

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv785-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Міскоснір **РІС16F785/HV785**

20-Pin Flash-Based 8-Bit CMOS Microcontroller

High-Performance RISC CPU:

- Only 35 Instructions to Learn:
 - All single-cycle instructions except branches
- · Operating Speed:
 - DC 20 MHz oscillator/clock input
- DC 200 ns instruction cycle
- Interrupt Capability
- 8-Level Seep Hardware Stack
- Direct, Indirect and Relative Addressing modes

Special Microcontroller Features:

- Precision Internal Oscillator:
- Factory calibrated to ±1%
- Software selectable frequency range of 8 MHz to 32 kHz
- Software tunable
- Two-Speed Start-up mode
- Crystal fail detect for critical applications
- Clock mode switching during operation for power savings
- Power-Saving Sleep mode
- Wide Operating Voltage Range (2.0V-5.5V)
- Industrial and Extended Temperature Range
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR) with Software Control
 Option
- Enhanced Low-Current Watchdog Timer (WDT) with on-chip Oscillator (software selectable nominal 268 seconds with full prescaler) with Software Enable
- Multiplexed Master Clear with Pull-up/Input Pin
- Programmable Code Protection
- High-Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM retention: > 40 years

Low-Power Features:

- Standby Current:
- 30 nA @ 2.0V, typical
- Operating Current:
 - 8.5 $\mu A @$ 32 kHz, 2.0V, typical
- 100 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current:
- 1 μA @ 2.0V, typical
- Timer1 Oscillator Current:
- 2 μA @ 32 kHz, 2.0V, typical

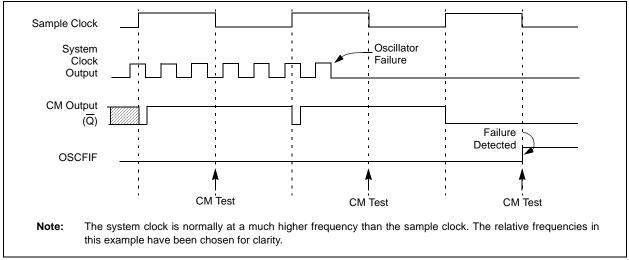
Peripheral Features:

- High-Speed Comparator module with:
 - Two independent analog comparators
 Programmable on-chip voltage reference (CVREF) module (% of VDD)
 - 1.2V band gap voltage reference
 - Comparator inputs and outputs externally accessible
 - < 40 ns propagation delay
 - 2 mv offset, typical
- Operational Amplifier module with 2 independent Op Amps:
 - 3 MHz GBWP, typical
 - All I/O pins externally accessible
- Two-Phase Asynchronous Feedback PWM module:
 - Complementary output with programmable dead band delay
 - Infinite resolution analog duty cycle
 - Sync Output/Input for multi-phase PWM
 - FOSC/2 maximum PWM frequency
- A/D Converter:
 - 10-bit resolution and 14 channels (2 internal)
- 17 I/O pins and 1 Input-only Pin:
 - High-current source/sink for direct LED drive
 - Interrupt-on-pin change
 - Individually programmable weak pull-ups
- Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator, if INTOSC mode selected
- Timer2: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler
- Capture, Compare, PWM module:
 - 16-bit Capture, max resolution 12.5 ns
 Compare, max resolution 200 ns
 - Compare, max resolution 200 hs
 - 10-bit PWM with 1 output channel, max frequency 20 kHz
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- Shunt Voltage Regulator (PIC16HV785 only):
 - 5 volt regulation
 - 4 mA to 50 mA shunt range

2.2.2.6 PCON Register

The Power Control register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Timer (WDT) Reset (WDT) and an external MCLR Reset.

