

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit Dual-Core                                                                |
| Speed                      | 180MHz, 200MHz                                                                  |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                         |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT              |
| Number of I/O              | 69                                                                              |
| Program Memory Size        | 88KB (88K x 8)                                                                  |
| Program Memory Type        | FLASH, PRAM                                                                     |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 20K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 34x12b; D/A 4x12b                                                           |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 80-TQFP                                                                         |
| Supplier Device Package    | 80-TQFP (12x12)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp508-e-pt |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 3.4.1 RESET RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

# 3.4.1.1 Key Resources

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

# 3.6 Master I/O Ports

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: The I/O ports are shared by Master core and Slave core. All input goes to both the Master and Slave. The I/O ownership is defined by the Configuration bits.
  - 3: The TMS pin function may be active multiple times during ICSP<sup>™</sup> device erase, programming and debugging. When the TMS function is active, the integrated pull-up resistor will pull the pin to VDD. Proper care should be taken if there are sensitive circuits connected on the TMS pin during programming/erase and debugging.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. The Master and Slave have the same number of I/O ports and are shared. The Master PORT registers are located in the Master SFR and the Slave PORT registers are located in the Slave SFR, respectively.

Some of the key features of the I/O ports are:

- Individual Output Pin Open-Drain Enable/Disable
- Individual Input Pin Weak Pull-up and Pull-Down
- Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected
- Operation during Sleep and Idle modes

Note: The output functionality of the ports is defined by the Configuration registers, FCFGPRA0 to FCFGPRE0. When these Configuration bits are maintained as '1', the Master owns the pin (only the output function); when the bits are '0', the ownership of that specific pin belongs to the Slave. The input function of the I/O is valid for both

A he input function of the I/O is valid for both Master and Slave. The Configuration registers, FCFGPRA0 to FCFGPRE0, do not have any control over the input function.

# 3.6.1 PARALLEL I/O (PIO) PORTS

All port pins have 12 registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input.

All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. Table 3-27 shows the pin availability. Table 3-28 shows the 5V input tolerant pins across this device.

| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | RP69R5 | RP69R4 | RP69R3 | RP69R2 | RP69R1 | RP69R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |
|        |     |        |        |        |        |        |        |
| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —      | —   | RP68R5 | RP68R4 | RP68R3 | RP68R2 | RP68R1 | RP68R0 |
| bit 7  |     |        |        |        |        |        | bit 0  |
|        |     |        |        |        |        |        |        |

## REGISTER 3-86: RPOR18: PERIPHERAL PIN SELECT OUTPUT REGISTER 18

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| bit 13-8  | <b>RP69R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 3-33 for peripheral function numbers) |
| bit 7-6   | Unimplemented: Read as '0'                                                                                                               |
| bit 5-0   | <b>RP68R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP68 Output Pin bits (see Table 3-33 for peripheral function numbers) |

# REGISTER 3-87: RPOR19: PERIPHERAL PIN SELECT OUTPUT REGISTER 19

| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | RP71R5 | RP71R4 | RP71R3 | RP71R2 | RP71R1 | RP71R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |

| U-0   | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | RP70R5 | RP70R4 | RP70R3 | RP70R2 | RP70R1 | RP70R0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8**RP71R<5:0>:** Peripheral Output Function is Assigned to RP71 Output Pin bits<br/>(see Table 3-33 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP70R<5:0>:** Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 3-33 for peripheral function numbers)

# REGISTER 3-109: C1TDCL: CAN TRANSMITTER DELAY COMPENSATION REGISTER LOW<sup>(1)</sup>

| U-0          | R/W-0          | R/W-0               | R/W-1     | R/W-0             | R/W-0           | R/W-0           | R/W-0 |
|--------------|----------------|---------------------|-----------|-------------------|-----------------|-----------------|-------|
| _            |                |                     |           | TDCO<6:0>         |                 |                 |       |
| bit 15       |                |                     |           |                   |                 |                 | bit 8 |
|              |                |                     |           |                   |                 |                 |       |
| U-0          | U-0            | R/W-0               | R/W-0     | R/W-0             | R/W-0           | R/W-0           | R/W-0 |
|              |                |                     |           | TDC\              | /<5:0>          |                 |       |
| bit 7        |                |                     |           |                   |                 |                 | bit 0 |
|              |                |                     |           |                   |                 |                 |       |
| Legend:      |                |                     |           |                   |                 |                 |       |
| R = Readab   |                | W = Writable bit    |           |                   | mented bit, rea |                 |       |
| -n = Value a | It POR         | '1' = Bit is set    |           | '0' = Bit is cle  | eared           | x = Bit is unki | nown  |
| L:1 4 F      |                | nted. Deed es (o)   |           |                   |                 |                 |       |
| bit 15       | -              | nted: Read as '0'   | •         |                   |                 |                 | 00)   |
| bit 14-8     |                | : Transmitter Delay | / Compens | ation Offset bits | s (Secondary S  | ample Point (S  | SP))  |
|              | 111 1111=      | = -64 X ISYS        |           |                   |                 |                 |       |
|              | <br>011 1111 = | = 63 x Tsys         |           |                   |                 |                 |       |
|              |                |                     |           |                   |                 |                 |       |
|              | 000 0000 =     | = 0 x Tsys          |           |                   |                 |                 |       |
| bit 7-6      | Unimpleme      | nted: Read as '0'   |           |                   |                 |                 |       |
| bit 5-0      | TDCV<5:0>      | : Transmitter Delay | Compensa  | ation Value bits  | (Secondary Sa   | ample Point (SS | SP))  |
|              | 11 1111 =      | FP                  |           |                   |                 |                 |       |
|              |                |                     |           |                   |                 |                 |       |
|              | 00 0000 =      | 0 x Fp              |           |                   |                 |                 |       |
|              |                |                     |           |                   |                 |                 |       |

