

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f785t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

QFN (4x4x0.9) Pin Diagram

TABLE 2: QFN PIN SUMMARY

I/O	Pin	Analog	Comp.	Op Amps	PWM	Timers	ССР	Interrupt	Pull-ups	Basic
RA0	16	AN0	C1IN+		—			IOC	Y	ICSPDAT
RA1	15	AN1/VREF	C12IN0-		—	—		IOC	Y	ICSPCLK
RA2	14	AN2	C1OUT	—	—	T0CKI		INT/IOC	Y	—
RA3 ⁽¹⁾	1	_	_	_	_	_	_	IOC	Y	MCLR/VPP
RA4	20	AN3	_	—	—	T1G	—	IOC	Y	OSC2/CLKOUT
RA5	19	—	_	_	—	T1CKI	—	IOC	Y	OSC1/CLKIN
RB4	10	AN10	_	OP2-	—	—	—	—	—	—
RB5	9	AN11	-	OP2+	—	—	—	—	—	—
RB6 ⁽²⁾	8	—	_	—	—	—	—	—	—	—
RB7	7	—			SYNC	—	_	—	—	—
RC0	13	AN4	C2IN+	—	—	_		—	—	—
RC1	12	AN5	C12IN1-		PH1	—		—	—	—
RC2	11	AN6	C12IN2-	OP2	_	_		_	_	—
RC3	4	AN7	C12IN3-	OP1	—	_		—	—	—
RC4	3	—	C2OUT	—	PH2	—	—	—	—	—
RC5	2	—			—	—	CCP1	—	—	—
RC6	5	AN8	—	OP1-	—	_		—	—	—
RC7	6	AN9	_	OP1+	_	_	_	_	—	_
—	18	—	—	—	—	—	—	—	—	Vdd
_	17	_	_	_	_	—	_	_	—	Vss

Note 1: Input only.

2: Open drain.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CONFIG	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
OSCCON	—	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 q000	-110 q000
OSCTUNE	—	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
PIE1	EEIE	ADIE	CCP1IE	C2IE	C1IE	OSFIE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	0000 0000	0000 0000

TABLE 3-4:	SUMMARY OF REGISTERS	ASSOCIATED WITH	CLOCK SOURCES
------------	----------------------	------------------------	----------------------

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0', q = value depends on condition. Shaded cells are not used by oscillators.

Note 1: See Register 15.2 for operation of all Configuration Word bits.

4.3.1 PORTB PIN DESCRIPTIONS AND DIAGRAMS

Each PORTB pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the PWM, operational amplifier, or the A/D, refer to the appropriate section in this Data Sheet.

4.3.1.1 RB4/AN10/OP2-

The RB4/AN10/OP2- pin is configurable to function as one of the following:

- General purpose I/O
- Analog input to the A/D
- Analog input to Op Amp 2

4.3.1.2 RB5/AN11/OP2+

The RB5/AN11/OP2+ pin is configurable to function as one of the following:

- General purpose I/O
- Analog input to the A/D
- Analog input to Op Amp 2

FIGURE 4-7: BLOCK DIAGRAM OF RB4 AND RB5

4.3.1.3 RB6

The RB6 pin is configurable to function as the following:

• Open drain general purpose I/O

FIGURE 4-8: BLOCK DIAGRAM OF RB6

4.3.1.4 RB7/SYNC

The RB7/SYNC pin is configurable to function as one of the following:

- General purpose I/O
- PWM synchronization input and output

FIGURE 4-9:

BLOCK DIAGRAM OF RB7

7.2 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	EEIE	ADIE	CCP1IE	C2IE	C1IE	OSFIE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2	Timer2 Mo	dule Period r	egister						1111 1111	1111 1111
T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR2	Holding Re	egister for the	e 8-bit TMR2	Register					0000 0000	0000 0000

Legend: -x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

9.0 COMPARATOR MODULE

The Comparator module has two separate voltage comparators: Comparator 1 (C1) and Comparator 2 (C2).

Each comparator offers the following list of features:

- Control and Configuration register
- Comparator output available externally
- Programmable output polarity
- Interrupt-on-change flags
- Wake-up from Sleep
- Configurable as feedback input to the PWM
- Programmable four input multiplexer
- Programmable two input reference selections
- Programmable speed/power
- Output synchronization to Timer1 clock input (Comparator C2 only)

9.1 Control Registers

Both comparators have separate control and Configuration registers: CM1CON0 for C1 and CM2CON0 for C2. In addition, Comparator C2 has a second control register, CM2CON1, for synchronization control and simultaneous reading of both comparator outputs.

