
Microchip Technology - ATMEGA32HVE2-PLPW Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 15MHz

Connectivity LINbus, SPI, UART/USART, LINbus-SBC

Peripherals Brown-out Detect/Reset, POR, WDT

Number of I/O 10

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 1x17b Sigma Delta, 1x18b Sigma Delta

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-VQFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega32hve2-plpw

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega32hve2-plpw-4438024
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

3. Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Parameters Symbol Min. Typ. Max. Unit
Supply voltage VS VS –0.3 +40 V
Pulse time ≤ 500ms
Ta = 25°C
Output current IVREG ≤ 50mA

VS +40 V

Pulse time ≤ 2min
Ta = 25°C
Output current IVREG ≤ 50mA

VS 27 V

VBAT (with 47Ω/10nF)
DC voltage
Transient voltage due to ISO7637 3a, 3b
(coupling 1nF)

–1
–150

+40
+100

V
V

LIN, VBAT
- DC voltage –27 +40 V
Logic pins (RxD, TxD, EN, NRES, NTRIG,
WD_OSC, MODE, TM, DIV_ON,
SP_MODE, PV1)

–0.3 VREG + 0.5V V

Pin NV1 –0.3 +0.3 V
Output current NRES INRES +2 mA
PVREG DC voltage
VREG DC voltage

–0.3
–0.3

+5.5
+6.5

V
V

Logic pins (PA0-PA1, PI, NI, PB0-PB7,
PV2, NV2) –0.5 VCC + 0.5 V

RESET –0.5 +13 V
VREF –0.5 VCC + 0.5 V
VREFGND
Connected via internal metal connection to
GND. Do not connect external to GND.

–0.5 +0.5 mA

VCC/AVCC –0.3 +4.5 V
ESD according to IBEE LIN EMC
Test Spec. 1.0 following IEC 61000-4-2
- Pin VS, LIN to GND
- Pin VBAT (10nF) to GND

±6 KV

HBM ESD
ANSI/ESD-STM5.1
JESD22-A114
AEC-Q100 (002)
MIL-STD-883 (M3015.7)

±3 KV

CDM ESD STM 5.3.1 ±750 V
MM ESD
EIA/JESD22-A115
ESD STM5.2
AEC-Q100 (002)

±200 V

ESD HBM following STM5.1 with 1.5kΩ
100pF
- Pin VS, LIN, VBAT to GND

±6 KV
7Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

A falling edge at the LIN pin followed by a dominant bus level maintained for a certain time period (tbus) and a rising edge at pin
LIN result in a remote wake-up request. The device switches from Sleep Mode to Fail-safe Mode.The VREG regulator is
activated, and the internal LIN slave termination resistor is switched on. The remote wake-up request is indicated by a low level
at the RXD pin to interrupt the microcontroller (see Figure 7-5).
EN high can be used to switch directly from Sleep/Silent to Fail-safe Mode. If EN is still high after VREG ramp up and
undervoltage reset time, the IC switches to the Normal Mode.

Figure 7-5. LIN Wake Up from Sleep Mode

Regulator wake-up time

Off state
On state

Low

Fail-safe Mode Normal Mode

EN High

Microcontroller

Reset
time

Low or floating

Floating

Watchdog

NRES

EN

VREG
voltage

regulator

RXD

LIN bus

Bus wake-up filtering time
tbus

TXD

Watchdog off Start watchdog lead time td

start-up time delay
16Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

9.2 Worst Case Calculation with RWD_OSC = 51kΩ
The internal oscillator has a tolerance of 20%. This means that t1 and t2 can also vary by 20%. The worst case calculation for
the watchdog period twd is calculated as follows.
The ideal watchdog time twd is between the maximum t1 and the minimum t1 plus the minimum t2.
t1,min = 0.8 × t1 = 16.5ms, t1,max = 1.2 × t1 = 24.8ms
t2,min = 0.8 × t2 = 17.3ms, t2,max = 1.2 × t2 = 26ms
twdmax = t1min + t2min = 16.5ms + 17.3ms = 33.8ms
twdmin = t1max = 24.8ms
twd = 29.3ms ±4.5ms (±15%)
A microcontroller with an oscillator tolerance of ±15% is sufficient to supply the trigger inputs correctly.

