

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv785t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.2 OPTION_REG Register

The Option register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the external RA2/INT interrupt, the TMR0 and the weak pull-ups on PORTA.

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' in the OPTION Register. See Section 5.4 "Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:							
R = Readable	bit W = Y	Writable bit	U = Unimplemented	bit, read as '0'			
-n = Value at F	'OR '1' =	Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	7 RAPU: PORTA Pull-up Enable bit						
	1 = PORTA pull-ups are disabled						
	0 = PORTA pull-ups	are enabled b	by individual port latch values	in WPUA register			
bit 6	INTEDG: Interrupt E	Edge Select bit	t				
	1 = Interrupt on risir	ng edge of RA2	2/AN2/T0CKI/INT/C1OUT pin				
1.1.5	0 = Interrupt on falling	ng eage of RA	2/ANZ/TUCKI/INT/CTOUT pir				
DIT 5	TUCS: TMRU CIOCK	Source Select					
	1 = 1 ransition on RA 0 = Internal instruct	on cycle clock					
hit 4	TOSE: TMR0 Source	e Edge Select	bit				
	1 = Increment on hi	ah-to-low trans	sition on RA2/AN2/T0CKI/INT	/C10UT pin			
	0 = Increment on log	w-to-high trans	sition on RA2/AN2/T0CKI/INT	/C1OUT pin			
bit 3	PSA: Prescaler Ass	ignment bit					
	1 = Prescaler is ass	igned to the W	/DT				
	0 = Prescaler is ass	igned to the Ti	imer0 module				
bit 2-0	PS<2:0>: Prescaler	Rate Select b	vits				
	Bit Value	TMR0 Rate	WDT Rate ⁽¹⁾				
	000	1:2	1:1				
	001	1:4	1:2				
	011	1:16	1:8				
	100	1:32	1:16				
	101	1:04	1 . 3Z 1 : 64				
	111	1:256	1 : 128				

Note 1: A dedicated 16-bit WDT postscaler is available for the PIC16F785/HV785. See Section 15.5 "Watchdog Timer (WDT)" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL0	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
CM1CON0	C10N	C1OUT	C10E	C1POL	C1SP	C1R	C1CH1	C1CH0	0000 0000	0000 0000
CM2CON1	MC1OUT	MC2OUT	-	—	-	—	T1GSS	C2SYNC	0010	0010
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
IOCA	—	-	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	00 0000
OPTION_REG	RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
REFCON	_	_	BGST	VRBB	VREN	VROE	CVROE	_	00 000-	00 000-
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	0000 0000
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
WPUA	—	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111

TABLE 4-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

4.3 PORTB and TRISB Registers

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 4-6). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin). Example 4-2 shows how to initialize PORTB.

Reading the PORTB register (Register 4-5) reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the port data latch.

Pin RB6 is an open drain output. All other PORTB pins have full CMOS output drivers.

The TRISB register controls the direction of the PORTB pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSEL1 (93h) register must be initial-
	ized to configure an analog channel as a
	digital input. Pins configured as analog
	inputs will read '0'.

EXAMPLE 4-2: INITIALIZING PORTB

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRF	PORTB	;Init PORTB
BSF	STATUS, RPO	;Bank 1
BCF	ANSEL1,2	;digital I/O - RB4
BCF	ANSEL1,3	;digital I/O - RB5
MOVLW	30h	;Set RB<5:4> as inputs
MOVWF	TRISB	;and set RB<7:6>
		;as outputs
BCF	STATUS, RPO	;Bank 0

REGISTER 4-5: PORTB: PORTB REGISTER

R/W-x	R/W-x	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	U-0	U-0	U-0	U-0
RB7	RB6	RB5	RB4	_	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 RB<7:4>: PORTB General Purpose I/O Pin bits

1 = Port pin is greater than VIH

0 = Port pin is less than VIL

bit 3-0 Unimplemented: Read as '0'

Note 1: Data latches are unknown after a POR, but each port bit reads '0' when the corresponding analog select bit is '1' (see Register 12-2 on page 82).