9.1.1 COMPARATOR C1 CONTROL REGISTER

The CM1CON0 register (shown in Register 9-1) contains the control and Status bits for the following:

- Comparator enable
- · Comparator input selection
- Comparator reference selection
- Output mode
- Comparator speed

Setting C1ON (CM1CON0<7>) enables Comparator C1 for operation.

Bits C1CH<1:0> of the CM1CON0 Register select the comparator input from the four analog pins AN<7:5,1>.

Note:	To use AN<7:5,1> as analog inputs the
	appropriate bits must be programmed to
	'1' in the ANSEL0 register.

Setting C1R of the CM1CON0 Register selects the C1VREF output of the comparator voltage reference module as the reference voltage for the comparator. Clearing C1R selects the C1IN+ input on the RA0/AN0/C1IN+/ICSPDAT pin.

The output of the comparator is available internally via the C1OUT flag of the CM1CON0 Register. To make the output available for an external connection, the C1OE bit of the CM1CON0 Register must be set.

The polarity of the comparator output can be inverted by setting the C1POL bit of the CM1CON0 Register. Clearing C1POL results in a non-inverted output.

A complete table showing the output state versus input conditions and the polarity bit is shown in Table 9-1.

TABLE 9-1: C1 OUTPUT STATE VERSUS INPUT CONDITIONS

Input Condition	C1POL	C10UT
C1VN > C1VP	0	0
C1VN < C1VP	0	1
C1VN > C1VP	1	1
C1VN < C1VP	1	0

Note 1: The internal output of the comparator is latched at the end of each instruction cycle. External outputs are not latched.

- 2: The C1 interrupt will operate correctly with C1OE set or cleared.
- **3:** To output C1 on RA2/AN2/T0CKI/INT/ C1OUT:(C1OE = 1) and (C1ON = 1) and (TRISA<2> = 0).

C1SP of the CM1CON0 Register configures the speed of the comparator. When C1SP is set, the comparator operates at its normal speed. Clearing C1SP operates the comparator in a slower, low-power mode.

REGISTER	R 9-2: CM2C	ON0: COMP	ARATOR C2	2 CONTROL I	REGISTER 0		
R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH1	C2CH0
bit 7	·					÷	bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7	C2ON: Comp 1 = C2 Comp 0 = C2 Comp	parator C2 Ena parator is enab parator is disab	ible bit led led				
bit 6	C2OUT: Com <u>If C2POL = 1</u> C2OUT = 1 C2OUT = 0 <u>If C2POL = 0</u> C2OUT = 1 C2OUT = 1 C2OUT = 0	parator C2 Ou (inverted pola , C2VP < C2V , C2VP > C2V (non-inverted , C2VP > C2V , C2VP < C2V	itput bit <u>rity):</u> N N <u>polarity):</u> N				
bit 5	C2OE: Comp 1 = C2OUT is 0 = C2OUT is	earator C2 Out s present on R s internal only	put Enable bit C4/C2OUT/PH	H2 ⁽¹⁾			
bit 4	C2POL: Com 1 = C2OUT k 0 = C2OUT k	parator C2 Ou ogic is inverted ogic is not inve	utput Polarity S I erted	Select bit			
bit 3	C2SP: Comp 1 = C2 opera 0 = C2 opera	arator C2 Spe tes in normal s tes in low pow	ed Select bit speed mode er, slow speed	I mode.			
bit 2	C2R: Compa 1 = C2VP cor 0 = C2VP cor	rator C2 Refer nnects to C2Vi nnects to RC0	ence Select bi REF /AN4/C2IN+	ts (non-invertin	g input)		
bit 1-0	C2CH<1:0>: 00 = C2VN o 01 = C2VN o 10 = C2VN o 11 = C2VN o	Comparator C f C2 connects f C2 connects f C2 connects f C2 connects f C2 connects	2 Channel Sel to RA1/AN1/C to RC1/AN5/C to RC2/AN6/C to RC3/AN7/C	lect bits 12IN0-/VREF/IC 12IN1-/PH1 12IN2-/OP2 12IN3-/OP1	CSPCLK		
Note 1:	C2OUT will only o	drive RC4/C2C	OUT/PH2 if: (C	2OE = 1) and (C2ON = 1) an	d (TRISC<4> =	0).