Table 9-1. Typical Watchdog Timings

RWD_OSC
kΩ

Oscillator
Period
tosc/µs

Lead
Time
td/ms

Closed
Window

t1/ms
Open Window

t2/ms
 Trigger Period from
Microcontroller twd/ms

Reset Time
tnres/ms

34 13.3 105 14.0 14.7 19.9 4
51 19.61 154.8 20.64 21.67 29.32 4
91 33.54 264.80 35.32 37.06 50.14 4

120 42.84 338.22 45.11 47.34 64.05 4
24Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

9.5
Time delay for mode
change from Silent Mode
into Normal Mode via EN

VEN = VREG EN ts_n 5 15 40 µs A

9.6 Monitoring time for wake-
up over LIN-bus LIN tmon 6 10 15 ms A

LIN Bus Driver AC Parameter with Different Bus Loads
Load 1 (small): 1nF, 1kΩ ; Load 2 (large): 10nF, 500Ω ; RRXD = 5kΩ; CRXD = 20pF;
Load 3 (medium): 6.8nF, 660Ω characterized on samples; 10.7 and 10.8 specifies the timing parameters for proper operation of
20Kbit/s, 10.9 and 10.10 at 10.4Kbit/s

9.7 Duty cycle 1

THRec(max) = 0.744 × VS
THDom(max) = 0.581 × VS
VS = 7.0V to 18V
tBit = 50µs
D1 = tbus_rec(min)/(2 × tBit)

LIN D1 0.396 A

9.8 Duty cycle 2

THRec(min) = 0.422 × VS
THDom(min) = 0.284 × VS
VS = 7.6V to 18V
tBit = 50µs
D2 = tbus_rec(max)/(2 × tBit)

LIN D2 0.581 A

9.9 Duty cycle 3

THRec(max) = 0.778 × VS
THDom(max) = 0.616 × VS
VS = 7.0V to 18V
tBit = 96µs
D3 = tbus_rec(min)/(2 × tBit)

LIN D3 0.417 A

9.10 Duty cycle 4

THRec(min) = 0.389 × VS
THDom(min) = 0.251 × VS
VS = 7.6V to 18V
tBit = 96µs
D4 = tbus_rec(max)/(2 × tBit)

LIN D4 0.590 A

9.11 Slope time falling and
rising edge at LIN VS = 7.0V to 18V LIN tSLOPE_fall

tSLOPE_rise
3.5 22.5 µs A

10 Receiver Electrical AC Parameters of the LIN Physical Layer
LIN Receiver, RXD Load Conditions (CRXD): 20pF

10.1
Propagation delay of
receiver (Figure 10-1 on
page 31)

VS = 7.0V to 18V
trx_pd = max(trx_pdr , trx_pdf)

RXD trx_pd 6 µs A

10.2
Symmetry of receiver
propagation delay rising
edge minus falling edge

VS = 7.0V to 18V
trx_sym = trx_pdr – trx_pdf

RXD trx_sym –2 +2 µs A

11 NRES Open Drain Output Pin

11.1 Low-level output voltage VS ≥ 5.5V
INRES = 1mA NRES VNRESL 0.14 V A

11.2 Low-level output low 10kΩ to 5V
VREG = 0V NRES VNRESLL 0.14 V A

11.3 Undervoltage reset time VS ≥ 5.5V
CNRES = 20pF NRES treset 2 4 6 ms A

11.4 Reset debounce time for
falling edge

VS ≥ 5.5V
CNRES = 20pF NRES tres_f 1.5 10 µs A

10. Electrical Characteristics LIN SBC (Continued)
5V < VS < 27V, –40°C < Tj < 150°C, unless otherwise specified. All values refer to GND pins

No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type*

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
28Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

14.4 EEPROM Data Memory
The Atmel® AVR MCU contains 1Kbytes of data EEPROM memory. It is organized as a separate data space, in which single
bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the
EEPROM and the CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM Data Register,
and the EEPROM Control Register.
For a detailed description of EEPROM programming, see page 183 and page 186 respectively.

14.4.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in Table 14-1 on page 45. A self-timing function, however, lets the user software
detect when the next byte can be written. If the user code contains instructions that write the EEPROM, some precautions must
be taken.
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the description of the
EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When the EEPROM
is written, the CPU is halted for two clock cycles before the next instruction is executed.

14.5 I/O Memory
The I/O space definition of the Atmel® AVR MCU is shown in Section 32. “Register Summary” on page 203.
All Atmel AVR MCU I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the LD/LDS/LDD
and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the I/O space. I/O
Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers,
the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more
details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel AVR MCU is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will only operate on
the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work with
registers 0x00 to 0x1F only.
The I/O and peripherals control registers are explained in later sections.