**Note 1:** This register can only be modified in Configuration mode (OPMOD<2:0> = 100).

# REGISTER 3-180: ADCMPXENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0, 1, 2, 3)

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 | R/W-0 |
|--------|-------|-------|-------|---------|-------|-------|-------|
|        |       |       | CMPEN | N<15:8> |       |       |       |
| bit 15 |       |       |       |         |       |       | bit 8 |
| R/W/0  | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 | R/W-0 |
|        |       |       | CMPE  | N<7:0>  |       |       |       |
| bit 7  |       |       |       |         |       |       | bit 0 |

| Legend:           |                  |                        |                                    |  |  |
|-------------------|------------------|------------------------|------------------------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | U = Unimplemented bit, read as '0' |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown                 |  |  |

bit 15-0 CMPEN<15:0>: Comparator Enable for Corresponding Input Channel bits

1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

# REGISTER 3-181: ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER HIGH (x = 0, 1, 2, 3)

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0       | R/W-0 | R/W-0 |
|-------|-----|-----|-------|-------|-------------|-------|-------|
| —     | —   | —   |       | (     | CMPEN<20:16 | >     |       |
| bit 7 |     |     |       |       |             |       | bit 0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | t, read as '0'     |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-5 Unimplemented: Read as '0'

bit 4-0

CMPEN<20:16>: Comparator Enable for Corresponding Input Channel bits

1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

# REGISTER 3-189: PTGT1LIM: PTG TIMER1 LIMIT REGISTER<sup>(1)</sup>

| R/W-0                                                                      | R/W-0 | R/W-0 | R/W-0  | R/W-0                              | R/W-0 | R/W-0 | R/W-0 |
|----------------------------------------------------------------------------|-------|-------|--------|------------------------------------|-------|-------|-------|
|                                                                            |       |       | PTGT1L | -IM<15:8>                          |       |       |       |
| bit 15                                                                     |       |       |        |                                    |       |       | bit 8 |
|                                                                            |       |       |        |                                    |       |       |       |
| R/W-0                                                                      | R/W-0 | R/W-0 | R/W-0  | R/W-0                              | R/W-0 | R/W-0 | R/W-0 |
|                                                                            |       |       | PTGT1  | LIM<7:0>                           |       |       |       |
| bit 7                                                                      |       |       |        |                                    |       |       | bit 0 |
|                                                                            |       |       |        |                                    |       |       |       |
| Legend:                                                                    |       |       |        |                                    |       |       |       |
| R = Readable bit W = Writable bit                                          |       |       |        | U = Unimplemented bit, read as '0' |       |       |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |       |       |        | nown                               |       |       |       |

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General Purpose Timer1 Limit register.

Note 1: These bits are read-only when the module is executing Step commands.

# REGISTER 3-190: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER<sup>(1)</sup>

| R/W-0        | R/W-0 | R/W-0            | R/W-0  | R/W-0        | R/W-0            | R/W-0    | R/W-0 |
|--------------|-------|------------------|--------|--------------|------------------|----------|-------|
|              |       |                  | PTGSDI | _IM<15:8>    |                  |          |       |
| bit 15       |       |                  |        |              |                  |          | bit 8 |
|              |       |                  |        |              |                  |          |       |
| R/W-0        | R/W-0 | R/W-0            | R/W-0  | R/W-0        | R/W-0            | R/W-0    | R/W-0 |
|              |       |                  | PTGSD  | LIM<7:0>     |                  |          |       |
| bit 7        |       |                  |        |              |                  |          | bit 0 |
|              |       |                  |        |              |                  |          |       |
| Legend:      |       |                  |        |              |                  |          |       |
| R = Readable | bit   | W = Writable bit |        | U = Unimpler | nented bit, read | l as '0' |       |

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits This register holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

'0' = Bit is cleared

Note 1: These bits are read-only when the module is executing Step commands.

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

## REGISTER 4-32: CNSTATX: INTERRUPT CHANGE NOTIFICATION STATUS FOR PORTX REGISTER

| R-0    | R-0 | R-0 | R-0   | R-0      | R-0 | R-0 | R-0   |
|--------|-----|-----|-------|----------|-----|-----|-------|
|        |     |     | CNSTA | Гх<15:8> |     |     |       |
| bit 15 |     |     |       |          |     |     | bit 8 |
| R-0    | R-0 | R-0 | R-0   | R-0      | R-0 | R-0 | R-0   |
|        |     |     | CNSTA | Tx<7:0>  |     |     |       |
| bit 7  |     |     |       |          |     |     | bit 0 |
|        |     |     |       |          |     |     |       |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

bit 15-0 **CNSTAT<15:0>:** Interrupt Change Notification Status for PORTx bits When CNSTYLE (CNCONx<11>) = 0:

1 = Change occurred on PORTx[n] since last read of PORTx[n]

0 = Change did not occur on PORTx[n] since last read of PORTx[n]

# REGISTER 4-33: CNEN1x: INTERRUPT CHANGE NOTIFICATION EDGE SELECT FOR PORTX REGISTER

| R/W-0                              | R/W-0 | R/W-0 | R/W-0                              | R/W-0    | R/W-0          | R/W-0 | R/W-0 |
|------------------------------------|-------|-------|------------------------------------|----------|----------------|-------|-------|
|                                    |       |       | CNEN                               | 1x<15:8> |                |       |       |
| bit 15                             |       |       |                                    |          |                |       | bit 8 |
|                                    |       |       |                                    |          |                |       |       |
| R/W-0                              | R/W-0 | R/W-0 | R/W-0                              | R/W-0    | R/W-0          | R/W-0 | R/W-0 |
|                                    |       |       | CNE                                | N1x<7:0> |                |       |       |
| bit 7                              |       |       |                                    |          |                |       | bit 0 |
|                                    |       |       |                                    |          |                |       |       |
| Legend:                            |       |       |                                    |          |                |       |       |
| R = Readable bit W = Writable bit  |       | pit   | U = Unimplemented bit, read as '0' |          |                |       |       |
| -n = Value at POR '1' = Bit is set |       |       | '0' = Bit is cleared x = Bit is u  |          | x = Bit is unk | nown  |       |

bit 15-0 **CNEN1x<15:0>:** Interrupt Change Notification Edge Select for PORTx bits

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ICM3R7  | ICM3R6  | ICM3R5  | ICM3R4  | ICM3R3  | ICM3R2  | ICM3R1  | ICM3R0  |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |
| TCKI3R7 | TCKI3R6 | TCKI3R5 | TCKI3R4 | TCKI3R3 | TCKI3R2 | TCKI3R1 | TCKI3R0 |
| bit 7   |         |         |         | •       |         |         | bit 0   |
|         |         |         |         |         |         |         |         |
| Lonondi |         |         |         |         |         |         |         |

### REGISTER 4-41: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

| Legena:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-8 ICM3R<7:0>: Assign SCCP Capture 3 (S1ICM3) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **TCKI3R<7:0>:** Assign SCCP Timer3 (S1TCKI3) to the Corresponding S1RPn Pin bits See Table 4-27.

