
Microchip Technology - ATMEGA64HVE2-PLPW Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 15MHz

Connectivity LINbus, SPI, UART/USART, LINbus-SBC

Peripherals Brown-out Detect/Reset, POR, WDT

Number of I/O 10

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 1x17b Sigma Delta, 1x18b Sigma Delta

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-VQFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega64hve2-plpw

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega64hve2-plpw-4437504
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

1. Description
With the ATmega32HVE2/ATmega64HVE2 Atmel® provides an 8-bit AVR® microcontroller with very precise analog frontend for
voltage and current measurement and 32bit computing power. The circuit is a complete single-package system solution for
applications like, e.g., 12V lead acid or Li-ion battery monitoring or particle filtering in automotive applications.
The device includes 2 dies, the first die (AVR MCU) with the very precise analog frontend consisting of
● a 17bit and a 18bit sigma delta ADC
● programmable gain amplifier with various chopper modes and extreme low offset
● 8-bit microcontroller with 32bit math-extensions module and 32/64Kbytes flash memory

and a LIN(1) system basis chip (LIN SBC) including
● LIN transceiver according to the LIN2.0, 2.1 and SAEJ2602-2 standards
● 3.3V low drop voltage regulator
● window watchdog
● integrated voltage divider with reverse polarity protection for very precise sensing of the battery voltage

The device includes the same LIN SBC die as used in the Atmel ATA6628 LIN system basis chip from Atmel.
Note: 1. LIN: Local Interconnect Network

Figure 1-1. Atmel ATmega32HVE2/ATmega64HVE2 Block Diagram

17-bit
Σ Δ ADC

Timer/Counter

LIN SBC

AVR MCU

Oscillators

Temperature Reference

Watchdog

Voltage
Regulator

LIN
Transceiver

Supervision
and

Diagnostics

Low-power
AVR CPU

32 bit
math.

extension

Shunt
12V

Automotive
Powernet

LIN Bus

+ - 18-bit
Σ Δ ADC

M
U

X

PGA
2Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Atmel LIN System Basis Chip (LIN SBC)

LIN Bus Transceiver with 3.3V Regulator and Watchdog

PRELIMINARY DATASHEET
Features

● Master and Slave Operation Possible
● Supply Voltage –27V to +40V
● Operating Voltage VS = 5V to 27V
● Typically 10µA Supply Current During Sleep Mode
● Typically 40µA Supply Current in Silent Mode
● Linear Low-drop Voltage Regulator:

● Normal, Fail-safe, and Silent Mode
● VREG = 3.3V ±2%

● In Sleep Mode VREG is Switched Off
● VREG-Undervoltage Detection (4ms Reset Time) and Watchdog Reset Logical

Combined at Open Drain Output NRES
● High-speed Mode Up to 115kBaud
● Internal 1:24 Voltage Divider for VBattery Sensing
● Negative Trigger Input for Watchdog
● Boosting the Voltage Regulator Possible with an External NPN Transistor
● LIN Physical Layer According to LIN 2.0, 2.1 and SAEJ2602-2
● Wake-up Capability via LIN-bus
● Bus Pin is Overtemperature and Short-circuit Protected versus GND and Battery
● Adjustable Watchdog Time via External Resistor
● Advanced EMC and ESD Performance
● Fulfills the OEM “Hardware Requirements for LIN in Automotive Applications

Rev. 1.1”
● Atmel® ATA6628 LIN SBC inside
 8096C–AVR–01/13

A falling edge at the LIN pin followed by a dominant bus level maintained for a certain time period (tbus) and the following rising
edge at the LIN pin (see Figure 7-3) result in a remote wake-up request, which is only possible if TXD is high. The device
switches from Silent Mode to Fail-safe Mode. The internal LIN slave termination resistor is switched on. The remote wake-up
request is indicated by a low level at the RXD pin to interrupt the microcontroller (see Figure 7-3). EN high can be used to switch
directly to Normal Mode.