10.2.1 VR STABILIZATION PERIOD

When the Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. See **Section 19.0** "**Electrical Specifications**" for the minimum delay requirement.

2: VREN is fixed high for PIC16HV785 device.

TABLE 10-1: REGISTERS ASSOCIATED WITH COMPARATOR AND VOLTAGE REFERENCE MODULES MODULES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL0	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
CM1CON0	C10N	C1OUT	C10E	C1POL	C1SP	C1R	C1CH1	C1CH0	0000 0000	0000 0000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH1	C2CH0	0000 0000	0000 0000
CM2CON1	MC1OUT	MC2OUT	-	-	-	-	T1GSS	C2SYNC	0010	0010
PIE1	EEIE	ADIE	CCP1IE	C2IE	C1IE	OSFIE	TMR2IE	TMR1IE	00000	00000
PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	00000	00000
PORTA	-	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
REFCON	-	—	BGST	VRBB	VREN	VROE	CVROE	-	00 000-	00 000-
TRISA	-	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
VRCON	C1VREN	C2VREN	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

12.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital converter (A/D) allows conversion of an analog input signal to a 10-bit binary representation of that signal. The PIC16F785/HV785 has twelve analog I/O inputs, plus two internal inputs, multiplexed into one sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a binary result via successive approximation and stores the result in a 10-bit register. The voltage reference used in the conversion is software selectable to either VDD or a voltage applied by the VREF pin. Figure 12-1 shows the block diagram of the A/D on the PIC16F785/HV785.

REGISTER	12-3: ADCC	DN0: A/D CON	NTROL REC	GISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7	ADFM: A/D 1 = Right jus 0 = Left justi	Result Formed tified fied	Select bit				
bit 6	VCFG : Volta 1 = VREF pin 0 = VDD	ge Reference b	it				
bit 5-2	CHS<3:0>: / 0000 = Cha 0001 = Cha 0010 = Cha 0011 = Cha 0100 = Cha 0101 = Cha 0110 = Cha 1000 = Cha 1001 = Cha 1001 = Cha 1011 = Cha 1011 = Cha 1011 = Cha 1100 = CVR 1101 = VR	Analog Channel nnel 00 (AN0) nnel 01 (AN1) nnel 02 (AN2) nnel 03 (AN3) nnel 03 (AN3) nnel 05 (AN5) nnel 05 (AN5) nnel 06 (AN6) nnel 07 (AN7) nnel 08 (AN8) nnel 09 (AN9) nnel 10 (AN10) nnel 11 (AN11) EF erved. Do not us	Select bits se. se.				
bit 1	$GO/\overline{DONE}: A$ $1 = A/D conv This bit is 0 = A/D conv$	A/D Conversion version cycle in s automatically version complet	Status bit progress. Se cleared by ha ed/not in prog	etting this bit star ardware when th gress	rts an A/D con ne A/D convers	version cycle. sion has complete	ed.
bit 0	ADON: A/D 1 = A/D conv 0 = A/D conv	Enable bit /erter module is /erter is shut-off	enabled and consum	nes no operating	g current		

13.8 PWM Configuration

When configuring the Two-Phase PWM, care must be taken to avoid active output levels from the PH1 and PH2 pins before the PWM is fully configured. The following sequence is suggested before the TRISC register or any of the Two-Phase PWM control registers are first configured:

- Output inactive (OFF) levels to the PORTC RC1/ AN5/C12IN1-/PH1 and RC4/C2OUT/PH2 pins.
- Clear TRISC bits 1 and 4 to configure the PH1 and PH2 pins as outputs.
- Configure the PWMCLK, PWMPH1, PWMPH2, and PWMCON1 registers.
- Configure the PWMCON0 register.