REGISTER 2-6: PCON: POWER CONTROL REGISTER


U-0	U-0	U-0	R/W-1	U-0	U-0	R/W-0	R/W-x				
	—	_	—	SBOREN ⁽¹⁾	_	—	POR				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 7-5 bit 4	(1)										
bit 3-2	Unimplement	ted: Read as ')'								
bit 1	1 = No Power	on Reset Status -on Reset occu on Reset occur	urred	set in software	after a Power-c	on Reset occurs	5)				
bit 0	1 = No Brown	out Reset Statu -out Reset occ out Reset occu	urred	set in software	e after a Brown-	out Reset occu	rs)				

Note 1: BOREN<1:0> = 01 in Configuration Word for this bit to control the $\overline{\text{BOR}}$.

3.7.1 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, the execution of a SLEEP instruction, or a modification of the SCS bit. While in Fail-Safe condition, the PIC16F785/HV785 uses the internal oscillator as the system clock source. The IRCF bits in the OSCCON Register can be modified to adjust the internal oscillator frequency without exiting the Fail-Safe condition.

The Fail-Safe condition must be cleared before the OSFIF flag can be cleared.

FIGURE 3-9: FSCM TIMING DIAGRAM

3.7.2 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited a Reset or Sleep condition and the Oscillator Start-up Timer (OST) has expired. If the external clock is EC or RC mode, monitoring will begin immediately following these events.

For LP, XT or HS mode, the external oscillator may require a start-up time considerably longer than the FSCM sample clock time; a false clock failure may be detected (see Figure 3-9). To prevent this, the internal oscillator is automatically configured as the system clock and functions until the external clock is stable (the OST has timed out). This is identical to Two-Speed Start-up mode. Once the external oscillator is stable, the LFINTOSC returns to its role as the FSCM source.

Note: Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the OSTS bit in the OSCCON Register to verify the oscillator start-up and system clock switchover has successfully completed.

REGISTER 4-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1			R/W-1	R/W-1	R/W-1	
			TRISA3 ⁽¹⁾	TRISA2	TRISA1	TRISA0		
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-0	TRISA<5:0>: PORTA Tri-State Control bit ^{(1), (2)}
	1 = PORTA pin configured as an input (tri-stated)
	0 = PORTA pin configured as an output
bit 0	C: Carry/ $\overline{\text{Borrow}}$ bit (addwf, addlw, sublw, subwf instructions) ⁽¹⁾
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred

Note 1: TRISA<3> always reads '1'.

2: TRISA<5:4> always reads '1' in XT, HS and LP OSC modes.

4.2 Additional Pin Functions

Every PORTA pin on the PIC16F785/HV785 has an interrupt-on-change option and a weak pull-up option. The next three sections describe these functions.

4.2.1 WEAK PULL-UPS

Each of the PORTA pins has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-3. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit in the (OPTION Register. The weak pull-up on RA3 is automatically enabled when RA3 is configured as MCLR.

REGISTER 4-3: WPUA: WEAK PULL-UP REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	— — WPUA5 ⁽⁴⁾ WPUA4 ⁽⁴⁾		WPUA3 ⁽³⁾	WPUA2	WPUA1	WPUA0	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 WPUA<5:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global RAPU must be enabled for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISA = 0).

3: The RA3 pull-up is automatically enabled when configured as MCLR in the Configuration Word.

4: WPUA<5:4> always reads '1' in XT, HS and LP OSC modes.

8.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP. The special event trigger is generated by a compare match and will clear both TMR1H and TMR1L registers.

TABLE 8-1: CCP MODE – TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 8-1: CCP1CON: CCP OPERATION REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DC1B1	DC1B0	CCP1M3 CCP1M2		CCP1M1	CCP1M0
bit 7							bit 0

Legend:											
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit,	, read as '0'							
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 7-6	Unimplen	Unimplemented: Read as '0'.									
bit 5-4	DC1B<1:0	>: PWM Duty Cycle Least	Significant bits								
	<u>Capture m</u> Unused	node:									
	<u>Compare</u> Unused	mode:									
	<u>PWM moo</u> These bits		NM duty cycle. The eight MSb	os are found in CCPR1L.							
bit 3-0	CCP1M<3	CCP1M<3:0>: CCP Mode Select bits									
	0001 = U 0010 = C 0011 = U 0100 = C 0101 = C 0110 = C 1000 = C 1001 = C 1010 = C	nused (reserved) apture mode, every falling e apture mode, every rising e apture mode, every 4th risi apture mode, every 16th ris ompare mode, set output o ompare mode, clear output	ut on match (CCP1IF bit is set edge edge ng edge	,							
	is 110x = P		s enabled. CCP1 pin is unaffe high true.	MR1 is reset, and A/D conversio cted.)							