Figure 7-3. LIN Wake-up from Silent Mode

Watchdog off Start watchdog lead time tdWatchdog

Undervoltage detection active

Silent mode 3.3V/50mA Fail safe mode 3.3V/50mA Normal mode

Low

Fail-safe mode Normal mode

EN High

Node in silent mode

HighHigh

NRES

EN

VREG
voltage

regulator

RXD

LIN bus

Bus wake-up filtering time
tbus

TXD

Don't care
14Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

7.5 Fail-safe Mode
The device automatically switches to Fail-safe Mode at system power-up. The voltage regulator is switched on
(VREG = 3.3V/2%/50mA) (see Figure 8-1 on page 22). The NRES output switches to low for tres = 4ms and gives a reset to the
microcontroller. LIN communication is switched off. The IC stays in this mode until EN is switched to high. The IC then changes
to Normal Mode. A power down of VBat (VS < VSthU) during Silent or Sleep Mode switches the IC into Fail-safe Mode after power
up. A low at NRES switches into Fail-safe Mode directly. During Fail-safe Mode, the TXD pin is an output and signals the fail-
safe source. The watchdog is switched on.
The LIN SBC can operate in different Modes, like Normal, Silent, or Sleep Mode. The functionality of these modes is described
in Table 7-2.

A wake-up event from either Silent or Sleep Mode will be signalled to the microcontroller using the two pins RXD and TXD. The
coding is shown in Table 7-3.
A wake-up event will lead the IC to the Fail-safe Mode.

Table 7-2. TXD, RXD Depending from Operation Modes
Different Modes TXD RXD
Fail-safe Mode Signalling fail-safe sources (see Table 7-3 and Table 7-4)
Normal Mode Follows data transmission
Silent Mode High High

Table 7-3. Signalling Fail-safe Sources
Fail-safe Sources TXD RXD
LIN wake-up (pin LIN) Low Low
VSth (battery) undervoltage detection High Low

Table 7-4. Signalling in Fail-safe Mode after Reset (NRES was Low), Shows the Reset Source at TXD and RXD Pins
Fail-safe Sources TXD RXD
VREG undervoltage at NRES High Low
Watchdog reset at NRES High High
19Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 10-1. Definition of Bus Timing Characteristics

TXD
(Input to transmitting node)

VS
(Transceiver supply
of transmitting node)

RXD
(Output of receiving node1)

RXD
(Output of receiving node2)

LIN Bus Signal

Thresholds of
receiving node1

Thresholds of
receiving node2

tBus_rec(max)

trx_pdr(1)

trx_pdf(2)trx_pdr(2)

trx_pdf(1)

tBus_dom(min)

tBus_dom(max)

THRec(max)

THDom(max)

THRec(min)

THDom(min)

tBus_rec(min)

tBit tBittBit
31Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the negative flag N and the Two’s Complement Overflow Flag V. See the
“Instruction Set Description” for detailed information.

● Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction Set Description”
for detailed information.

● Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description”
for detailed information.

● Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

● Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

13.4 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the Register File:
● One 8-bit output operand and one 8-bit result input
● Two 8-bit output operands and one 8-bit result input
● Two 8-bit output operands and one 16-bit result input
● One 16-bit output operand and one 16-bit result input

Figure 13-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 13-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle
instructions. As shown in Figure 13-2, each register is also assigned a data memory address, mapping them directly into the
first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any
register in the file.

7 0 Addr

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
37Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

13.4.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers
for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 13-
3 on page 38.

Figure 13-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and
automatic decrement (see the instruction set reference for details).

13.5 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts
and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemented as
growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the
Stack Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space
in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The
Stack Pointer must be set to point above 0x100. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto the Stack with subroutine call
or interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is
incremented by two when data is popped from the Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL
is needed. In this case, the SPH Register will not be present.

