Oscillator with	PLL (XTPLL,	HSPLL, ECPL	L)						
	010 = Primar	y (XT, HS, EC)	Oscillator		-						
	001 = Interna	al Fast RC Oscil	lator with PLL	(FRCPLL)							

000 = Fast RC (FRC) Oscillator

DC CHARACTERISTICS	CCHARACTERISTICS Master ⁽¹⁾			ve ⁽²⁾	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Тур.	Max.	Units	Conditions			
DC120	—	6.5	—	14	mA	-40°C	3.3V		
	5.5	6	9	14	mA	+25°C	3.3V		
	_	7.1	_	15	mA	+125°C	3.3V		

TABLE 24-15: DC CHARACTERISTICS: ADC \triangle CURRENT

Note 1: Master shared core continuous conversion; TAD = 14.3 nS (3.5 Msps Conversion rate).

2: Slave dedicated core continuous conversion on all 3 SAR cores; TAD = 14.3 nS (3.5 Msps conversion rate). All parameters are characterized but not tested during manufacturing.

TABLE 24-16: DC CHARACTERISTICS: COMPARATOR + DAC DELTA CURRENT

DC CHARACTERISTICS	Master	or Slave	Standard Ope (unless other Operating tem	erating Conditions: 3 wise stated) perature $-40^{\circ}C \le TA$ $-40^{\circ}C \le TA$	 S.0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended 		
Parameter No.	Тур.	Max.	Units	Conditions			
DC130	_	2.8	mA	-40°C, 3.3V	AFpllo @ 500 MHz ⁽¹⁾		
	1.8	2.6	mA	+25°C, 3.3V	AFpllo @ 500 MHz ⁽¹⁾		
		3	mA	+125°C, 3.3V	AFpllo @ 500 MHz ⁽¹⁾		
DC131	-	1.6	mA	-40°C, 3.3V	AFpllo @ 250 MHz ⁽¹⁾		
	1.2	1.5	mA	+25°C, 3.3V	AFpllo @ 250 MHz ⁽¹⁾		
		1.7	mA	+125°C, 3.3V	AFPLLO @ 250 MHz ⁽¹⁾		

Note 1: The APLL current is not included. All parameters are characterized but not tested during manufacturing.

TABLE 24-17: DC CHARACTERISTICS: PGA DELTA CURRENT⁽¹⁾

DC CHARACTERISTICS	Sla	ave	Standard Ope (unless otherv Operating temp	Standard Operating Conditions: 3.0V to 3.6V unless otherwise stated) Deprating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No.	Тур.	Max.	Units	Conditions				
DC141	—	0.5	mA	-40°C, 3.3V				
	0.4	0.65	mA	+25°C, 3.3V				
	_	1.1	mA	+125°C, 3.3V				

Note 1: All parameters are characterized but not tested during manufacturing.

AC CHARACTERISTICS			Standard Operating te	perating erwise s mperatur	$\begin{array}{l} \mbox{Conditions: 3} \\ \mbox{tated}) \\ \mbox{re} & -40^{\circ}C \leq TA \\ & -40^{\circ}C \leq TA \end{array}$. 0V to 3 ≤ +85°C ≤ +125°	. 6V c for Industrial C for Extended
Param No.	Sym	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS10	Fin	External CLKI Frequency (External Clocks allowed only in EC and ECPLL modes)	DC	_	64	MHz	EC
		Oscillator Crystal Frequency	3.5		10	MHz	XT
			10		32	MHz	HS
OS20	Tosc	Tosc = 1/Fosc	15.6		DC	ns	
OS25	TCY	Instruction Cycle Time ⁽²⁾	10		DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.4	_	ns	
OS41	TckF	CLKO Fall Time ^(3,4)	_	6.4	—	ns	
OS42	Gм	External Oscillator Transconductance ⁽³⁾	2.7	-	4	mA/V	XTCFG<1:0> = 00, XTBST = 0
			4	—	7	mA/V	XTCFG<1:0> = 00, XTBST = 1
			4.5	—	7	mA/V	XTCFG<1:0> = 01, XTBST = 0
			6	—	11.9	mA/V	XTCFG<1:0> = 01, XTBST = 1
			5.9	—	9.7	mA/V	XTCFG<1:0> = 10, XTBST = 0
			6.9	—	15.9	mA/V	XTCFG<1:0> = 10, XTBST = 1
			6.7	—	12	mA/V	XTCFG<1:0> = 11, XTBST = 0
			7.5	_	19	mA/V	XTCFG<1:0> = 11, XTBST = 1

TABLE 24-26: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an External Clock applied to the OSCI pin. When an External Clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin.
- 4: This parameter is characterized but not tested in manufacturing.