14.5.1 General Purpose I/O Registers

The Atmel AVR MCU contains three General Purpose I/O Registers. These registers can be used for storing any information,
and they are particularly useful for storing global variables and Status Flags. General Purpose I/O Registers within the address
range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions. See Section 14.6.4 “GPIOR2 –
General Purpose I/O Register 2” on page 47, Section 14.6.5 “GPIOR1 – General Purpose I/O Register 1” on page 47, and
Section 14.6.6 “GPIOR0 – General Purpose I/O Register 0” on page 47 for details.
43Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

15. System Clock and Clock Options

15.1 Clock Systems and their Distribution
Figure 15-1 presents the principal clock systems in the AVR and their distribution. All of the clocks need not be active at a given
time. In order to reduce power consumption, the clocks to modules not being used can be halted by using different sleep
modes, as described in Section 16. “Power Management and Sleep Modes” on page 53. The clock systems are detailed below.

Figure 15-1. Clock Distribution

15.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are the
General Purpose Register File, the Status Register and the data memory holding the Stack Pointer. Halting the CPU clock
inhibits the core from performing general operations and calculations.

15.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules. The I/O clock is also used by the External Interrupt module, but note
that some external interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O clock is
halted.

15.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with the CPU clock.

15.1.4 ADC Clock – clkADC

The Voltage ADC and Current ADC are provided with a dedicated clock domain. The ADCs have two alternate clock sources,
selectable by the CKSEL bit in ADCRA, refer to Section 26.6.3 “ADCRA - ADC Control Register A” on page 151 for details.

Voltage and Current
ADC

CPU
CORE

RAM

1/4

clkCPU clkFLASH

clkWUTclkADC

clkWDT

clkI/O

PLL

Wake-up
Timer

ADC Clock
Prescaler

Clock
Multiplexer

Slow RC
Oscillator

Ultra Low Power
RC Oscillator

System Clock
Prescaler

Reset LogicWatchdog Timer

FLASH and
EEPROM

AVR
Clock Control

Other I/O
Modules
48Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.2.4 Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit. As shown in
Figure 21-2, the PINxn Register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if the
physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 21-3 shows a timing
diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation delays
are denoted tpd,max and tpd,min respectively.

Figure 21-3. Synchronization when Reading an Externally Applied Pin Value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal
value is latched when the system clock goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As
indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½ system
clock period depending upon the time of assertion.
When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 21-4. The out
instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the synchronizer
is 1 system clock period.

Figure 21-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r17

XXX XXX

0x00 0xFF

in r17, PINx

tpd, max

tpd, min

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r16

r17

out PORTx, r16 nop

0x00 0xFF

0xFF

in r17, PINx

tpd
81Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Table 21-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 21-5 on page 83 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to the alternate
function. Refer to the alternate function description for further details.

Table 21-2. Generic Description of Overriding Signals for Alternate Functions
Signal Name Full Name Description

PUOE Pull-up Override Enable
If this signal is set, the pull-up enable is controlled by the PUOV signal. If this
signal is cleared, the pull-up is enabled when {DDxn, PORTxn, PUD} =
0b010.

PUOV Pull-up Override Value If PUOE is set, the pull-up is enabled/disabled when PUOV is set/cleared,
regardless of the setting of the DDxn, PORTxn, and PUD Register bits.

DDOE Data Direction Override
Enable

If this signal is set, the Output Driver Enable is controlled by the DDOV
signal. If this signal is cleared, the Output driver is enabled by the DDxn
Register bit.

DDOV Data Direction Override
Value

If DDOE is set, the Output Driver is enabled/disabled when DDOV is
set/cleared, regardless of the setting of the DDxn Register bit.

PVOE Port Value Override
Enable

If this signal is set and the Output Driver is enabled, the port value is
controlled by the PVOV signal. If PVOE is cleared, and the Output Driver is
enabled, the port Value is controlled by the PORTxn Register bit.

PVOV Port Value Override
Value

If PVOE is set, the port value is set to PVOV, regardless of the setting of the
PORTxn Register bit.

PTOE Port Toggle Override
Enable If PTOE is set, the PORTxn Register bit is inverted.