13.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8
0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
38Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

19.3 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

19.4 Register Description

19.4.1 MCUCR – MCU Control Register

● Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash memory. When this bit is
set (one), the Interrupt Vectors are moved to the beginning of the Boot Loader section of the Flash. The actual address of
the start of the Boot Flash Section is determined by the BOOTSZ Fuses. Refer to Section 29. “Boot Loader Support –
Read-While-Write Self-Programming” on page 167 for details. To avoid unintentional changes of Interrupt Vector tables,
a special write procedure must be followed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.
b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set,
and they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, interrupts remain
disabled for four cycles. The I-bit in the Status Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed, interrupts are
disabled while executing from the Application section. If Interrupt Vectors are placed in the Application section and
Boot Lock bit BLB12 is programed, interrupts are disabled while executing from the Boot Loader section. Refer to
Section 29. “Boot Loader Support – Read-While-Write Self-Programming” on page 167 for details on Boot Lock
bits.

● Bit 0 – IVCE: Interrupt Vector Change Enable
The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles
after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL descrip-
tion above. See Code Example below.

Assembly Code Example
Move_interrupts:

; Enable change of Interrupt Vectors
ldi r16, (1<<IVCE)
out MCUCR, r16
; Move interrupts to Boot Flash section
ldi r16, (1<<IVSEL)
out MCUCR, r16
ret

C Code Example
void Move_interrupts(void)
{

/* Enable change of Interrupt Vectors */
MCUCR = (1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = (1<<IVSEL);

}

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) JTD – – PUD – – IVSEL IVCE MCUCR
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
73Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● CKOUT/PCINT4 - Port B, Bit2
CKOUT: Clock output. This pin can serve as clock output pin.
PCINT4: Pin Change Interrupt 4. This pin can serve as external interrupt source.

● RXD/PCINT3 - Port B, Bit1
RXD: This pin can serve as RXD pin for the LIN interface.
PCINT3: Pin Change Interrupt 3. This pin can serve as external interrupt source.

● FH/PCINT2 - Port B, Bit0
FH: Force High. When the PBOE0 bit in the PBOV register is set, this pin is forced high.
PCINT2: Pin Change Interrupt 2. This pin can serve as external interrupt source.

Table 21-6. Overriding Signals for Alternate Functions in PB7:PB4

Signal Name
PB7/MISO/ICP10/

INT0/ PCINT9 PB6/MOSI/PCINT8 PB5/SCK/PCINT7 PB4/SS/PCINT6
PUOE SPE × MASTER SPE × MASTER SPE × MASTER SPE × MASTER
PUOV PORTB7 × PUD PORTB7 × PUD PORTB7 × PUD PORTB7 × PUD
DDOE SPE × MASTER SPE × MASTER SPE × MASTER SPE × MASTER
DDOV 0 0 0 0
PVOE SPE × MASTER SPE × MASTER SPE × MASTER 0
PVOV SPI SLAVE SPI MASTER
PTOE 0 0 0 0

DIEOE PCINT9 × PCIE | INT0
Enable PCINT8 × PCIE PCINT7 × PCIE PCINT6 × PCIE

DIEOV 1 1 1 1

DI

INT0
ICP10

SPI MASTER
PCINT9

SPI SLAVE
PCINT8

SCK
PCINT7

SS
PCINT6

AIO - - - -

Table 21-7. Overriding Signals for Alternate Functions in PB3:PB0

Signal Name PB3/TXD/PCINT5
PB2/CKOUT/

PCINT4
PB1/RXD/
PCINT3 PB0/FH/PCINT2

PUOE LINTXEN CKOE LINRXEN PBOE0

PUOV LINTXD × PBOE3 ×
PORTB3 0 PORTB2 × PUD 0

DDOE LINTXEN CKOE LINRXEN PBOE0
DDOV LINTXD × PBOE3 CKOE 0 1
PVOE LINTXEN CKOE 0 PBOE0
PVOV LINTXD × PBOE3 CKOUT 0 1
PTOE 0 0 0 0