REGISTER 4-6: TRISB: PORTB TRI-STATE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 TRISB<7:4>: PORTB Tri-State Control bits

- 1 = PORTB pin configured as an input (tri-stated)
 - 0 = PORTB pin configured as an output

bit 3-0 Unimplemented: Read as '0'

5.3 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. For simplicity, this counter will be referred to as "prescaler" throughout this Data Sheet. The prescaler assignment is controlled in software by the control bit PSA of the OPTION Register. Clearing the PSA bit will assign the prescaler to Timer0. Prescale values are selectable via the PS<2:0> bits of the OPTION Register.

The prescaler is not readable or writable. When assigned to the TimerO module, all instructions writing to the TMRO register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer.

5.4.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 5-1 and Example 5-2) must be executed when changing the prescaler assignment between Timer0 and WDT.

EXAMPLE 5-1:	CHANGING PRESCALER
	(TIMER0→WDT)

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and
		; prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'00101111'	;Required if desired
MOVWF	OPTION_REG	; PS2:PS0 is
CLRWDT		; 000 or 001
		;
MOVLW	b'00101xxx'	;Set postscaler to
MOVWF	OPTION_REG	; desired WDT rate
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 5-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 5-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and ; prescaler
BSF	STATUS, RPO	;Bank 1
BCF	STATUS, RP1	;
MOVLW	b'xxxx0xxx'	;Select TMR0, ; prescale, and ; clock source
MOVWF BCF	OPTION_REG STATUS,RP0	; ;Bank 0

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL0	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
INTCON	GIE	PEIE	TOIE	INTE	RAIE	TOIF	INTF	RAIF	0000 0000	0000 0000
OPTION_REG	RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TMR0	Timer0 Module Register								xxxx xxxx	uuuu uuuu
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

REGISTER	9-1: CM1C	ON0: COMP	ARATOR C1	CONTROL	REGISTER 0		
R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C10N	C1OUT	C1OE	C1POL	C1SP	C1R	C1CH1	C1CH0
bit 7							bit 0
l egend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit rea	id as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
<u> </u>							
bit 7	C1ON: Comp	arator C1 Ena	ble bit				
	1 = C1 Comp	arator is enabl	ed				
	0 = C1 Comp	arator is disab	led				
bit 6	C1OUT: Com	parator C1 Ou	itput bit				
	<u>If C1POL = 1</u>	(inverted pola	<u>rity):</u>				
	C1OUT =	1, C1VP < C	1VN				
	C1OUT =	0, C1VP > C	1VN				
	$\frac{\text{If C1POL} = 0}{\text{C1OUT}} = 0$	(non-inverted	polarity):				
	C100T =	0. C1VP < C1	VN				
bit 5	C1OE: Comp	arator C1 Out	out Enable bit				
	1 = C1OUT is	s present on th	e RA2/AN2/T	OCKI/INT/C10	UT pin ⁽¹⁾		
	0 = C1OUT is	internal only			·		
bit 4	C1POL: Com	parator C1 Ou	tput Polarity S	Select bit			
	1 = C1OUT lo	ogic is inverted					
	0 = C1OUT lo	ogic is not inve	rted				
bit 3	C1SP: Comp	arator C1 Spe	ed Select bit				
	1 = C1 opera	tes in normal s	peed mode				
	0 = C1 opera	tes in low-pow	er, slow speed	d mode			
bit 2	C1R: Compa	rator C1 Refer	ence Select bi	it (non-inverting	g input)		
	1 = C1VP cor	nnects to C1V					
			ANU/CTIN+/IC	SPDAT			
bit 1-0	C1CH<1:0>:	Comparator C	1 Channel Se	lect bits			
	00 = C1VNO	f C1 connects	to RA1/AN1/C	12INU-/VREF/I	CSPCLK		
	10 = C1VN 0	f C1 connects	to RC2/AN6/C	212IN1-/FTTT 212IN2-/OP2			
	11 = C1VN o	f C1 connects	to RC3/AN7/C	12IN3-/OP1			
Note 1: (C1OUT will only a	drive RA2/AN2	/T0CKI/INT/C	10UT if: (C10	E = 1) and (C1	ON = 1) and (TI	RISA<2> = 0)

9.2 Comparator Outputs

The comparator outputs are read through the CM1CON0, COM2CON0 or CM2CON1 registers. CM1CON0 and CM2CON0 each contain the individual comparator output of Comparator 1 and Comparator 2, respectively. CM2CON2 contains a mirror copy of both comparator outputs facilitating a simultaneous read of both comparators. These bits are read-only. The comparator outputs may also be directly output to the RA2/AN2/T0CKI/INT/C1OUT and RC4/C2OUT/PH2

I/O pins. When enabled, multiplexers in the output path of the RA2 and RC4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 9-1 and Figure 9-2 show the output block diagrams for Comparators 1 and 2, respectively.