DIEOE Digital Input Enable
Override Enable

If this bit is set, the Digital Input Enable is controlled by the DIEOV signal. If
this signal is cleared, the Digital Input Enable is determined by MCU state
(Normal mode, sleep mode).

DIEOV Digital Input Enable
Override Value

If DIEOE is set, the Digital Input is enabled/disabled when DIEOV is
set/cleared, regardless of the MCU state (Normal mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the signal is
connected to the output of the schmitt trigger but before the synchronizer.
Unless the Digital Input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AIO Analog Input/Output This is the Analog Input/output to/from alternate functions. The signal is
connected directly to the pad, and can be used bi-directionally.
84Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

21.3.1 Alternate Functions of Port A

The Port A pins with alternate functions are shown in Table 21-3.

The alternate pin configuration is as follows:
● ADC0/SGND/PCINT0 - Port A, Bit0

ADC0: Voltage ADC Input0. This pin can serve as Input 0 for the Voltage ADC.
SGND: Voltage ADC SGND. This pin can serve as signal ground for the Voltage ADC.
PCINT0. Pin Change Interrupt 0. This pin can serve as external interrupt source.

● ADC1/SGND/PCINT1 - Port A, Bit1
ADC1: Voltage ADC Input1. This pin can serve as Input 1 for the Voltage ADC.
SGND: Voltage ADC SGND. This pin can serve as signal ground for the Voltage ADC.
PCINT1: Pin Change Interrupt 1. This pin can serve as external interrupt source.
These pins can serve as external interrupt sourceTable 21-4 relates the alternate functions of Port A to the overriding sig-
nals shown in Figure 21-5 on page 83.

Table 21-3. Port A Pins Alternate Functions
Port Pin Alternate Function

PA1 ADC1/SGND/PCINT1
(ADC Input 1, Signal Ground or Pin Change Interrupt 1)

PA0 ADC0/SGND/PCINT0
(ADC Input 0, Signal Ground or Pin Change Interrupt 0)

Table 21-4. Overriding Signals for Alternate Functions in PA1:PA0
Signal Name PA1/ADC1/SGND/PCINT1 PA0/ADC0/SGND/PCINT0

PUOE 0 0
PUOV 0 0
DDOE VAMUX = 001 VAMUX = 010
DDOV 1 1
PVOE VAMUX = 001 VAMUX = 010
PVOV 0 0
PTOE - -
DIEOE PA1DID | (PCINT1 × PCIE0) PA0DID | (PCINT0 × PCIE0)
DIEOV PA1DID PA0DID

DI PCINT1 INPUT PCINT0 INPUT

AIO ADC1 INPUT
SGND INPUT

ADC0 INPUT
SGND INPUT
85Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● CKOUT/PCINT4 - Port B, Bit2
CKOUT: Clock output. This pin can serve as clock output pin.
PCINT4: Pin Change Interrupt 4. This pin can serve as external interrupt source.

● RXD/PCINT3 - Port B, Bit1
RXD: This pin can serve as RXD pin for the LIN interface.
PCINT3: Pin Change Interrupt 3. This pin can serve as external interrupt source.

● FH/PCINT2 - Port B, Bit0
FH: Force High. When the PBOE0 bit in the PBOV register is set, this pin is forced high.
PCINT2: Pin Change Interrupt 2. This pin can serve as external interrupt source.

Table 21-6. Overriding Signals for Alternate Functions in PB7:PB4

Signal Name
PB7/MISO/ICP10/

INT0/ PCINT9 PB6/MOSI/PCINT8 PB5/SCK/PCINT7 PB4/SS/PCINT6
PUOE SPE × MASTER SPE × MASTER SPE × MASTER SPE × MASTER
PUOV PORTB7 × PUD PORTB7 × PUD PORTB7 × PUD PORTB7 × PUD
DDOE SPE × MASTER SPE × MASTER SPE × MASTER SPE × MASTER
DDOV 0 0 0 0
PVOE SPE × MASTER SPE × MASTER SPE × MASTER 0
PVOV SPI SLAVE SPI MASTER
PTOE 0 0 0 0