# REGISTER 4-42: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM4R7 | ICM4R6 | ICM4R5 | ICM4R4 | ICM4R3 | ICM4R2 | ICM4R1 | ICM4R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI4R7 | TCKI4R6 | TCKI4R5 | TCKI4R4 | TCKI4R3 | TCKI4R2 | TCKI4R1 | TCKI4R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

bit 15-8 ICM4R<7:0>: Assign SCCP Capture 4 (S1ICM4) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **TCKI4R<7:0>:** Assign SCCP Timer4 (S1TCKI4) to the Corresponding S1RPn Pin bits See Table 4-27.

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK1R7 | SCK1R6 | SCK1R5 | SCK1R4 | SCK1R3 | SCK1R2 | SCK1R1 | SCK1R0 |
| bit 15 |        |        |        |        |        | •      | bit 8  |
|        |        |        |        |        |        |        |        |
| R/W-0  |
| SDI1R7 | SDI1R6 | SDI1R5 | SDI1R4 | SDI1R3 | SDI1R2 | SDI1R1 | SDI1R0 |
| bit 7  |        |        |        |        |        |        | bit 0  |
|        |        |        |        |        |        |        |        |

#### REGISTER 4-49: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

bit 15-8SCK1R<7:0>: Assign SPI1 Clock Input (S1SCK1) to the Corresponding S1RPn Pin bits<br/>See Table 4-27.bit 7-0SDI1R<7:0>: Assign SPI1 Data Input (S1SDI1) to the Corresponding S1RPn Pin bits

See Table 4-27.

# REGISTER 4-50: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| REFOIR7 | REFOIR6 | REFOIR5 | REFOIR4 | REFOIR3 | REFOIR2 | REFOIR1 | REFOIR0 |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SS1R7 | SS1R6 | SS1R5 | SS1R4 | SS1R3 | SS1R2 | SS1R1 | SS1R0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-8 **REFOIR<7:0>:** Assign Reference Clock Input (S1REFOI) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **SS1R<7:0>:** Assign SPI1 Slave Select (S1SS1) to the Corresponding S1RPn Pin bits See Table 4-27.

## REGISTER 6-2: CLKDIV: CLOCK DIVIDER REGISTER (MASTER) (CONTINUED)

- bit 3-0 **PLLPRE<3:0>:** PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler)<sup>(4)</sup> 11111 = Reserved
  - 1001 = Reserved 1000 = Input divided by 8 0111 = Input divided by 7 0110 = Input divided by 6 0101 = Input divided by 5 0100 = Input divided by 4 0011 = Input divided by 3 0010 = Input divided by 2 0001 = Input divided by 1 (power-on default selection) 0000 = Reserved
- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
  - 2: This bit is cleared when the ROI bit is set and an interrupt occurs.
  - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.
  - 4: PLLPRE<3:0> may be updated while the PLL is operating, but the VCO may overshoot.

| R/W-0        | U-0                                                      | R/W-0                                                                                                                                                               | R/W-0           | R/W-0             | U-0              | HC/R/W-0        | HSC/R-0 |  |  |  |  |  |
|--------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|------------------|-----------------|---------|--|--|--|--|--|
| ROEN         | —                                                        | ROSIDL                                                                                                                                                              | ROOUT           | ROSLP             | —                | ROSWEN          | ROACTIV |  |  |  |  |  |
| bit 15       |                                                          |                                                                                                                                                                     |                 | -                 |                  | ·               | bit 8   |  |  |  |  |  |
|              |                                                          |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
| U-0          | U-0                                                      | U-0                                                                                                                                                                 | U-0             | R/W-0             | R/W-0            | R/W-0           | R/W-0   |  |  |  |  |  |
| _            | _                                                        | —                                                                                                                                                                   | —               | ROSEL3            | ROSEL2           | ROSEL1          | ROSEL0  |  |  |  |  |  |
| bit 7        |                                                          | ·                                                                                                                                                                   |                 |                   |                  | ·               | bit 0   |  |  |  |  |  |
|              |                                                          |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
| Legend:      |                                                          | HC = Hardward                                                                                                                                                       | e Clearable bit | HSC = Hardw       | are Settable/C   | learable bit    |         |  |  |  |  |  |
| R = Readab   | ole bit                                                  | W = Writable b                                                                                                                                                      | bit             | U = Unimplem      | nented bit, read | d as '0'        |         |  |  |  |  |  |
| -n = Value a | at POR                                                   | '1' = Bit is set                                                                                                                                                    |                 | '0' = Bit is clea | ared             | x = Bit is unkr | nown    |  |  |  |  |  |
|              |                                                          |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
| bit 15       | ROEN: Re                                                 | ference Clock Er                                                                                                                                                    | able bit        |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | 1 = Reference Oscillator is enabled on the REFCLKO pin                                                                                                              |                 |                   |                  |                 |         |  |  |  |  |  |
|              | 0 = Refere                                               | nce Oscillator is                                                                                                                                                   | disabled        |                   |                  |                 |         |  |  |  |  |  |
| bit 14       | Unimplem                                                 | ented: Read as                                                                                                                                                      | ʻ0'             |                   |                  |                 |         |  |  |  |  |  |
| bit 13       |                                                          | Reference Clock                                                                                                                                                     | •               |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | <ul> <li>1 = Reference Oscillator is disabled in Idle mode</li> <li>0 = Reference Oscillator continues to run in Idle mode</li> </ul>                               |                 |                   |                  |                 |         |  |  |  |  |  |
| h:+ 40       |                                                          |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
| bit 12       |                                                          | <b>ROOUT:</b> Reference Clock Output Enable bit<br>1 = Reference clock external output is enabled and available on the REFCLKO pin                                  |                 |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | 0 = Reference clock external output is disabled                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
| bit 11       |                                                          | eference Clock S                                                                                                                                                    | •               |                   |                  |                 |         |  |  |  |  |  |
|              | 1 = Reference Oscillator continues to run in Sleep modes |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | nce Oscillator is                                                                                                                                                   |                 |                   |                  |                 |         |  |  |  |  |  |
| bit 10       | Unimplem                                                 | ented: Read as                                                                                                                                                      | '0'             |                   |                  |                 |         |  |  |  |  |  |
| bit 9        | ROSWEN:                                                  | Reference Clock                                                                                                                                                     | k Output Enable | e bit             |                  |                 |         |  |  |  |  |  |
|              |                                                          | 1 = Clock divider change (requested by changes to RODIVx) is requested or is in progress (set in                                                                    |                 |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | software, cleared by hardware upon completion)                                                                                                                      |                 |                   |                  |                 |         |  |  |  |  |  |
| 1.1.0        |                                                          | <ul> <li>0 = Clock divider change has completed or is not pending</li> <li>ROACTIV: Reference Clock Status bit</li> </ul>                                           |                 |                   |                  |                 |         |  |  |  |  |  |
| bit 8        | -                                                        |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | <ol> <li>Reference clock is active; do not change clock source</li> <li>Reference clock is stopped; clock source and configuration may be safely changed</li> </ol> |                 |                   |                  |                 |         |  |  |  |  |  |
| bit 7-4      |                                                          | ented: Read as                                                                                                                                                      |                 |                   |                  | alory changed   |         |  |  |  |  |  |
| bit 3-0      | -                                                        | :0>: Reference C                                                                                                                                                    |                 | lect hits         |                  |                 |         |  |  |  |  |  |
| bit 0 0      | 1111 =                                                   |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | eserved                                                                                                                                                             |                 |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | 1000 = Reserved                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
|              | 0111 = REFI pin<br>0110 = Fvco/4                         |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
|              | 0110 - FV<br>0101 = BF                                   |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
|              | 0100 = LP                                                |                                                                                                                                                                     |                 |                   |                  |                 |         |  |  |  |  |  |
|              | 0011 = FR                                                | -                                                                                                                                                                   |                 |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | 0010 = Primary Oscillator                                                                                                                                           |                 |                   |                  |                 |         |  |  |  |  |  |
|              |                                                          | 0001 = Peripheral clock (FP)<br>0000 = System clock (Fosc)                                                                                                          |                 |                   |                  |                 |         |  |  |  |  |  |
|              | 0010 = Pri<br>0001 = Pe                                  | imary Oscillator<br>ripheral clock (Fr                                                                                                                              |                 |                   |                  |                 |         |  |  |  |  |  |