- **Note 1:** For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

8.3.3 OPERATION IN SLEEP MODE

In Sleep mode, all clock sources are disabled. Timer2 will not increment and the state of the module will not change. If the RC5/CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state.

8.3.3.1 OPERATION WITH FAIL-SAFE CLOCK MONITOR

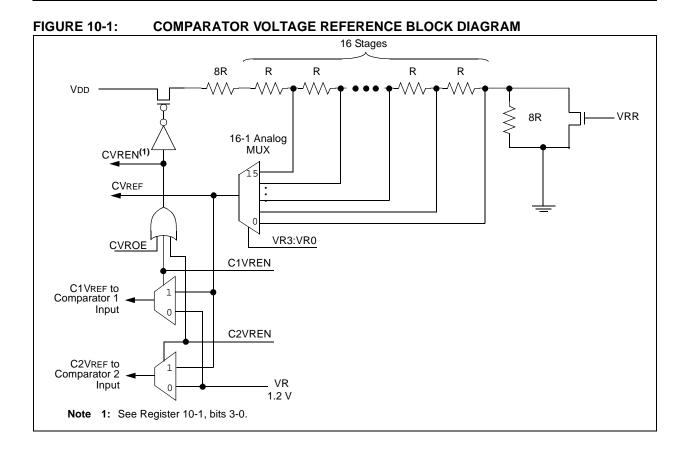
If the Fail-Safe Clock Monitor is enabled, a clock failure will force the CCP to be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

See **Section 3.0** "**Clock Sources**" for additional details.

8.3.4 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

8.3.5 SETUP FOR PWM OPERATION


The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Configure the PWM pin (RC5/CCP1) as an input by setting the TRISC<5> bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- 4. Set the PWM duty cycle by loading the CCPR1L register and CCP1CON<5:4> bits.
- 5. Configure and start TMR2:
 - Clear the TMR2 interrupt flag bit by clearing the TMR2IF bit of the PIR1 Register.
 - Set the TMR2 prescale value by loading the T2CKPS bits of the T2CON Register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON Register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until TMR2 overflows (TMR2IF bit is set).
 - Enable the RC5/CCP1 pin output by clearing the TRISC<5> bit.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCP1CON	-	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
CCPR1L	Capture/Compare/PWM Register 1 Low Byte					XXXX XXXX	uuuu uuuu			
CCPR1H	Capture/C	ompare/PWI	V Register 1	High Byte					XXXX XXXX	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	EEIE	ADIE	CCP1IE	C2IE	C1IE	OSFIE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2	Timer2 Mo	dule Period	Register						1111 1111	1111 1111
T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR2	Timer2 Mo	dule Registe	er						0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111

TABLE 8-4:REGISTERS ASSOCIATED WITH CCP AND TIMER2

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the CCP or Timer2 modules.

NOTES:

Mnen	nonic,	Description	Qualas		14-Bit	Opcode	•	Status	Natas
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGI	STER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		-
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIS		ATION	IS				
BCF	f. b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
	, -	LITERAL AND CONTRO		IONS					-
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	-	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	_	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010		kkkk	Z	

TABLE 17-2: PIC16F785/HV785 INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

17.2 Instruction Descriptions

ADDLW	Add Literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.				