DIEOE PCINT9 × PCIE | INT0
Enable PCINT8 × PCIE PCINT7 × PCIE PCINT6 × PCIE

DIEOV 1 1 1 1

DI

INT0
ICP10

SPI MASTER
PCINT9

SPI SLAVE
PCINT8

SCK
PCINT7

SS
PCINT6

AIO - - - -

Table 21-7. Overriding Signals for Alternate Functions in PB3:PB0

Signal Name PB3/TXD/PCINT5
PB2/CKOUT/

PCINT4
PB1/RXD/
PCINT3 PB0/FH/PCINT2

PUOE LINTXEN CKOE LINRXEN PBOE0

PUOV LINTXD × PBOE3 ×
PORTB3 0 PORTB2 × PUD 0

DDOE LINTXEN CKOE LINRXEN PBOE0
DDOV LINTXD × PBOE3 CKOE 0 1
PVOE LINTXEN CKOE 0 PBOE0
PVOV LINTXD × PBOE3 CKOUT 0 1
PTOE 0 0 0 0

DIEOE PCINT5 × PCIE (PCINT4 × PCIE) |
CKOE PCINT3 PCINT2 × PCIE

DIEOV 1 PCINT4 × PCIE | CKOE 1 1

DI
T1

PCINT5
LINRXD
PCINT4

PCINT3
T0

PCINT2
AIO - - - -
87Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.7.1 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNTnH/L Register will block any Compare Match that occur in the next timer clock cycle, even
when the timer is stopped. This feature allows OCRnA/B to be initialized to the same value as TCNTn without triggering an
interrupt when the Timer/Counter clock is enabled.

23.7.2 Using the Output Compare Unit

Since writing TCNTnH/L will block all Compare Matches for one timer clock cycle, there are risks involved when changing
TCNTnH/L when using the Output Compare Unit, independently of whether the Timer/Counter is running or not. If the value
written to TCNTnH/L equals the OCRnA/B value, the Compare Match will be missed.

23.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore shown as a clock enable signal in the
following figures. The figures include information on when Interrupt Flags are set. Figure 23-6 contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value.

Figure 23-6. Timer/Counter Timing Diagram, no Prescaling

Figure 23-7 shows the same timing data, but with the prescaler enabled.

Figure 23-7. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

MAX - 1

clkI/O

(clkI/O/1)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

MAX - 1

clkI/O

(clkI/O/8)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1
100Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23.9 Accessing Registers in 16-bit Mode
In 16-bit mode (the TCWn bit is set to one) the TCNTnH/L and OCRnA/B or TCNTnL/H and OCRnB/A are 16-bit registers that
can be accessed by the AVR CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write
operations. The 16-bit Timer/Counter has a single 8-bit register for temporary storing of the high byte of the 16-bit access. The
same temporary register is shared between all 16-bit registers. Accessing the low byte triggers the 16-bit read or write
operation. When the low byte of a 16-bit register is written by the CPU, the high byte stored in the temporary register, and the
low byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is read by
the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock cycle as the low byte is read.
There is one exception in the temporary register usage. In the Output Compare mode the 16-bit Output Compare Register
OCRnA/B is read without the temporary register, because the Output Compare Register contains a fixed value that is only
changed by CPU access. However, in 16-bit Input Capture mode the ICRn register formed by the OCRnA and OCRnB registers
must be accessed with the temporary register.
To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read before the
high byte.
The following code examples show how to access the 16-bit timer registers assuming that no interrupts updates the temporary
register. The same principle can be used directly for accessing the OCRnA/B registers.

The assembly code example returns the TCNTnH/L value in the r17:r16 register pair.
It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two instructions
accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or any other of the
16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when both the main code
and the interrupt code update the temporary register, the main code must disable the interrupts during the 16-bit access.

Assembly Code Example

...
; Set TCNTn to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNTnH,r17
out TCNTnL,r16
; Read TCNTn into r17:r16
in r16,TCNTnL
in r17,TCNTnH
...

C Code Example

unsigned int i;
...
/* Set TCNTn to 0x01FF */
TCNTn = 0x1FF;
/* Read TCNTn into i */
i = TCNTn;
...

Note: 1. See Section 12. “About Code Examples” on page 34
102Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.5.3 Data Transport

Two types of data may be transported in a frame; signals or diagnostic messages.
● Signals

Signals are scalar values or byte arrays that are packed into the data field of a frame. A signal is always present at the
same position in the data field for all frames with the same identifier.

● Diagnostic messages
Diagnostic messages are transported in frames with two reserved identifiers. The interpretation of the data field depends
on the data field itself as well as the state of the communicating nodes.

25.5.4 Schedule Table

The master task (in the master node) transmits frame headers based on a schedule table. The schedule table specifies the
identifiers for each header and the interval between the start of a frame and the start of the following frame. The master
application may use different schedule tables and select among them.