DIEOE PCINT5 × PCIE (PCINT4 × PCIE) |
CKOE PCINT3 PCINT2 × PCIE

DIEOV 1 PCINT4 × PCIE | CKOE 1 1

DI
T1

PCINT5
LINRXD
PCINT4

PCINT3
T0

PCINT2
AIO - - - -
87Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

23. Timer/Counter(T/C0, T/C1)

23.1 Features
● Clear timer on compare match (auto reload)
● Input capture unit
● Four independent interrupt sources (TOVn, OCFnA, OCFnB, ICFn)
● 8-bit mode with two independent output compare units
● 16-bit mode with one independent output compare unit

23.2 Overview
Timer/Counter n is a general purpose 8-/16-bit Timer/Counter module, with two/one Output Compare units and Input Capture
feature.
The Atmel® AVR MCU has two Timer/Counters, Timer/Counter0 and Timer/Counter1. The functionality for both Timer/Counters
is described below. Timer/Counter0 and Timer/Counter1 have different Timer/Counter registers, as shown in Section 32.
“Register Summary” on page 203.
The Timer/Counter general operation is described in 8-/16-bit mode. A simplified block diagram of the 8-/16-bit Timer/Counter is
shown in Figure 23-1. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O
Register and bit locations are listed in the Section 23.10 “Register Description” on page 104.

Figure 23-1. 8-/16-bit Timer/Counter Block Diagram

Control Logic

TCNTnL

Fixed TOP value

TCNTnH

Timer/Counter

Count

Clear

Direction

clkTn

OCRnAOCRnB

= =

TCCRnA TCCRnB

Edge
Detector

(from Prescaler)

Clock Select

TOP

TOVn (Int. Req.)

OCnA (Int. Req.)

OCnB (Int. Req.)

ICFn (Int. Req.)

Tn

Edge
Detector

Noise
Canceler

D
AT

A
 B

U
S

=

ICPn1

ICPn2

ICPn0
93Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

● Bit 5 – ICNCn: Input Capture Noise Canceler
Setting this bit activates the Input Capture Noise Canceler. When the noise canceler is activated, the input from the Input
Capture Source is filtered. The filter function requires four successive equal valued samples of the Input Capture Source
for changing its output. The Input Capture is therefore delayed by four System Clock cycles when the noise canceler is
enabled.

● Bit 4 – ICESn: Input Capture Edge Select
This bit selects which edge on the Input Capture Source that is used to trigger a capture event. When the ICESn bit is
written to zero, a falling (negative) edge is used as trigger, and when the ICESn bit is written to one, a rising (positive)
edge will trigger the capture. When a capture is triggered according to the ICESn setting, the counter value is copied into
the Input Capture Register. The event will also set the Input Capture Flag (ICFn), and this can be used to cause an Input
Capture Interrupt, if this interrupt is enabled.

● Bits 3 – Reserved
This bit is reserved in the Atmel® AVR MCU and should always be written to zero.

● Bits 2:1 – Reserved
These bits are reserved bits in the AVR MCU and will always read as zero.

● Bit 0 – WGMn0: Waveform Generation Mode
This bit controls the counting sequence of the counter, the source for maximum (TOP) counter value, see Figure 23-6 on
page 100. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter) and Clear Timer on
Compare Match (CTC) mode (see Section 23.8 “Timer/Counter Timing Diagrams” on page 100).

23.10.2 TCCRnC – Timer/Counter n Control Register C

● Bit 7:2 – Reserved
These bits are reserved bits in the Atmel® AVR MCU and will always read as zero.

● Bit 1:0 – ICS[1:0]: Input Capture Select 1:0
These bits control which Input Capture source that should trigger the Timer/Counter Input Capture functionality. To also
trigger the Timer/Counter n Input Capture interrupt, the TICIEn bit in the Timer Interrupt Mask Register TIMSK) must be
set.
See Table 23-3 on page 99 and Table 23-4 on page 99 for Input Capture sources.

23.10.3 TCNTnL – Timer/Counter n Register Low Byte

The Timer/Counter Register TCNTnL gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit
counter. Writing to the TCNTnL Register blocks (disables) the Compare Match on the following timer clock. Modifying the
counter (TCNTnL) while the counter is running, introduces a risk of missing a Compare Match between TCNTnL and the
OCRnx Registers. In 16-bit mode the TCNTnL register contains the lower part of the 16-bit Timer/Counter n Register.