ANDWF	AND W with f				
Syntax:	[<i>label</i>] ANDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .AND. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

ADDWF	Add W and f			
Syntax:	[<i>label</i>] ADDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) + (f) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

BCF	Bit Clear f			
Syntax:	[<i>label</i>] BCF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f < b >)$			
Status Affected:	None			
Description:	Bit 'b' in register 'f' is cleared.			

ANDLW	AND Literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.			

BSF	Bit Set f			
Syntax:	[<i>label</i>] BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Description:	Bit 'b' in register 'f' is set.			

IORLW	Inclusive OR Literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.				

IORWF	Inclusive OR W with f				
Syntax:	[<i>label</i>] IORWF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$				
Operation:	(W) .OR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

Syntax:	[label]	MOVLV	V k		
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Encoding:	11	00xx	kkkk	kkkk	
	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as 0's.				
MOVWF	will asse Move W		0' s .		
MOVWF Syntax:		to f			
	Move W	to f MOVW			
Syntax:	Move W	to f MOVW			
Syntax: Operands:	Move W [<i>label</i>] 0 ≤ f ≤ 12	to f MOVW			
Syntax: Operands: Operation:	Move W [label] $0 \le f \le 12$ (W) \rightarrow (f	to f MOVW		ffff	

Move Literal to W

MOVLW

Description:

Move data from W register to register 'f'.

MOVF	Move f						
Syntax:	[label] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$(f) \rightarrow (dest)$						
Status Affected:	Z						
Encoding:	00 1000 dfff ffff						
Description:	The contents of register 'f' is moved to a destination depen- dent upon the status of 'd'. If 'd' = 0, destination is W register. If 'd' = 1, the destination is file register 'f' itself. 'd' = 1 is useful to test a file register since status flag Z is						

affected.

NOP	No Operation					
Syntax:	[label]	NOP				
Operands:	None					
Operation:	No operation					
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No operation.					

18.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

18.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

19.3 DC Characteristics: PIC16F785/HV785-E (Extended)^{(1), (2)}

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le Ta \le +125^{\circ}C$ for extended					
Param		_ .			Conditions		
No.	Device Characteristics	Min	Тур†	Мах	Units	Vdd	
D010E	Supply Current (IDD)	—	11	23	μA	2.0	Fosc = 32 kHz
		—	18	38	μA	3.0	LP Oscillator mode
		_	35	75	μA	5.0	
D011E		—	140	240	μA	2.0	Fosc = 1 MHz
		—	220	380	μΑ	3.0	XT Oscillator mode
		_	380	550	μA	5.0	
D012E		—	260	360	μA	2.0	Fosc = 4 MHz
		—	420	650	μΑ	3.0	XT Oscillator mode
		—	0.8	1.1	mA	5.0	
D013E		—	130	220	μA	2.0	Fosc = 1 MHz
		—	215	360	μA	3.0	EC Oscillator mode
		—	360	520	μA	5.0	
D014E		—	220	340	μA	2.0	Fosc = 4 MHz
		—	375	550	μA	3.0	EC Oscillator mode
		—	0.65	1.0	mA	5.0	
D015E		—	8	20	μA	2.0	Fosc = 31 kHz
		—	16	40	μA	3.0	INTRC mode
		—	31	65	μA	5.0	
D016E		—	340	450	μA	2.0	Fosc = 4 MHz
		_	500	700	μA	3.0	INTOSC mode
		—	800	1200	μΑ	5.0	
D017E		—	230	400	μA	2.0	Fosc = 4 MHz
		—	400	680	μA	3.0	EXTRC mode
		_	0.63	1.1	mA	5.0]
D018E		_	2.6	3.25	mA	4.5	Fosc = 20 MHz
		—	2.8	3.35	mA	5.0	HS Oscillator mode

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

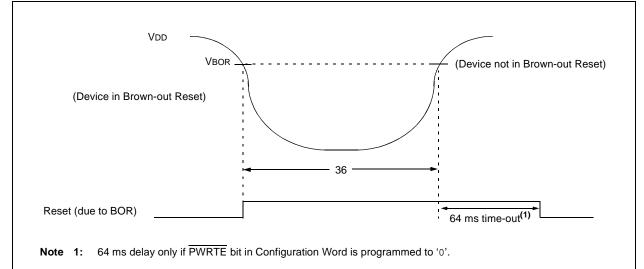
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