25.5.5 Compatibility with LIN 1.3

LIN 2.1 is a super-set of LIN 1.3.
A LIN 2.1 master node can handle clusters consisting of both LIN 1.3 slaves and/or LIN 2.1 slaves. The master will then avoid
requesting the new LIN 2.1 features from a LIN 1.3 slave:
● Enhanced checksum,
● Re-configuration and diagnostics,
● Automatic baud rate detection,
● "Response error" status monitoring.

LIN 2.1 slave nodes can not operate with a LIN 1.3 master node (e.g., the LIN1.3 master does not support the enhanced
checksum).
The LIN 2.1 physical layer is backwards compatible with the LIN1.3 physical layer. But not the other way around. The LIN 2.1
physical layer sets greater requirements, i.e. a master node using the LIN 2.1 physical layer can operate in a LIN 1.3 cluster.

25.6 LIN / UART Controller
The LIN/UART controller is divided in three main functions:
● Tx LIN Header function,
● Rx LIN Header function,
● LIN Response function.

These functions mainly use two services:
● Rx service,
● Tx service.

Because these two services are basically UART services, the controller is also able to switch into an UART function.

25.6.1 LIN Overview

The LIN/UART controller is designed to match as closely as possible to the LIN software application structure. The LIN software
application is developed as independent tasks, several slave tasks and one master task (c.f. Section 25.5.4 on page 118). The
Atmel® AVR MCU conforms to this perspective. The only link between the master task and the slave task will be at the cross-
over point where the interrupt routine is called once a new identifier is available. Thus, in a master node, housing both master
and slave task, the Tx LIN Header function will alert the slave task of an identifier presence. In the same way, in a slave node,
the Rx LIN Header function will alert the slave task of an identifier presence.
When the slave task is warned of an identifier presence, it has first to analyze it to know what to do with the response. Hardware
flags identify the presence of one of the specific identifiers from 60 (0x3C) up to 63 (0x3F).
118Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

26.4.2 Initialization and Settling Time

When the ADCs are enabled (both disabled in advance) an extra initialization time of 30-40 ADC cycles is required until the first
conversion is ready. The same initialization time is required when software executes an immediate configuration change
command.
When applying new changes the ADC will need to do settling conversions before an actual conversion is ready. If using
Automatic Fast/Slow Chopper mode, the settling will automatically be handled in hardware, in other cases the settling must be
handled by the software.
If not using Automatic Fast/Slow Chopper mode, settling should be handled in user software by discarding the first two
Instantaneous Conversions and the first Accumulation Conversion result after doing a configuration change that requires
settling.
For both ADCs, settling is required when enabling the ADC, after changing the decimation ratios, after changing the polarity of
the chopper, after changing the sampling clock source and after leaving Automatic Chopper mode configuration.
For the C-ADC, settling time is required when changing the input gain settings.
For the V-ADC, settling time is required when changing conversion channel.
The settling time is summarized in Table 26-2.

26.4.3 Sampling Clock

Software can select either the 512kHz PLL clock or the 128kHz Slow RC oscillator as sampling clock for the ADC by writing to
the CKSEL bit in Section 26.6.3 “ADCRA - ADC Control Register A” on page 151. When changing clock configuration this will
be synchronized in the same way as other configuration settings.
Note that if the PLL has been selected as ADC clock the PLL will keep running even if the CPU has entered sleep modes where
the PLL should be automatically disabled. Whenever going to deep sleep modes it is recommended to always use the Slow RC
oscillator as sampling clock. This allows the PLL to be automatically switched off which gives minimum power consumption.
If changing to the PLL clock source software should make sure that the PLL has locked to the target frequency before using the
conversion data.
When changing sampling clock on the next conversion, the clock change will take affect about 35 ADC clock cycles before the
corresponding interrupt is set. Note therefore that the conversion time of the ongoing conversions will be affected.

Table 26-2. Settling time for the Instantaneous (IC) and Accumulated (AC) Conversion

Chopper Mode TSETTLING,IC TSETTLING,AC

Auto Fast Chopper(1)

Auto Slow Chopper(2)

No chopper(3)

Notes: 1. The first Accumulated Conversion must be discarded in software.
2. The Instantaneous Conversion offset removal has to be performed in Software.
3. Settling should be performed in software when applying configuration changes that require settling.
4. Whenever doing configuration changes the recommended synchronization methods should be used. Other-

wise one extra settling conversion has to be added. For details on synchronization, see Section 26.4.1
“Synchronization of Configuration Settings” on page 146.