EXAMPLE 13-1: PWM SETUP EXAMPLE

```
;Example to configure PH1 as a free running PWM output using the SYNC output as the duty cycle
itermination feedback.
;This requires an external connection between the SYNC output and the comparator input.
;SYNC out = RB7 on pin 10
;C1 inverting input = RC2/AN6 on pin 14
;Configure PH1, PH2 and SYNC pins as outputs
;First, ensure output latches are low
   BCF
          PORTC,1
                        ;PH1 low
   BCF
                         ; PH2 low
           PORTC,4
                        ;SYNC low
   BCF
         PORTB.7
;Configure the I/Os as outputs
   BANKSEL TRISB
   BCF TRISC,1
                       ;PH1 output
         TRISC,4
   BCF
                        ;PH2 output
   BCF
          TRISB,7
                         ;SYNC output
;PH1 shares its function with AN5
;Configure AN5 as digital I/O
  BCF
         ANSEL0,5 ;AN5 is digital, all others default as analog
;Configure the PWM but don't enable PH1 or PH2 yet
  BANKSEL PWMCLK
;PWM control setup
  MOVLW B'00001100' ; auto shutdown off, no blanking, SYNC on, PH1 and PH2 off
   MOVWF PWMCON0 ;see data sheet page 93
;PWM clock setup
   MOVLW B'00111101' ;pwm_clk = Fosc, 30 clocks in PWM period
                        ;see data sheet page 94
   MOVWF
           PWMCLK
;PH1 setup
  MOVLW B'00101111' ;non-inverted, terminate on C1, Start on clock 15
   MOVWF PWMPH1
                        ;see data sheet page 95
;PH2 setup
  MOVLW B'00110101' ;non-inverted, terminate on C1, Start on clock 21
   MOVWF PWMPH2
                        ;see data sheet page 96
;Configure Comparator 1
  MOVLW B'10011110' ;C1 on, internal, inverted, normal speed, +:C1VREF, -:AN6
   MOVWF
          CM1CON0
                         ;see data sheet page 68
;Configure comparator voltage reference
   BANKSEL VRCON
   MOVIW B'10101100'
                      ;C1VREN on, low range, CVREF= VDD/2
  MOVWF VRCON
                        ;see data sheet page 72
; Everything is setup at this point so now it is time to enable PH1
   BANKSEL PWMCON0
   BSF
          PWMCON0, PH1EN ; enable PH1
;Module is running autonomously at this point
```

15.2.1 POWER-ON RESET

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. A minimum rise rate for VDD is required. See **Section 19.0 "Electrical Specifications"** for details. If the BOR is enabled, the minimum rise rate specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see **Section 15.2.4 "Brown-Out Reset (BOR)"**)

The POR circuit, on this device, has a POR re-arm circuit. This circuit is designed to ensure a re-arm of the POR circuit if VDD drops below a preset re-arming voltage (VPARM) for at least the minimum required time. Once VDD is below the re-arming point for the minimum required time, the POR Reset will reactivate and remain in Reset until VDD returns to a value greater than VPOR. At this point, a 1 μ s (typical) delay will be initiated to allow VDD to continue to ramp to a voltage safely above VPOR.

When the device starts normal operation (exits the Reset condition), device operating parameters

(i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*" (DS00607).

15.2.2 MASTER CLEAR (MCLR)

PIC16F785/HV785 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

The behavior of the ESD protection on the MCLR pin has been altered from earlier devices of this family. Voltages applied to the pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 15-1, is suggested.

FIGURE 15-2: RECOMMENDED MCLR CIRCUIT

An internal MCLR option is enabled by clearing the MCLRE bit in the Configuration Word. When cleared, MCLR is internally tied to VDD and an internal Weak Pull-up is enabled for the MCLR pin. The VPP function of the RA3/MCLR/VPP pin is not affected by selecting the internal MCLR option.

15.2.3 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the 31 kHz LFINTOSC oscillator. For more information, see **Section 3.4 "Internal Clock Modes"**. The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if '1') or enable (if '0') the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Time Delay will vary from chip-to-chip and vary due to:

- VDD variation
- Temperature variation
- Process variation

See DC parameters for details (Section 19.0 "Electrical Specifications").

15.2.4 BROWN-OUT RESET (BOR)

The BOREN0 and BOREN1 bits in the Configuration Word select one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBO-REN bit of the PCON Register enables/disables the BOR allowing it to be controlled in software. By selecting BOREN<1:0>, the BOR is automatically disabled in Sleep to conserve power, and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 15.2 for the Configuration Word definition.

If VDD falls below VBOR for greater than parameter (TBOR), see **Section 19.0** "**Electrical Specifica-tions**", the Brown-out situation will reset the device. This will occur regardless of the VDD slew rate. A Reset is not assured if VDD falls below VBOR for less than parameter (TBOR).