Bit 7 6 5 4 3 2 1 0
– – – – – – ICn1 ICn0 TCCRnC

Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
TCNTnL[7:0] TCNTnL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
105Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.5.3 Data Transport

Two types of data may be transported in a frame; signals or diagnostic messages.
● Signals

Signals are scalar values or byte arrays that are packed into the data field of a frame. A signal is always present at the
same position in the data field for all frames with the same identifier.

● Diagnostic messages
Diagnostic messages are transported in frames with two reserved identifiers. The interpretation of the data field depends
on the data field itself as well as the state of the communicating nodes.

25.5.4 Schedule Table

The master task (in the master node) transmits frame headers based on a schedule table. The schedule table specifies the
identifiers for each header and the interval between the start of a frame and the start of the following frame. The master
application may use different schedule tables and select among them.

25.5.5 Compatibility with LIN 1.3

LIN 2.1 is a super-set of LIN 1.3.
A LIN 2.1 master node can handle clusters consisting of both LIN 1.3 slaves and/or LIN 2.1 slaves. The master will then avoid
requesting the new LIN 2.1 features from a LIN 1.3 slave:
● Enhanced checksum,
● Re-configuration and diagnostics,
● Automatic baud rate detection,
● "Response error" status monitoring.

LIN 2.1 slave nodes can not operate with a LIN 1.3 master node (e.g., the LIN1.3 master does not support the enhanced
checksum).
The LIN 2.1 physical layer is backwards compatible with the LIN1.3 physical layer. But not the other way around. The LIN 2.1
physical layer sets greater requirements, i.e. a master node using the LIN 2.1 physical layer can operate in a LIN 1.3 cluster.

25.6 LIN / UART Controller
The LIN/UART controller is divided in three main functions:
● Tx LIN Header function,
● Rx LIN Header function,
● LIN Response function.

These functions mainly use two services:
● Rx service,
● Tx service.

Because these two services are basically UART services, the controller is also able to switch into an UART function.

25.6.1 LIN Overview

The LIN/UART controller is designed to match as closely as possible to the LIN software application structure. The LIN software
application is developed as independent tasks, several slave tasks and one master task (c.f. Section 25.5.4 on page 118). The
Atmel® AVR MCU conforms to this perspective. The only link between the master task and the slave task will be at the cross-
over point where the interrupt routine is called once a new identifier is available. Thus, in a master node, housing both master
and slave task, the Tx LIN Header function will alert the slave task of an identifier presence. In the same way, in a slave node,
the Rx LIN Header function will alert the slave task of an identifier presence.
When the slave task is warned of an identifier presence, it has first to analyze it to know what to do with the response. Hardware
flags identify the presence of one of the specific identifiers from 60 (0x3C) up to 63 (0x3F).
118Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.6.7.2Rx Service

Once this service is enabled, the user is warned of an in-coming character by the LRXOK flag of LINSIR register. Reading
LINDAT register automatically clears the flag and makes free the second stage of the buffer. If the user considers that the in-
coming character is irrelevant without reading it, he directly can clear the flag (see specific flag management described in
Section 25.8.2 on page 133).
The intrinsic structure of the Rx service offers a 2-byte buffer. The fist one is used for serial to parallel conversion, the second
one receives the result of the conversion. This second buffer byte is reached reading LINDAT register. If the 2-byte buffer is full,
a new in-coming character will overwrite the second one already recorded. An OVRERR error in LINERR register will then
accompany this character when read.
A FERR error in LINERR register will be set in case of framing error.

25.6.7.3Tx Service

If this service is enabled, the user sends a character by writing in LINDAT register. Automatically the LTXOK flag of
LINSIR register is cleared. It will rise at the end of the serial transmission. If no new character has to be sent, LTXOK flag can
be cleared separately (see specific flag management described in Section 25.8.2 on page 133).
There is no transmit buffering.
No error is detected by this service.