19.4 DC Characteristics: PIC16F785/HV785-I (Industrial), PIC16F785/HV785-E (Extended)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature-40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			Vss	—	0.15 Vdd	V	Otherwise
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	Entire range
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	Vss	—	0.2 Vdd	V	
D033		OSC1 (XT and LP modes)	Vss	—	0.3	V	
D033A		OSC1 (HS mode)	Vss	—	0.3 Vdd	V	
	VIH	Input High Voltage					
		I/O ports					
D040 D040A		with TTL buffer	2.0 (0.25 Vdd + 0.8)	_	Vdd Vdd	V V	$4.5V \le VDD \le 5.5V$ Otherwise
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	Entire range
D042		MCLR	0.8 Vdd	_	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	_	Vdd	V	
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	(Note 1)
D070	IPUR	PORTA Weak Pull-up Current	50*	250	400*	μA	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current ⁽²⁾			J		l
D060		I/O ports	—	±0.1	±1	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance} \end{split}$
D060A		Analog inputs	_	±0.1	±1	μA	$VSS \le VPIN \le VDD$
D060B		VREF	_	±0.1	±1	μA	$VSS \le VPIN \le VDD$
D061		MCLR ⁽³⁾	_	±0.1	±5	μA	$VSS \le VPIN \le VDD$
D063		OSC1	—	±0.1	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Vol	Output Low Voltage					
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V
D083		OSC2/CLKOUT (RC mode)	—	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V (Ind.) IOL = 1.2 mA, VDD = 4.5V (Ext.)
	Vон	Output High Voltage					
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = -3.0 mA, VDD = 4.5V
D092		OSC2/CLKOUT (RC mode)	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V (Ind. IOH = -1.0 mA, VDD = 4.5V (Ext.
D193*	Vod	Open-Drain High Voltage			8.5	V	RB6 pin

These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 14.4.1 "Using the Data EEPROM" on page 105.

FIGURE 19-6: BROWN-OUT RESET TIMING AND CHARACTERISTICS

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2	_	_	μS	VDD = 5.0V, -40°C to +85°C
			11	18	24	μS	Extended temperature
31	TWDT	Watchdog Timer Time-out Period	10	17	25	ms	VDD = 5.0V, -40°C to +85°C
		(No Prescaler)	10	17	30	ms	Extended temperature
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28*	64	132*	ms	VDD = 5.0V, -40°C to +85°C
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.0	μS	
35	VBOR	Brown-out Reset Voltage	2.025	_	2.175	V	
36	TBOR	Brown-out Reset Pulse Width	100*	—	_	μS	$VDD \le VBOR (D005)$