# REGISTER 6-19: REFOCONL: REFERENCE CLOCK CONTROL LOW REGISTER (SLAVE)

| U-0          | U-0         | R/W-0                                                     | R/W-0     | R/W-0             | R/W-0            | R/W-0           | R/W-0  |  |  |  |  |
|--------------|-------------|-----------------------------------------------------------|-----------|-------------------|------------------|-----------------|--------|--|--|--|--|
|              | _           | DMA5MD                                                    | DMA4MD    | DMA3MD            | DMA2MD           | DMA1MD          | DMA0MD |  |  |  |  |
| bit 15       |             |                                                           |           |                   |                  |                 | bit    |  |  |  |  |
|              |             |                                                           |           |                   |                  |                 |        |  |  |  |  |
| U-0          | U-0         | U-0                                                       | U-0       | U-0               | U-0              | U-0             | U-0    |  |  |  |  |
|              | —           | _                                                         | _         | _                 | _                | —               |        |  |  |  |  |
| bit 7        |             |                                                           |           |                   |                  |                 | bit    |  |  |  |  |
| Legend:      |             |                                                           |           |                   |                  |                 |        |  |  |  |  |
| R = Readat   | ole bit     | W = Writable                                              | bit       | U = Unimplem      | nented bit, read | l as '0'        |        |  |  |  |  |
| -n = Value a | at POR      | '1' = Bit is set                                          |           | '0' = Bit is clea |                  | x = Bit is unkr | iown   |  |  |  |  |
|              |             |                                                           |           |                   |                  |                 |        |  |  |  |  |
| bit 15-14    | Unimplemen  | ted: Read as '                                            | )'        |                   |                  |                 |        |  |  |  |  |
| bit 13       | DMA5MD: DN  | MA5 Module Di                                             | sable bit |                   |                  |                 |        |  |  |  |  |
|              |             | dule is disable                                           |           |                   |                  |                 |        |  |  |  |  |
|              | 0 = DMA5 mo |                                                           |           |                   |                  |                 |        |  |  |  |  |
| bit 12       |             | MA4 Module Di                                             |           |                   |                  |                 |        |  |  |  |  |
|              |             | 1 = DMA4 module is disabled<br>0 = DMA4 module is enabled |           |                   |                  |                 |        |  |  |  |  |
| bit 11       |             | VA3 Module Di                                             | -         |                   |                  |                 |        |  |  |  |  |
|              |             | dule is disable                                           |           |                   |                  |                 |        |  |  |  |  |
|              | 0 = DMA3 mo | dule is enable                                            | t         |                   |                  |                 |        |  |  |  |  |
| bit 10       | DMA2MD: DN  | MA2 Module Di                                             | sable bit |                   |                  |                 |        |  |  |  |  |
|              |             | dule is disable                                           |           |                   |                  |                 |        |  |  |  |  |
|              |             | dule is enable                                            | -         |                   |                  |                 |        |  |  |  |  |
| bit 9        |             | MA1 Module Di                                             |           |                   |                  |                 |        |  |  |  |  |
|              |             | odule is disable<br>odule is enable                       |           |                   |                  |                 |        |  |  |  |  |
| bit 8        |             | MA0 Module Di                                             | -         |                   |                  |                 |        |  |  |  |  |
|              |             | dule is disable                                           |           |                   |                  |                 |        |  |  |  |  |
|              |             | dule is enable                                            |           |                   |                  |                 |        |  |  |  |  |
| bit 7-0      | Unimplemen  | ted: Read as '                                            | )'        |                   |                  |                 |        |  |  |  |  |
|              |             |                                                           |           |                   |                  |                 |        |  |  |  |  |