25.7 LIN / UART Description

25.7.1 Reset

The AVR core reset logic signal also resets the LIN/UART controller. Another form of reset exists, a software reset controlled by
LSWRES bit in LINCR register. This self-reset bit performs a partial reset as shown in Table 25-2.

25.7.2 LIN Protocol Selection

LIN13 bit in LINCR register is used to select the LIN protocol:
● LIN13 = 0 (default): LIN 2.1 protocol,
● LIN13 = 1: LIN 1.3 protocol.

The controller checks the LIN13 bit in computing the checksum (enhanced checksum in LIN2.1 / classic checksum in LIN 1.3).
This bit is irrelevant for UART commands.

Table 25-2. Reset of LIN/UART Registers
Register Name Reset Value LSWRES Value Comment

LIN Control Reg. LINCR 0000 0000 b 0000 0000 b

x=unknown

u=unchanged

LIN Status and Interrupt Reg. LINSIR 0000 0000 b 0000 0000 b
LIN Enable Interrupt Reg. LINENIR 0000 0000 b xxxx 0000 b

LIN Error Reg. LINERR 0000 0000 b 0000 0000 b
LIN Bit Timing Reg. LINBTR 0010 0000 b 0010 0000 b

LIN Baud Rate Reg. Low LINBRRL 0000 0000 b uuuu uuuu b
LIN Baud Rate Reg. High LINBRRH 0000 0000 b xxxx uuuu b

LIN Data Length Reg. LINDLR 0000 0000 b 0000 0000 b
LIN Identifier Reg. LINIDR 1000 0000 b 1000 0000 b

LIN Data Buffer Selection LINSEL 0000 0000 b xxxx 0000 b
LIN Data LINDAT 0000 0000 b 0000 0000 b
123Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

25.8.7 LINDLR – LIN Data Length Register

● Bits 7:4 – LTXDL[3:0]: LIN Transmit Data Length
In LIN mode, this field gives the number of bytes to be transmitted (clamped to 8 Max).
In UART mode this field is unused.

● Bits 3:0 – LRXDL[3:0]: LIN Receive Data Length
In LIN mode, this field gives the number of bytes to be received (clamped to 8 Max).
In UART mode this field is unused.

25.8.8 LINIDR – LIN Identifier Register

● Bits 7:6 – LP[1:0]: Parity
In LIN mode:
LP0 = LID4 ^ LID2 ^ LID1 ^ LID0
LP1 = ! (LID1 ^ LID3 ^ LID4 ^ LID5)

In UART mode this field is unused.
● Bits 5:4 – LDL[1:0]: LIN 1.3 Data Length

In LIN 1.3 mode:
● 00 = 2-byte response,
● 01 = 2-byte response,
● 10 = 4-byte response,
● 11 = 8-byte response.

In UART mode this field is unused.
● Bits 3:0 – LID[3:0]: LIN 1.3 Identifier

In LIN 1.3 mode: 4-bit identifier.
In UART mode this field is unused.

● Bits 5:0 – LID[5:0]: LIN 2.1 Identifier
In LIN 2.1 mode: 6-bit identifier (no length transported).
In UART mode this field is unused.

Bit 7 6 5 4 3 2 1 0
(0xC7) LTXDL3 LTXDL2 LTXDL1 LTXDL0 LRXDL3 LRXDL2 LRXDL1 LRXDL0 LINDLR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
(0xC8) LP1 LP0 LID5 / LDL1 LID4 / LDL0 LID3 LID2 LID1 LID0 LINIDR
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
136Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

29.8.13 Atmel ATmega32HVE Boot Loader Parameters

In Table 29-5 through Table 29-7, the parameters used in the description of the Self-Programming are given.