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

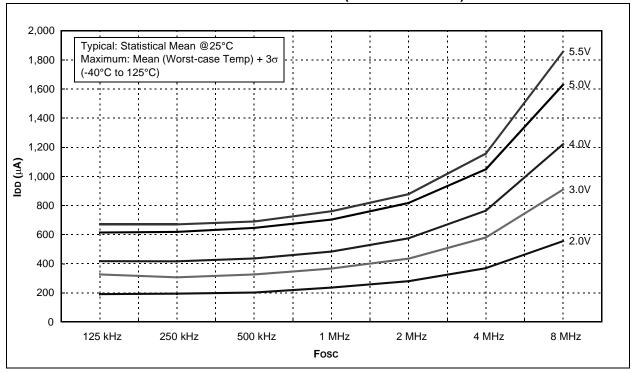
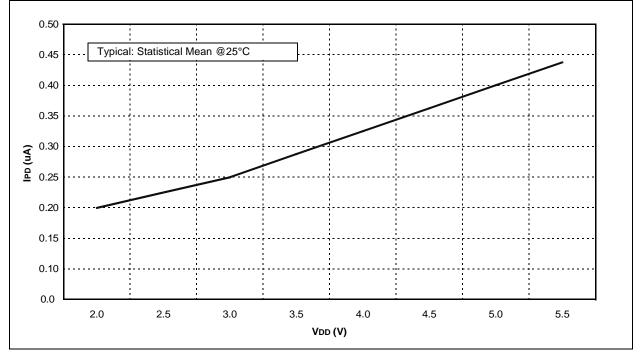
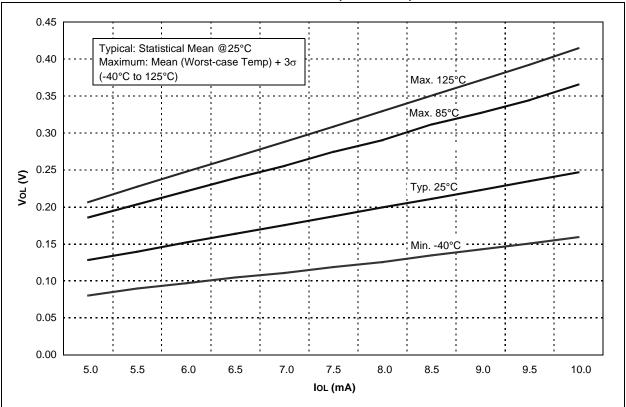
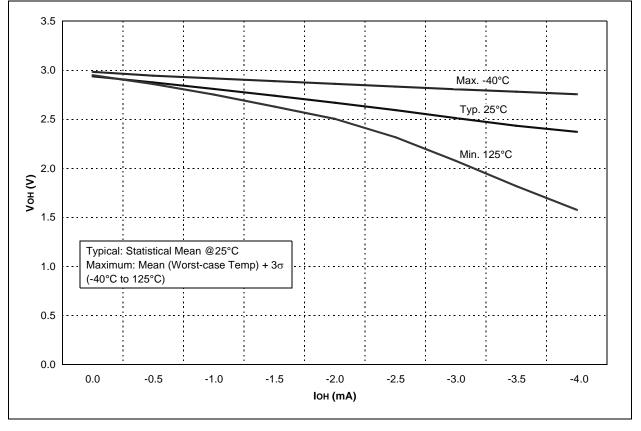




FIGURE 20-12: MAXIMUM IDD vs. Fosc OVER VDD (HFINTOSC MODE)



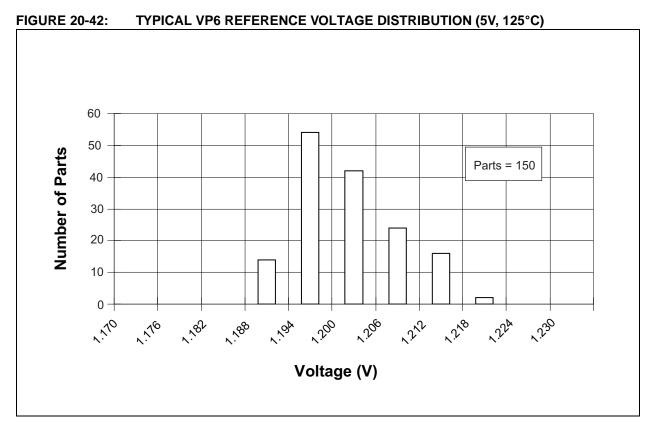
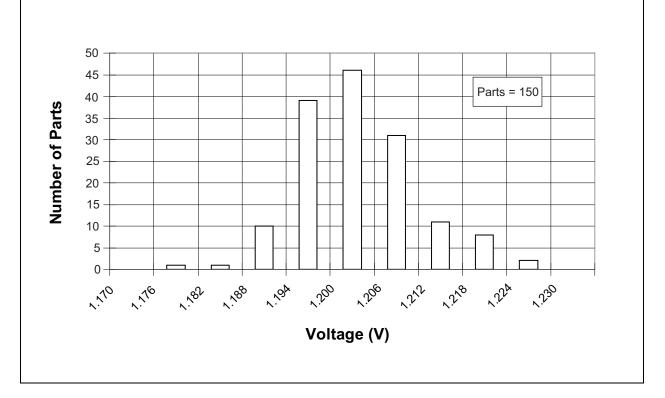