The TRIS bits will still function as an output enable/ disable for the RA2/AN2/T0CKI/INT/C1OUT and RC4/ C2OUT/PH2 pins while in this mode.

The polarity of the comparator outputs can be changed using the C1POL and C2POL bits of the CMxCON0 Register.

Timer1 gate source can be configured to use the T1G pin or Comparator 2 output as selected by the T1GSS bit of the CM2CON1 Register. The Timer1 gate feature can be used to time the duration or interval of analog events. The output of Comparator 2 can also be synchronized with Timer1 by setting the C2SYNC bit of the CM2CON1 Register. When enabled, the output of Comparator 2 is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, Comparator 2 is latched after the prescaler. To prevent a race condition, the Comparator 2 output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator 2 Block Diagram (Figure 9-2) and the Timer1 Block Diagram (Figure 6-1) for more information.

It is recommended to synchronize Comparator 2 with Timer1 by setting the C2SYNC bit when Comparator 2 is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if Comparator 2 changes during an increment.

9.3 Comparator Interrupts

The comparator interrupt flags are set whenever there is a change in the output value of its respective comparator. Software will need to maintain information about the status of the output bits, as read from CM2CON0<7:6>, to determine the actual change that has occurred. The CxIF bits, PIR1<4:3>, are the Comparator Interrupt Flags. Each comparator interrupt bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CxIE bits of the PIE1 Register and the PEIE bit of the INTCON Register must be set to enable the interrupts. In addition, the GIE bit must also be set. If any of these bits are cleared, the interrupt is not enabled, though the CxIF bits will still be set if an interrupt condition occurs.

The comparator interrupt of the PIC16F785/HV785 differs from previous designs in that the interrupt flag is set by the mismatch edge and not the mismatch level. This means that the interrupt flag can be reset without the additional step of reading or writing the CMxCON0 register to clear the mismatch registers. When the mismatch registers are not cleared, an interrupt will not occur when the comparator output returns to the previous state. When the mismatch registers are cleared, an interrupt will occur when the comparator returns to the previous state.

Note 1:	If a change in the CMxCON0 register (CxOUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CxIF of the PIR1 Reg- ister interrupt flag may not get set.
2:	When either comparator is first enabled, bias circuitry in the Comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μ s for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

9.4 Effects of Reset

A Reset forces all registers to their Reset state. This disables both comparators.

REGISTER	12-3: ADCC	DN0: A/D CON	NTROL REC	GISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set	:	(0) = Bit is cleared x = Bit is unknown			own
bit 7	ADFM: A/D 1 = Right jus 0 = Left justi	Result Formed tified fied	Select bit				
bit 6	VCFG : Volta 1 = VREF pin 0 = VDD	ge Reference b	it				
bit 5-2	CHS<3:0>: / 0000 = Cha 0001 = Cha 0010 = Cha 0011 = Cha 0100 = Cha 0101 = Cha 0110 = Cha 1000 = Cha 1001 = Cha 1001 = Cha 1011 = Cha 1011 = Cha 1011 = Cha 1100 = CVR 1101 = VR	Analog Channel nnel 00 (AN0) nnel 01 (AN1) nnel 02 (AN2) nnel 03 (AN3) nnel 03 (AN3) nnel 05 (AN5) nnel 05 (AN5) nnel 06 (AN6) nnel 07 (AN7) nnel 08 (AN8) nnel 09 (AN9) nnel 10 (AN10) nnel 11 (AN11) EF erved. Do not us	Select bits se. se.				
bit 1	$GO/\overline{DONE}: A$ $1 = A/D conv This bit is 0 = A/D conv$	A/D Conversion version cycle in s automatically version complet	Status bit progress. Se cleared by ha ed/not in prog	etting this bit star ardware when th gress	rts an A/D con ne A/D convers	version cycle. sion has complete	ed.
bit 0	ADON: A/D 1 = A/D conv 0 = A/D conv	Enable bit /erter module is /erter is shut-off	enabled and consum	nes no operating	g current		

12.4 Effects of Reset

A device Reset forces all registers to their Reset state. Thus, the A/D module is turned off and any pending conversion is aborted. The ADRESH:ADRESL registers are unchanged.