Table 29-5. Boot Size Configuration(1)

B
O

O
TS

Z1

B
O

O
TS

Z0

B
oo

t S
iz

e

Pa
ge

s

A
pp

lic
at

io
n

Fl
as

h
Se

ct
io

n

B
oo

t L
oa

de
r

Fl
as

h
Se

ct
io

n

En
d

A
pp

lic
at

io
n

Se
ct

io
n

B
oo

t R
es

et

A
dd

re
ss

(S

ta
rt

 B
oo

t
Lo

ad
er

 S
ec

tio
n)

1 1 256 words 4 0x0000 - 0x3EFF 0x3F00 - 0x3FFF 0x3EFF 0x3F00
1 0 512 words 8 0x0000 - 0x3DFF 0x3E00 - 0x3FFF 0x3DFF 0x3E00
0 1 1024 words 16 0x0000 - 0x3BFF 0x3C00 - 0x3FFF 0x3BFF 0x3C00
0 0 2048 words 32 0x0000 - 0x37FF 0x3800 - 0x3FFF 0x37FF 0x3800

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 29-2

Table 29-6. Read-While-Write Limit(1)

Section Pages Address
Read-While-Write section (RWW) 224 0x0000 - 0x37FF
No Read-While-Write section (NRWW) 32 0x3800 - 0x3FFF
Note: 1. For details about these two section, see Section 29.4.2 “NRWW – No Read-While-Write Section” on page 168 and Sec-

tion 29.4.1 “RWW – Read-While-Write Section” on page 168.

Table 29-7. Explanation of Different Variables Used in Figure 29-3 on page 170 and the Mapping to the Z-pointer(1)

Variable Corresponding Z-value Description

PCMSB 13 Most significant bit in the Program Counter. (The Program Counter is
14 bits PC[13:0])

PAGEMSB 5 Most significant bit which is used to address the words within one
page (64 words in a page requires six bits PC [5:0]).

ZPCMSB Z14 Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6 Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[13:6] Z13:Z7 Program Counter page address: Page select, for Page Erase and
Page Write

PCWORD PC[5:0] Z6:Z1 Program Counter word address: Word select, for filling temporary
buffer (must be zero during Page Write operation)

Note: 1. Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See Section 29.7 “Addressing the Flash During Self-Programming” on page 170 for details about the use of Z-pointer dur-
ing Self-Programming.
176Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.8 High-voltage Serial Programming Algorithm
To program and verify the Atmel® AVR MCU in the High-voltage Serial Programming mode, the following sequence is
recommended (See instruction formats in Table 30-14):

30.8.1 Enter High-voltage Serial Programming Mode

The following algorithm puts the device in Serial (High-voltage) Programming mode:
1. Set Prog_enable pins listed in Table 30-12 on page 187 to “0000”, RESET pin to 0V and VCC to 0V.
2. Apply 3.0 - 3.5V between VCC and GND. Ensure that VCC reaches at least 1.8V within the next 20 µs.
3. Wait 20 - 60 µs, and apply VHRST - 12.5V to RESET.
4. Keep the Prog_enable pins unchanged for at least tHVRST after the High-voltage has been applied to ensure the

Prog_enable Signature has been latched.
5. Release Prog_enable[1] pin to avoid drive contention on the Prog_enable[1]/SDO pin.
6. Wait at least 1.3 ms before giving any serial instructions on SDI/SII.
7. If the rise time of the VCC is unable to fulfill the requirements listed above, the following alternative algorithm can be

used.
8. Set Prog_enable pins listed in Table 30-12 on page 187 to “0000”, RESET pin to 0V and VCC to 0V.
9. Apply 3.0 - 3.5V between VCC and GND.
10. Monitor VCC, and as soon as VCC reaches 0.9 - 1.1V, apply VHRST - 12.5V to RESET.
11. Keep the Prog_enable pins unchanged for at least tHVRST after the High-voltage has been applied to ensure the

Prog_enable Signature has been latched.
12. Release Prog_enable[1] pin to avoid drive contention on the Prog_enable[1]/SDO pin.
13. Wait until VCC actually reaches 3.0 - 3.5V.
14. Wait at least 1.3ms before giving any serial instructions on SDI/SII.