On any Reset (Power-on, Brown-out Reset, Watchdog, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 15-3). The Power-up Timer will now be invoked, if enabled, and will keep the chip in Reset an additional 64 ms.

Note:	The Power-up Timer is enabled by the
	PWRTE bit in the Configuration Word.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

TABLE 15-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	10x
MCLR Reset during normal operation	000h	000u uuuu	uuu
MCLR Reset during Sleep	000h	0001 Ouuu	uuu
WDT Reset	000h	0000 uuuu	uuu
WDT Wake-up	PC + 1	uuu0 Ouuu	uuu
Brown-out Reset	000h	0001 luuu	1u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

17.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in regis- ter 'f'.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruc- tion is executed. If the result is '0', then a NOP is executed instead, making it a two-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruc- tion is executed. If the result is '0', a NOP is executed instead, making it a two-cycle instruction.

SUBLW	Subtract W from Literal						
Syntax:	[<i>label</i>] SUBLW k						
Operands:	$0 \le k \le 255$						
Operation:	$k \text{ - } (W) \to (W)$						
Status Affected:	C, DC, Z						
Encoding:	11	110x	kkkk	kkkk			
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.						
C = 0; result is positive of zero C = 0; result is negative							

SUBWF	Subtract W from f						
Syntax:	[label]	SUBWF	f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(f) - (W) \rightarrow (dest)						
Status Affected:	C, DC, Z						
Encoding:	00 0010 dfff ffff						
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

Syntax: [label] TRIS f Operands: $5 \leq f \leq 6$ Operation: (W) \rightarrow TRIS register f; Status Affected: None 00 Encoding: 0000 0110 Offf Description: The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them. Words: 1 Cycles: 1 Example: To maintain upward compatibility with future PIC[®] products, do not use this instruction.

Load TRIS Register

TRIS

XORLW	Exclusive OR Literal with W						
Syntax:	[<i>label</i>] XORLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W) .XOR. $k \rightarrow (W)$						
Status Affected:	Z						
Encoding:	11 1010 kkkk kkkk						
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register						

C = 1; result is positive or zero C = 0; result is negative

SWAPF	Swap Nibbles in f						
Syntax:	[<i>label</i> SWAPF f,d]						
Operands:	$0 \le f \le 127$ d $\in [0,1]$						
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)						
Status Affected:	None						
Encoding:	00 1110 dfff ffff						
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.						

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾		32.768	_	kHz	LP mode (complementary input
							only)
			DC	—	4	MHz	XT mode
			DC	—	20	MHz	HS mode
			DC	—	20	MHz	EC mode
		Oscillator Frequency ⁽¹⁾	—	32.768	—	kHz	LP Osc mode
			—	4	—	MHz	INTOSC mode
			DC	—	4	MHz	RC Osc mode
			0.1	—	4	MHz	XT Osc mode
			1	—	20	MHz	HS Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	—	0.3052	—	μS	LP mode (complementary input only)
			50	—	∞	ns	HS Osc mode
			50	—	∞	ns	EC Osc mode
			250	—	8	ns	XT Osc mode
		Oscillator Period ⁽¹⁾		0.3052		μS	LP Osc mode
			—	250	—	ns	INTOSC mode
			250		—	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	1,000	ns	HS Osc mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External CLKIN (OSC1) High	2*	—		μS	LP oscillator, Tosc L/H duty cycle
	TosH	External CLKIN Low	20*	—	—	ns	HS oscillator, Tosc L/H duty cycle
			100 *	—	_	ns	XT oscillator, Tosc L/H duty cycle
4	TosR,	External CLKIN Rise	—	—	50*	ns	LP oscillator
	TosF	External CLKIN Fall	—	—	25*	ns	XT oscillator
			—	—	15*	ns	HS oscillator

TABLE 19-1: EXTERNAL CLOCK TIMING REQUIREMENTS

These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

FIGURE 20-39: TYPICAL VP6 REFERENCE VOLTAGE OVER TEMPERATURE (5V)

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimens	Dimension Limits		NOM	MAX			
Number of Pins	Ν	20					
Pitch	е	0.50 BSC					
Overall Height	А	0.80 0.90 1.00					
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Width	E	4.00 BSC					
Exposed Pad Width	E2	2.60 2.70 2.80					
Overall Length	D	4.00 BSC					
Exposed Pad Length	D2	2.60	2.70	2.80			
Contact Width	b	0.18	0.25	0.30			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	_	_			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B