#### REGISTER 7-6: PMD6: MASTER PERIPHERAL MODULE DISABLE 6 CONTROL REGISTER HIGH

# REGISTER 9-6: MPER: MASTER PERIOD REGISTER

| -                                 |                  | R/W-0           | R/W-0                    | R/W-0                                                     | R/W-0                                                                   | R/W-0                                                                          |  |  |  |
|-----------------------------------|------------------|-----------------|--------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
|                                   |                  | MPER            | <15:8> <sup>(1)</sup>    |                                                           |                                                                         |                                                                                |  |  |  |
|                                   |                  |                 |                          |                                                           |                                                                         | bit 8                                                                          |  |  |  |
| R/W-0                             | R/W-0            | R/W-0           | R/W-0                    | R/W-0                                                     | R/W-0                                                                   | R/W-0                                                                          |  |  |  |
|                                   |                  | MPEF            | R<7:0>(1)                |                                                           |                                                                         |                                                                                |  |  |  |
|                                   |                  |                 |                          |                                                           |                                                                         | bit (                                                                          |  |  |  |
|                                   |                  |                 |                          |                                                           |                                                                         |                                                                                |  |  |  |
|                                   |                  |                 |                          |                                                           |                                                                         |                                                                                |  |  |  |
| R = Readable bit W = Writable bit |                  |                 |                          | U = Unimplemented bit, read as '0'                        |                                                                         |                                                                                |  |  |  |
|                                   | '1' = Bit is set |                 | '0' = Bit is clea        | ared                                                      | x = Bit is unknown                                                      |                                                                                |  |  |  |
|                                   | R/W-0            | W = Writable bi | MPEF<br>W = Writable bit | MPER<7:0> <sup>(1)</sup><br>W = Writable bit U = Unimplen | MPER<7:0> <sup>(1)</sup><br>W = Writable bit U = Unimplemented bit, rea | MPER<7:0>(1)         W = Writable bit       U = Unimplemented bit, read as '0' |  |  |  |

bit 15-0 MPER<15:0>: Master Period Register bits<sup>(1)</sup>

Note 1: Period values less than '0x0010' should not be selected.

# **REGISTER 9-14: PGxSTAT: PWM GENERATOR x STATUS REGISTER (CONTINUED)**

| bit 5 | CAP: Capture Status bit <sup>(1)</sup>                                                                                                                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul><li>1 = PWM Generator time base value has been captured in PGxCAP</li><li>0 = No capture has occurred</li></ul>                                                                             |
| bit 4 | UPDATE: PWM Data Register Update Status/Control bit                                                                                                                                             |
|       | <ul> <li>1 = PWM Data register update is pending – user Data registers are not writable</li> <li>0 = No PWM Data register update is pending</li> </ul>                                          |
| bit 3 | UPDREQ: PWM Data Register Update Request bit                                                                                                                                                    |
|       | User software writes a '1' to this bit location to request a PWM Data register update. The bit location always reads as '0'. The UPDATE status bit will indicate '1' when an update is pending. |
| bit 2 | STEER: Output Steering Status bit (Push-Pull Output mode only)                                                                                                                                  |
|       | 1 = PWM Generator is in 2nd cycle of Push-Pull mode                                                                                                                                             |
|       | 0 = PWM Generator is in 1st cycle of Push-Pull mode                                                                                                                                             |
| bit 1 | CAHALF: Half Cycle Status bit (Center-Aligned modes only)                                                                                                                                       |
|       | <ul> <li>1 = PWM Generator is in 2nd half of time base cycle</li> <li>0 = PWM Generator is in 1st half of time base cycle</li> </ul>                                                            |
| bit 0 | TRIG: PWM Trigger Status bit                                                                                                                                                                    |
|       | <ul><li>1 = PWM Generator is triggered and PWM cycle is in progress</li><li>0 = No PWM cycle is in progress</li></ul>                                                                           |

**Note 1:** User software may write a '1' to CAP as a request to initiate a software capture. The CAP status bit will be set when the capture event has occurred. No further captures will occur until CAP is cleared by software.

# REGISTER 12-2: QEIXIOCL: QEIX I/O CONTROL LOW REGISTER (CONTINUED)

| bit 6 | IDXPOL: INDXx Input Polarity Select bit<br>1 = Input is inverted<br>0 = Input is not inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 5 | QEBPOL: QEBx Input Polarity Select bit<br>1 = Input is inverted<br>0 = Input is not inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bit 4 | <b>QEAPOL:</b> QEAx Input Polarity Select bit<br>1 = Input is inverted<br>0 = Input is not inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| bit 3 | <ul> <li>HOME: Status of HOMEx Input Pin after Polarity Control bit (read-only)</li> <li>1 = Pin is at logic '1' if the HOMPOL bit is set to '0'; pin is at logic '0' if the HOMPOL bit is set to '1'</li> <li>0 = Pin is at logic '0' if the HOMPOL bit is set to '0'; pin is at logic '1' if the HOMPOL bit is set to '1'</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| bit 2 | <ul> <li>INDEX: Status of INDXx Input Pin After Polarity Control bit (read-only)</li> <li>1 = Pin is at logic '1' if the IDXPOL bit is set to '0'; pin is at logic '0' if the IDXPOL bit is set to '1'</li> <li>0 = Pin is at logic '0' if the IDXPOL bit is set to '0'; pin is at logic '1' if the IDXPOL bit is set to '1'</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| bit 1 | <ul> <li>QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only)</li> <li>1 = Physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'</li> <li>0 = Physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1';</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| bit 0 | <ul> <li>QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only)</li> <li>1 = Physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'</li> <li>0 = Physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; p</li></ul> |

physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'