Table 30-11. Pin Name Mapping
Signal Name in High-voltage Serial

Programming Mode Pin Name I/O Function
SDO PB5 O Serial Data Output
SDI PB6 I Serial Data Input
SII PB7 I Serial Instruction Input
SCI PB2 I Serial Clock Input (min. 2/fck period)

Table 30-12. Pin Values Used to Enter Programming Mode
Pin Name Symbol Value

PB4 Prog_enable[0] 0
PB5 Prog_enable[1] 0
PB6 Prog_enable[2] 0
PB7 Prog_enable[3] 0

Table 30-13. High-voltage Reset Characteristics

Supply Voltage RESET Pin High-voltage Threshold
Minimum High-voltage Period for Latching

Prog_enable
VCC VHVRST tHVRST

3.0V 11.5V 10 µs
3.5V 11.5V 10 µs
187Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

30.8.10 Power-off sequence

Exit Programming mode by powering the device down, or by bringing RESET pin to 0V.

Table 30-14. High-voltage Serial Programming Instruction Set for Atmel® AVR MCU

Instruction
Instruction Format

Operation RemarksInstr.1/5 Instr.2/6 Instr.3 Instr.4

Chip Erase
SDI
SII
SDO

0_1000_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Load “Write Flash”
Command

SDI
SII
SDO

0_0001_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx

Load Flash Page
Buffer

SDI
SII
SDO

0_ bbbb_bbbb _00
0_0000_1100_00
x_xxxx_xxxx_xx

0_eeee_eeee_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_dddd_dddd_00
0_0011_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1101_00
x_xxxx_xxxx_xx

SDI
SII
SDO

0_0000_0000_00
0_0111_1100_00
x_xxxx_xxxx_xx

Load Flash High
Address and
Program Page

SDI
SII
SDO

0_aaaa_aaaa_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Load “Read Flash”
Command

SDI
SII
SDO

0_0000_0010_00
0_0100_1100_00
x_xxxx_xxxx_xx

Read Flash Low
and High Bytes

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_aaaa_aaaa_00
0_0001_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
q_qqqq_qqqx_xx

SDI
SII
SDO

0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0111_1100_00
p_pppp_pppx_xx

Load “Write
EEPROM”
Command

SDI
SII
SDO

0_0001_0001_00
0_0100_1100_00
x_xxxx_xxxx_xx

Load EEPROM
Page Buffer

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_eeee_eeee_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1101_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Program EEPROM
Page

SDI
SII
SDO

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Write EEPROM
Byte

SDI
SII
SDO

0_bbbb_bbbb_00
0_0000_1100_00
x_xxxx_xxxx_xx

0_eeee_eeee_00
0_0010_1100_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_1101_00
x_xxxx_xxxx_xx

0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx

SDI
SII
SDO

0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx

Load “Read
EEPROM”
Command

SDI
SII
SDO

0_0000_0011_00
0_0100_1100_00
x_xxxx_xxxx_xx
190Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

Figure 31-2. SPI Interface Timing Requirements (Slave Mode)

31.8 Programming Characteristics

31.8.1 Serial Programming

Figure 31-3. Serial Programming Timing

Figure 31-4. Serial Programming Waveforms

9

MSB

SS

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(Data Output)

MISO
(Data Output)

MSB LSB

LSB...

...

13 14

1715

10 16

11 11

12

MOSI

SCK

MISO

tOVSH tSHOX

tSHSL

tSLSH

tSLIV

SERIAL DATA INPUT
(MOSI)

SERIAL DATA OUTPUT
(MISO)

SERIAL CLOCK INPUT
(SCK)

SAMPLE

MSB LSB

MSB LSB
201Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1

33. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks
209Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3
SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS
NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep
function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
BREAK Break For On-chip Debug Only None N/A

MATHS EXTENSION INSTRUCTIONS
ADD.L Rd.I, Rs.I 32-bit Add Rd.I ← Rd.I + Rs.I 1 1
ADC.L Rd.I, Rs.I 32-bit Add with Carry Rd.I ← Rd.I + Rs.I + C 1 1

33. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks
210Atmel ATA9999 [Datasheet]
8096C–AVR–01/13