2
FIC
-------- 2

FAC

2
FIC
-------- 2

FAC

2
FIC
-------- 2

FAC

147Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.8.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SPMEN bit in SPMCSR is cleared.
This means that the interrupt can be used instead of polling the SPMCSR Register in software. When using the SPM interrupt,
the Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in Section 19. “Interrupts” on page 70.

29.8.5 Consideration While Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving Boot Lock bit11 unprogrammed.
An accidental write to the Boot Loader itself can corrupt the entire Boot Loader, and further software updates might be
impossible. If it is not necessary to change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

29.8.6 Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always blocked for reading. The user software
itself must prevent that this section is addressed during the self programming operation. The RWWSB in the SPMCSR will be
set as long as the RWW section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS as
described in “Interrupts” on page 70, or the interrupts must be disabled. Before addressing the RWW section after the
programming is completed, the user software must clear the RWWSB by writing the RWWSRE. See Section 29.8.12 “Simple
Assembly Code Example for a Boot Loader” on page 174 for an example.

29.8.7 Setting the Lock Bits by SPM

To set the Lock bits, wait until the PLL enters LOCK(1), write the desired data to R0, write “X0001001” to SPMCSR and execute
SPM within four clock cycles after writing SPMCSR.

See following Table 30-2 on page 180 for how the different settings of the Lock bits affect the Flash access.
If bits 5:0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an SPM instruction is executed within four
cycles after LBSET and SPMEN are set in SPMCSR. The Z-pointer is don’t care during this operation, but for future
compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future
compatibility it is also recommended to set bits 7 and 6 in R0 to “1” when writing the Lock bits. When programming the Lock bits
the entire Flash can be read during the operation.
Note: 1. For the PLL lock status, see the PLLCSR register.

29.8.8 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the Z-pointer with 0x0001 and set
the LBSET and SPMEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the LBSET and
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destination register. The LBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits. When LBSET and SPMEN are cleared, LPM will work as described
in the ”AVR Instruction Set” description.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading the Lock bits. To read the Fuse
Low byte, load the Z-pointer with 0x0000 and set the LBSET and SPMEN bits in SPMCSR. When an LPM instruction is
executed within three cycles after the LBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB)
will be loaded in the destination register as shown below. Refer to Table 30-4 on page 182 for a detailed description and
mapping of the Fuse Low byte.

Bit 7 6 5 4 3 2 1 0
R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0
Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0
172Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready

yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
175Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30. Memory Programming

30.1 Program And Data Memory Lock Bits
The Atmel® AVR MCU provides six Lock bits which can be left unprogrammed (“1”) or can be programmed (“0”) to obtain the
additional features listed in Table 30-2. The Lock bits can only be erased to “1” with the Chip Erase command.

Table 30-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value
7 – 1 (unprogrammed)
6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)
BLB11 4 Boot Lock bit 1 (unprogrammed)
BLB02 3 Boot Lock bit 1 (unprogrammed)
BLB01 2 Boot Lock bit 1 (unprogrammed)
LB2 1 Lock bit 1 (unprogrammed)
LB1 0 Lock bit 1 (unprogrammed)
“1” means unprogrammed, “0” means programmed

Table 30-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type
LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in Parallel and Serial
Programming mode. The Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

3 0 0
Further programming and verification of the Flash and EEPROM is disabled in
Parallel and Serial Programming mode. The Boot Lock bits and Fuse bits are
locked in both Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01
1 1 1 No restrictions for SPM or LPM accessing the Application section.
2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM executing from the
Boot Loader section is not allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts are disabled while
executing from the Application section.

4 0 1
LPM executing from the Boot Loader section is not allowed to read from the
Application section. If Interrupt Vectors are placed in the Boot Loader section,
interrupts are disabled while executing from the Application section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed
180Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Note: 1. a = address high bits, b = address low bits, d = data in high bits, e = data in low bits, p = data out high bits, q = data out low
bits, x = don’t care, c = Lock Bit Byte, l = fuse low byte, h = fuse high byte.