# 20.1 Current Bias Generator Control Registers

# REGISTER 20-1: BIASCON: CURRENT BIAS GENERATOR CONTROL REGISTER

| R/W-0        | U-0                                | U-0                                                                   | U-0         | U-0                  | U-0             | U-0                | U-0   |  |  |  |  |
|--------------|------------------------------------|-----------------------------------------------------------------------|-------------|----------------------|-----------------|--------------------|-------|--|--|--|--|
| ON           |                                    | —                                                                     | —           | —                    |                 | —                  |       |  |  |  |  |
| bit 15       |                                    |                                                                       |             |                      |                 |                    | bit 8 |  |  |  |  |
|              |                                    |                                                                       |             |                      |                 |                    |       |  |  |  |  |
| U-0          | U-0                                | U-0                                                                   | U-0         | R/W-0                | R/W-0           | R/W-0              | R/W-0 |  |  |  |  |
|              | I10EN3 I10EN2 I10EN1               |                                                                       |             |                      |                 |                    |       |  |  |  |  |
| bit 7        |                                    |                                                                       |             |                      |                 |                    | bit 0 |  |  |  |  |
|              |                                    |                                                                       |             |                      |                 |                    |       |  |  |  |  |
| Legend:      |                                    |                                                                       |             |                      |                 |                    |       |  |  |  |  |
| R = Readab   | ole bit                            | W = Writable I                                                        | oit         | U = Unimpler         | nented bit, rea | d as '0'           |       |  |  |  |  |
| -n = Value a | at POR                             | '1' = Bit is set                                                      |             | '0' = Bit is cleared |                 | x = Bit is unknown |       |  |  |  |  |
|              |                                    |                                                                       |             |                      |                 |                    |       |  |  |  |  |
| bit 15       | ON: Current Bias Module Enable bit |                                                                       |             |                      |                 |                    |       |  |  |  |  |
|              | 1 = Module is enabled              |                                                                       |             |                      |                 |                    |       |  |  |  |  |
|              | 0 = Module is                      |                                                                       |             |                      |                 |                    |       |  |  |  |  |
| bit 14-4     | Unimplemen                         | ted: Read as '0                                                       | )'          |                      |                 |                    |       |  |  |  |  |
| bit 3        | <b>Ι10ΕΝ3:</b> 10 μ                | A Enable for O                                                        | utput 3 bit |                      |                 |                    |       |  |  |  |  |
|              |                                    | put is enabled                                                        |             |                      |                 |                    |       |  |  |  |  |
|              | •                                  | put is disabled                                                       |             |                      |                 |                    |       |  |  |  |  |
| bit 2        | •                                  | A Enable for Ou                                                       | utput 2 bit |                      |                 |                    |       |  |  |  |  |
|              |                                    | put is enabled put is disabled                                        |             |                      |                 |                    |       |  |  |  |  |
| bit 1        | •                                  | A Enable for O                                                        | itout 1 bit |                      |                 |                    |       |  |  |  |  |
|              | -                                  |                                                                       | aiput i bit |                      |                 |                    |       |  |  |  |  |
|              |                                    | 1 = 10 $\mu$ A output is enabled<br>0 = 10 $\mu$ A output is disabled |             |                      |                 |                    |       |  |  |  |  |
| bit 0        | -                                  | A Enable for Ou                                                       | utput 0 bit |                      |                 |                    |       |  |  |  |  |
|              |                                    | put is enabled                                                        | •           |                      |                 |                    |       |  |  |  |  |
|              | •                                  | $0 = 10 \ \mu\text{A}$ output is disabled                             |             |                      |                 |                    |       |  |  |  |  |
|              |                                    |                                                                       |             |                      |                 |                    |       |  |  |  |  |

# TABLE 21-2: MASTER CONFIGURATION REGISTERS MAP

|                  |            |                  |                   |            |         |         |         |            |         |         | 1            | 1        |                                                                 | i       | 1            | 1       |         |
|------------------|------------|------------------|-------------------|------------|---------|---------|---------|------------|---------|---------|--------------|----------|-----------------------------------------------------------------|---------|--------------|---------|---------|
| Register<br>Name | Bits 23-16 | Bit 15           | Bit 14            | Bit 13     | Bit 12  | Bit 11  | Bit 10  | Bit 9      | Bit 8   | Bit 7   | Bit 6        | Bit 5    | Bit 4                                                           | Bit 3   | Bit 2        | Bit 1   | Bit 0   |
| FSEC             | _          | AIVTDIS          |                   | _          | _       | CSS2    | CSS1    | CSS0       | CWRP    | GSS1    | GSS0         | GWRP     |                                                                 | BSEN    | BSS1         | BSS0    | BWRP    |
| FBSLIM           | _          | _                | — — — BSLIM<12:0> |            |         |         |         |            |         |         |              |          |                                                                 |         |              |         |         |
| FSIGN            | _          | ۲ <sup>(2)</sup> | _                 | _          | _       | _       | _       |            | _       | _       | _            | _        | _                                                               | _       | _            | _       | _       |
| FOSCSEL          | —          | —                |                   | -          | -       |         | _       | _          |         | IESO    | —            | —        |                                                                 | _       | FNOSC2       | FNOSC1  | FNOSC0  |
| FOSC             | —          | —                |                   | -          | XTBST   | XTCFG1  | XTCFG0  | _          | r(1)    | FCKSM1  | FCKSM0       | —        |                                                                 | _       | OSCIOFNC     | POSCMD1 | POSCMD0 |
| FWDT             | —          | FWDTEN           | SWDTPS4           | SWDTPS3    | SWDTPS2 | SWDTPS1 | SWDTPS0 | WDTWIN1    | WDTWIN0 | WINDIS  | RCLKSEL1     | RCLKSEL0 | RWDTPS4                                                         | RWDTPS3 | RWDTPS2      | RWDTPS1 | RWDTPS0 |
| FPOR             | —          | —                |                   | -          | -       |         | _       | _          |         |         | —            | r(1)     | r(1)                                                            | _       | —            | —       | —       |
| FICD             | —          | —                |                   | -          | -       |         | _       | _          |         | r(1)    | —            | JTAGEN   |                                                                 | _       | —            | ICS1    | ICS0    |
| FDMTIVTL         | —          |                  |                   |            |         |         |         |            | DMTIVT  | <15:0>  |              |          |                                                                 |         |              |         |         |
| FDMTIVTH         | _          |                  |                   |            |         |         |         |            | DMTIVT  | <31:16> |              |          |                                                                 |         |              |         |         |
| FDMTCNTL         | _          |                  |                   |            |         |         |         |            | DMTCN   | T<15:0> |              |          |                                                                 |         |              |         |         |
| FDMTCNTH         | —          |                  |                   |            |         |         |         |            | DMTCNT  | <31:16> |              |          |                                                                 |         |              |         |         |
| FDMT             | —          | —                |                   | -          | -       |         | _       | _          |         |         | —            | _        |                                                                 | _       | —            | —       | DMTDIS  |
| FDEVOPT          | —          | —                |                   | SPI2PIN    | -       |         | SMBEN   | r(1)       | r(1)    | r(1)    | —            | _        | ALTI2C2                                                         | ALTI2C1 | r(1)         | —       | _       |
| FALTREG          | _          | —                |                   | CTXT4<2:0> |         |         |         | CTXT3<2:0> |         |         | - CTXT2<2:0> |          |                                                                 | —       | — CTXT1<2:0> |         |         |
| FMBXM            | —          |                  |                   |            |         |         |         |            | MBXM    | <15:0>  |              |          |                                                                 |         |              |         |         |
| FMBXHS1          | —          | MBXHSD3          | MBXHSD2           | MBXHSD1    | MBXHSD0 | MBXHSC3 | MBXHSC2 | MBXHSC1    | MBXHSC0 | MBXHSB3 | MBXHSB2      | MBXHSB1  | MBXHSB0                                                         | MBXHSA3 | MBXHSA2      | MBXHSA1 | MBXHSA0 |
| FMBXHS2          | —          | MBXHSH3          | MBXHSH2           | MBXHSH1    | MBXHSH0 | MBXHSG3 | MBXHSG2 | MBXHSG1    | MBXHSG0 | MBXHSF3 | MBXHSF2      | MBXHSF1  | MBXHSF0                                                         | MBXHSE3 | MBXHSE2      | MBXHSE1 | MBXHSE0 |
| FMBXHSEN         | —          | —                |                   | -          | -       |         | _       | _          |         |         |              |          | HS <h< td=""><td>I:A&gt;EN</td><td></td><td></td><td></td></h<> | I:A>EN  |              |         |         |
| FCFGPRA0         | —          | —                |                   | -          | -       |         | _       | _          |         |         | —            | _        |                                                                 |         | CPRA<4:0>    |         |         |
| FCFGPRB0         | —          |                  |                   |            |         |         |         |            | CPRB<   | <15:0>  |              |          |                                                                 |         |              |         |         |
| FCFGPRC0         | _          |                  |                   |            |         |         |         |            | CPRC<   | <15:0>  |              |          |                                                                 |         |              |         |         |
| FCFGPRD0         | _          |                  | CPRD<15:0>        |            |         |         |         |            |         |         |              |          |                                                                 |         |              |         |         |
| FCFGPRE0         | _          |                  |                   |            |         |         |         |            | CPRE<   | <15:0>  |              |          |                                                                 |         |              |         |         |