FIGURE 20-43: TYPICAL VP6 REFERENCE VOLTAGE DISTRIBUTION (5V, -40°C)

NOTES:

Μ

MCLR	
Internal	
	9
Data	9
Data EEPROM Memory	
Program	9

0

OPA2CON Register
OPCODE Field Descriptions
AC Specifications
Associated Registers
DC Specifications
OPTION_REG Register
OSCCON Register
Oscillator
Associated Registers
Oscillator Specifications151
Oscillator Start-up Timer (OST)
Specifications154
Oscillator Switching
Fail-Safe Clock Monitor
Two-Speed Clock Start-up
OSCTUNE
Oscillator Tuning Register (Address 90h)

Ρ

Packaging	
PCL and PCLATH	21
Stack	
PCON	
Power Control Register (Address	
8Eh)	
PCON Register	
PICSTART Plus Development Programmer	
PIE1 Register	
Pin Diagram	
Pinout Descriptions	, -
PIC16F684	6
PIR1 Register	
PORTA	
Additional Pin Functions	
Interrupt-on-change	
Weak Pull-up	
Associated Registers	
Pin Descriptions and Diagrams	
RA0	
RA1	
RA2	
RA3	
RA4	
RA5	
Specifications	-
PORTB	
Associated Registers	
Pin Descriptions and Diagrams	
RB4	
RB5	
RB6	
RB7	
PORTC	
Associated Registers	
Associated Neglsters	54, 40

Pin Descriptions and Diagrams	46
RC0	46
RC1	46
RC2	47
RC3	47
RC4	47
RC5	48
RC6	46
RC7	46
Specifications	152
Power-Down Mode (Sleep)	123
Power-up Timer (PWRT)	110
Specifications	154
Power-up Timing Delays	112
Precision Internal Oscillator Parameters	153
Prescaler	
Shared WDT/Timer0	50
Switching Prescaler Assignment	50
Program Memory	9
Map and Stack	9
Programming, Device Instructions	127
PWM. See Two Phase PWM	
PWMCLK Register	94
PWMCON0 Register	93
PWMCON1 Register	101
PWMPH1 Register	95
PWMPH2 Register	

R

Reader Response 2	02
Read-Modify-Write Operations 1	
REFCON (VR Control)	73
Register	
INTCON INTERRUPT CONTROL REGISTER (A	D-
DRESS	
0Bh, 8Bh, 10Bh or 183h)	17
IOCA (Interrupt-on-Change)	37
WPUA (Weak Pull-up PORTA)	36
Registers	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	84
ANSEL (Analog Select) 93, 94, 1	
ANSEL0 (Analog Select 0)	
ANSEL1 (Analog Select 1)	
CCP1CON (CCP Operation)	57
CCPR1H	
CCPR1L	
CM1CON0 (C1 Control)	65
CM1CON0 (C2 Control)	
CM2CON0	
CM2CON1 (C2 Control)	
CONFIG (Configuration Word) 1	
Data Memory Map	
EEADR (EEPROM Address) 1	
EECON1 (EEPROM Control 1) 1	
EECON2 (EEPROM Control 2) 1	
EEDAT (EEPROM Data) 1	
INTCON (Interrupt Control)	
IOCA (Interrupt-on-Change PORTA)	
Op Amp 2 Control Register (OPA2CON)	76
OPTION_REG	
OPTION REGISTER	
OPTION_REG (Option)	
OSCCON (Oscillator Control)	
PCON (Power Control) 1	
PIE1 (Peripheral Interrupt Enable 1)	18