Notes: 1. For page sizes less than 256 words, parts of the address (bbbb_bbbb) will be parts of the page address.
2. For page sizes less than 256 bytes, parts of the address (bbbb_bbbb) will be parts of the page address.
The EEPROM is written page-wise. But only the bytes that are loaded into the page are actually written to the EEPROM. Page-
wise EEPROM access is more efficient when multiple bytes are to be written to the same page. Note that auto-erase of
EEPROM is not available in High-voltage Serial Programming, only in SPI Programming.

Read EEPROM
Byte

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_aaaa_aaaa_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00

q_qqqq_qqq0_00

Write Fuse High
Byte

SDI
SII
SDO

0_0100_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_hhhh_hhhh_00
0_0010_1100_11
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
x_xxxx_xxxx_xx

Wait after Instr. 4 until SDO
goes high. Write “0” to
program the Fuse Bits.

Write Fuse Low
Byte

SDI
SII
SDO

0_0100_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_IIII_IIII_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Wait after Instr. 4 until SDO
goes high. Write “0” to
program the Fuse bit.

Write Lock Bit Byte
SDI
SII
SDO

0_0010_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_cccc_cccc_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Wait after Instr. 4 until SDO
goes high. Write “0” to
program the Lock Bit.

Read Fuse High
Byte

SDI
SII
SDO

0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
h_hhhh_hhhx_xx

Reading “0” means the Fuse
bit is programmed.

Read Fuse Low
Byte

SDI
SII
SDO

0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00

I_IIII_IIIx_xx

Reading “0” means the Fuse
bit is programmed.

Read Lock Bit Byte
SDI
SII
SDO

0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
c_cccc_cccx_xx

Reading “0” means the Lock
bit is programmed.

Read Signature
Row Low Byte

SDI
SII
SDO

0_0000_1000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
q_qqqq_qqqx_xx

Repeats Instr 2 4 for each
signature low byte address.

Read Signature
Row High Byte

SDI
SII
SDO

0_0000_1000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_aaaa_aaaa_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
p_pppp_pppx_xx

Repeats Instr 2 4 for each
signature high byte address.

Load “No
Operation”
Command

SDI
SII
SDO

0_0000_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

Table 30-14. High-voltage Serial Programming Instruction Set for Atmel® AVR MCU (Continued)

Instruction
Instruction Format

Operation RemarksInstr.1/5 Instr.2/6 Instr.3 Instr.4
191Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

0x13 (0x33) Reserved – – – – – – – –
0x12 (0x32) Reserved – – – – – – – –
0x11 (0x31) Reserved – – – – – – – –
0x10 (0x30) Reserved – – – – – – – –
0x0F (0x2F) Reserved – – – – – – – –
0x0E (0x2E) Reserved – – – – – – – –
0x0D (0x2D) Reserved – – – – – – – –
0x0C (0x2C) Reserved – – – – – – – –
0x0B (0x2B) Reserved – – – – – – – –
0x0A (0x2A) Reserved – – – – – – – –
0x09 (0x29) Reserved – – – – – – – –
0x08 (0x28) Reserved – – – – – – – –
0x07 (0x27) Reserved – – – – – – – –
0x06 (0x26) Reserved – – – – – – – –
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 88
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 88
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 89
0x02 (0x22) PORTA – – – – – – PORTA1 PORTA0 88
0x01 (0x21) DDRA – – – – – – DDA1 DDA0 88
0x00 (0x20) PINA – – – – – – PINA1 PINA0 88

32. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O reg-
isters as data space using LD and ST instructions, $20 must be added to these addresses. The Atmel AVR MCU is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
207Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

36. Packaging Information

36.1 Markings
As a minimum, the devices will be marked with the following:
● Date code (year and week number)
● Atmel® part number

Package Drawing Contact:
packagedrawings@atmel.com

GPC DRAWING NO. REV. TITLE

6.543-5130.01-4 3

09/07/11

Package: VQFN_7x7_48L
Exposed pad 5.6x5.6

COMMON DIMENSIONS
(Unit of Measure = mm)

MIN NOM NOTEMAXSymbol

Standard Singulation process

Dimensions in mm

specifications
according to DIN
technical drawings

0.02 0.050.0A1

7 7.16.9E

0.23 0.30.16b
0.5 BSCe

0.4 0.50.3L
5.6 5.755.45E2

5.6 5.755.45D2
7 7.16.9D

0.2 0.250.15A3

0.9 10.8A

Top View

D

48
1

12

PIN 1 ID

E

Side View A3

A

A1

b

L

A (10:1)

Bottom View

e

D2

48 37

13

1

12
24

25

36

E2

A

215Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