**Legend:** — = unimplemented bit, read as '1'; r = reserved bit.

Note 1: Bit is reserved, maintain as '1'.

2: Bit is reserved, maintain as '0'.

| Base<br>Instr<br># | Assembly<br>Mnemonic |         | Assembly Syntax       | Description                                                | # of<br>Words | # of<br>Cycles <sup>(1)</sup> | Status Flags<br>Affected |
|--------------------|----------------------|---------|-----------------------|------------------------------------------------------------|---------------|-------------------------------|--------------------------|
| 19                 | CLR                  | CLR     | f                     | f = 0x0000                                                 | 1             | 1                             | None                     |
|                    |                      | CLR     | WREG                  | WREG = 0x0000                                              | 1             | 1                             | None                     |
|                    |                      | CLR     | Ws                    | Ws = 0x0000                                                | 1             | 1                             | None                     |
|                    |                      | CLR     | Acc,Wx,Wxd,Wy,Wyd,AWB | Clear Accumulator                                          | 1             | 1                             | OA,OB,SA,SB              |
| 20                 | CLRWDT               | CLRWDT  |                       | Clear Watchdog Timer                                       | 1             | 1                             | WDTO,Sleep               |
| 21                 | COM                  | COM     | f                     | $f = \overline{f}$                                         | 1             | 1                             | N,Z                      |
|                    |                      | COM     | f,WREG                | WREG = f                                                   | 1             | 1                             | N,Z                      |
|                    |                      | COM     | Ws,Wd                 | $Wd = \overline{Ws}$                                       | 1             | 1                             | N,Z                      |
| 22                 | CP                   | CP      | f                     | Compare f with WREG                                        | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | CP      | Wb,#lit8              | Compare Wb with lit8                                       | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | CP      | Wb,Ws                 | Compare Wb with Ws (Wb – Ws)                               | 1             | 1                             | C,DC,N,OV,Z              |
| 23                 | CP0                  | CP0     | f                     | Compare f with 0x0000                                      | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | CP0     | Ws                    | Compare Ws with 0x0000                                     | 1             | 1                             | C,DC,N,OV,Z              |
| 24                 | CPB                  | CPB     | f                     | Compare f with WREG, with Borrow                           | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | CPB     | Wb,#lit8              | Compare Wb with lit8, with Borrow                          | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | CPB     | Wb,Ws                 | Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$ | 1             | 1                             | C,DC,N,OV,Z              |
| 25                 | CPSEQ                | CPSEQ   | Wb,Wn                 | Compare Wb with Wn, Skip if =                              | 1             | 1<br>(2 or 3)                 | None                     |
|                    | CPBEQ                | CPBEQ   | Wb,Wn,Expr            | Compare Wb with Wn, Branch if =                            | 1             | 1 (5)                         | None                     |
| 26                 | CPSGT                | CPSGT   | Wb,Wn                 | Compare Wb with Wn, Skip if >                              | 1             | 1<br>(2 or 3)                 | None                     |
|                    | CPBGT                | CPBGT   | Wb,Wn,Expr            | Compare Wb with Wn, Branch if >                            | 1             | 1 (5)                         | None                     |
|                    | CPSLT                | CPSLT   | Wb,Wn                 | Compare Wb with Wn, Skip if <                              | 1             | 1<br>(2 or 3)                 | None                     |
|                    |                      | CPBLT   | Wb,Wn,Expr            | Compare Wb with Wn, Branch if <                            | 1             | 1 (5)                         | None                     |
| 28                 | CPSNE                | CPSNE   | Wb,Wn                 | Compare Wb with Wn, Skip if ≠                              | 1             | 1<br>(2 or 3)                 | None                     |
|                    |                      | CPBNE   | Wb,Wn,Expr            | Compare Wb with Wn, Branch if ≠                            | 1             | 1 (5)                         | None                     |
| 29                 | CTXTSWP              | CTXTSWP | #1it3                 | Switch CPU Register Context to Context Defined by lit3     | 1             | 2                             | None                     |
| 30                 | CTXTSWP              | CTXTSWP | Wn                    | Switch CPU Register Context to Context<br>Defined by Wn    | 1             | 2                             | None                     |
| 31                 | DAW.B                | DAW.B   | Wn                    | Wn = Decimal Adjust Wn                                     | 1             | 1                             | С                        |
| 32                 | DEC                  | DEC     | f                     | f = f - 1                                                  | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | DEC     | f,WREG                | WREG = f – 1                                               | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | DEC     | Ws,Wd                 | Wd = Ws - 1                                                | 1             | 1                             | C,DC,N,OV,Z              |
| 33                 | DEC2                 | DEC2    | f                     | f = f - 2                                                  | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | DEC2    | f,WREG                | WREG = $f - 2$                                             | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | DEC2    | Ws,Wd                 | Wd = Ws - 2                                                | 1             | 1                             | C,DC,N,OV,Z              |
| 34                 | DISI                 | DISI    | #lit14                | Disable Interrupts for k Instruction Cycles                | 1             | 1                             | None                     |
| 35                 | DIVF                 | DIVF    | Wm,Wn                 | Signed 16/16-bit Fractional Divide                         | 1             | 18/6                          | N,Z,C,OV                 |
| 36                 | DIV.S                | DIV.S   | Wm,Wn                 | Signed 16/16-bit Integer Divide                            | 1             | 18/6                          | N,Z,C,OV                 |
|                    |                      | DIV.SD  | Wm , Wn               | Signed 32/16-bit Integer Divide                            | 1             | 18/6                          | N,Z,C,OV                 |
| 37                 | DIV.U                | DIV.U   | Wm, Wn                | Unsigned 16/16-bit Integer Divide                          | 1             | 18/6                          | N,Z,C,OV                 |
|                    |                      | DIV.UD  | Wm , Wn               | Unsigned 32/16-bit Integer Divide                          | 1             | 18/6                          | N,Z,C,OV                 |
| 38                 | DIVF2                | DIVF2   | Wm,Wn                 | Signed 16/16-bit Fractional Divide<br>(W1:W0 preserved)    | 1             | 6                             | N,Z,C,OV                 |
| 39                 | DIV2.S               | DIV2.S  | Wm,Wn                 | Signed 16/16-bit Integer Divide<br>(W1:W0 preserved)       | 1             | 6                             | N,Z,C,OV                 |
|                    |                      | DIV2.SD | Wm,Wn                 | Signed 32/16-bit Integer Divide (W1:W0 preserved)          | 1             | 6                             | N,Z,C,OV                 |

# TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

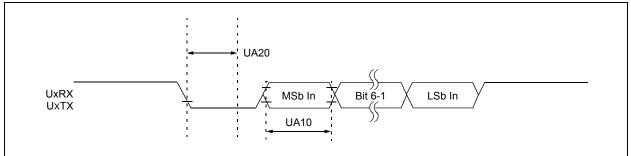
**2:** Cycle times for Slave core are different for Master core, as shown in 2.

3: For dsPIC33CH128MP508 devices, the divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times

## TABLE 24-11: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

| DC CHARACTERISTICS                      |      | Sleep +<br>Sleep | $\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |        |      |  |
|-----------------------------------------|------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|--|
| Parameter No.                           | Тур. | Max.             | Units Conditions                                                                                                                                                                                                                                                                   |        |      |  |
| Power-Down Current (IPD) <sup>(1)</sup> |      |                  |                                                                                                                                                                                                                                                                                    |        |      |  |
| DC60                                    | 3.2  | 4.8              | mA                                                                                                                                                                                                                                                                                 | -40°C  |      |  |
|                                         | 3.4  | 8.2              | mA                                                                                                                                                                                                                                                                                 | +25°C  | 3.3V |  |
|                                         | 3.7  | 14.3             | mA                                                                                                                                                                                                                                                                                 | +85°C  | 3.3V |  |
|                                         | 7.6  | 21.5             | mA                                                                                                                                                                                                                                                                                 | +125°C |      |  |

Note 1: IPD (Sleep) current is measured as follows:


- CPU core is off, oscillator is configured in EC mode and External Clock is active; OSCI is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)</li>
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- · JTAG is disabled

# TABLE 24-12: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (\(\triangle WDT\))^{(1)}

| DC CHARACTERISTICS | Maste<br>Sla | er and<br>ive | (unless otherwis | andard Operating Conditions: 3.0V to 3.6V<br>hless otherwise stated)<br>verating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial<br>$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |      |  |  |
|--------------------|--------------|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| Parameter No.      | Тур.         | Max.          | Units            | Conditions                                                                                                                                                                                                 |      |  |  |
| DC61d              | 2.9          |               | μA               | -40°C                                                                                                                                                                                                      |      |  |  |
| DC61a              | 2.7          | _             | μA               | +25°C                                                                                                                                                                                                      | 3.3V |  |  |
| DC61b              | 3.9          | —             | μA               | +85°C                                                                                                                                                                                                      |      |  |  |
| DC61c              | 5.5          | _             | μA               | +125°C                                                                                                                                                                                                     |      |  |  |

**Note 1:** The  $\triangle$ IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

# FIGURE 24-17: UARTX MODULE I/O TIMING CHARACTERISTICS



# TABLE 24-42: UARTx MODULE I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |         |                                                   | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |                     |      |       |            |  |
|--------------------|---------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|------------|--|
| Param<br>No.       | Symbol  | Characteristic <sup>(1)</sup>                     | Min.                                                                                                                                | Тур. <sup>(2)</sup> | Max. | Units | Conditions |  |
| UA10               | TUABAUD | UARTx Baud Time                                   | 66.67                                                                                                                               |                     | _    | ns    |            |  |
| UA11               | FBAUD   | UARTx Baud Frequency                              | —                                                                                                                                   |                     | 15   | Mbps  |            |  |
| UA20               | TCWF    | Start Bit Pulse Width to Trigger<br>UARTx Wake-up | 500                                                                                                                                 | _                   |      | ns    |            |  |

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.