TABLE 24-44: ANALOG-TO-DIGITAL CONVERSION TIMING SPECIFICATIONS

АС СН	ARACTE	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units Conditions		
AD50	Tad	ADC Clock Period	14.28	_	_	ns		
AD51	Ftp	Throughput Rate	—	—	3.5	Msps	Dedicated Cores 0 and 1	
				_	3.5	Msps	Shared core	

Note 1: These parameters are characterized but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

TABLE 24-45: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS

Operati Operatir	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments			
CM09	Fin	Input Frequency	400	500	550	MHz				
CM10	VIOFF	Input Offset Voltage	-20	—	+20	mV				
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	AVss	—	AVDD	V				
CM13	CMRR	Common-Mode Rejection Ratio	60	—	—	dB				
CM14	TRESP	Large Signal Response		15	_	ns	V+ input step of 100 mV while V- input is held at AVDD/2			
CM15	VHYST	Input Hysteresis	15	30	45	mV	Depends on HYSSEL<1:0>			

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 24-46: DACx MODULE SPECIFICATIONS

Operati Operati	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Comments		
DA02	CVRES	Resolution		12		bits			
DA03	INL	Integral Nonlinearity Error	-38	—	0	LSB			
DA04	DNL	Differential Nonlinearity Error	-5	—	5	LSB			
DA05	EOFF	Offset Error	-3.5	_	21.5	LSB	Internal node at comparator input		
DA06	EG	Gain Error	0	_	41	%	Internal node at comparator input		
DA07	TSET	Settling Time		750		ns	Output with 2% of desired output voltage with a 5-95% or 95-5% step		
DA08	Vout	Voltage Output Range	0.165	_	3.135	V	VDD = 3.3V		

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 24-47: DACx OUTPUT (DACOUT PIN) SPECIFICATIONS

Operat Operat	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments		
DA11	RLOAD	Resistive Output Load Impedance	10K	—	_	Ohm			
DA11a	CLOAD	Output Load Capacitance	—	-	30	pF	Including output pin capacitance		
DA12	Ιουτ	Output Current Drive Strength	—	3	—	mA	Sink and source		
DA13	INL	Integral Nonlinearity Error	-50	-	0	LSB	Includes INL of DACx module (DA03)		
DA14	DNL	Differential Nonlinearity Error	-5	—	5	LSB	Includes DNL of DACx module (DA04)		
DA30	EOFF	Offset Error	-150	-	0	LSB	Includes offset error of DACx module (DA05)		
DA31	EG	Gain Error	-146	_	0	LSB	Includes gain error of DACx module (DA06)		

Note 1: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

dsPIC33CH128MP508 FAMILY

Software Simulator MPLAB X SIM	725
Special Features of the CPU	667
т	
Thermal Operating Conditions	728
Thermal Packaging Characteristics	728
Third-Party Development Tools	726
Timer1	643
Control Register	644
Timing Diagrams	
BOR and Master Clear Reset Timing	
Characteristics	746
Clock/Instruction Cycle	
External Clock	742
High-Speed PWMx Fault Characteristics	748
High-Speed PWMx Module Characteristics	748
I/O Characteristics	746
I2Cx Bus Data Characteristics (Master Mode)	757
I2Cx Bus Data Characteristics (Slave Mode)	759
I2Cx Bus Start/Stop Bits Characteristics	
(Master Mode).	757
I2Cx Bus Start/Stop Bits Characteristics	
(Slave Mode)	759
QEI Interface Signals	565
SPIx Master Mode (Full-Duplex, CKE = 0.	
CKP = x, $SMP = 1$)	752
SPIx Master Mode (Full-Duplex_CKF = 1	
CKP = x $SMP = 1$)	751
SPIx Master Mode (Half-Duplex.	
Transmit Only $CKF = 0$)	749
SPIx Master Mode (Half-Duplex	
Transmit Only CKF = 1)	750
SPIx Slave Mode (Full-Duplex_CKF = 0	
CKP = x SMP = 0	753
SPIx Slave Mode (Full-Duplex, CKF = 1	
CKP = x SMP = 0	755
UARTx I/O Characteristics	

U

WWW, On-Line Support 19