12.5 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP module. This requires that the CCP1M3:CCP1M0 bits of the CCP1CON Register be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRESH:ADRESL to the desired location).

The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter. See **Section 8.0 "Capture/Compare/PWM (CCP) Module**" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1	-	ADCS2	ADCS1	ADCS0	-	—	-	-	-000	-000
ADRESH	Most Signif	ficant 8 bits o	of the left just	ified A/D resul	t or 2 bits of th	ne right justifi	ed result		xxxx xxxx	uuuu uuuu
ADRESL	Least Signi	ificant 2 bits	of the left jus	tified A/D resu	lt or 8 bits of t	he right justif	ied result		xxxx xxxx	uuuu uuuu
ANSEL0	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ANSEL1	-	-	-	—	ANS11	ANS10	ANS9	ANS8	1111	1111
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	EEIE	ADIE	CCP1IE	C2IE	C1IE	OSFIE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	0000 0000	0000 0000
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTB	RB7	RB6	RB5	RB4	_	—	-	—	xxxx	uuuu
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	1111	1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 12-3: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D module.

16.0 VOLTAGE REGULATOR

The PIC16HV785 includes a permanent internal 5 volt (nominal) shunt regulator in parallel with the VDD pin. This eliminates the need for an external voltage regulator in systems sourced by an unregulated supply. All external devices connected directly to the VDD pin will share the regulated supply voltage and contribute to the total VDD supply current (ILOAD).

16.1 Regulator Operation

The regulator operates by maintaining a constant voltage at the VDD pin by adjusting the regulator shunt current in response to variations of the VDD supply load and the unregulated supply voltage. The regulator behaves like a fully compensated Zener diode. (See Figure 16-1).

FIGURE 16-1: REGULATOR

An external current limiting resistor, RSER, located between the unregulated supply, VUNREG, and the VDD pin, drops the difference in voltage between VUNREG and VDD. RSER must be between RMAX and RMIN as defined by Equation 16-1.

EQUATION 16-1: RSER LIMITING RESISTOR

$$RMAX = \frac{(VUMIN - VDD) \bullet 1000}{1.05 \bullet (4 MA + ILOAD)}$$

$$RMIN = \frac{(VUMIN - VDD) \bullet 1000}{0.95 \bullet (50 \text{ MA})}$$

Where:

- RMAX = maximum value of RSER (ohms)
- RMIN = minimum value of RSER (ohms)
- VUMIN = minimum value of VUNREG
- VUMAX = maximum value of VUNREG
- VDD = regulated voltage (5V nominal)
- ILOAD = maximum expected load current in mA including I/O pin currents and external circuits connected to VDD.
- 1.05 = compensation for +5% tolerance of RSER
- 0.95 = compensation for -5% tolerance of RSER

16.2 Regulator Precautions

The total VDD load current variation must be less than 46 mA so that it falls within the voltage regulator shunt current dynamic range. If the load current rises above the expected maximum, the regulator will be starved for current and go out of regulation causing VDD to drop.

Since the regulator uses the band gap voltage as the regulated voltage reference, the VR voltage reference is permanently enabled in the PIC16HV785 device.

(used on blank pages to make page count even)

RETFIE	Return from Interrupt						
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$						
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Description:	00000000001001Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE of the INTCON Register. This is a two- orde instruction						

RLF	Rotate Left f through Carry						
Syntax:	[label]	RLF	f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	27					
Operation:	See description below						
Status Affected:	С						
Encoding:	00	1101	dfff	ffff			
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'						

C Register f

RETLW	Return with Literal in W						
Syntax:	[label]	RETLW	/ k				
Operands:	$0 \le k \le 2$	$0 \le k \le 255$					
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$						
Status Affected:	None	None					
Encoding:	11	01xx	kkkk	kkkk			
Description:	The W the eigh gram co top of th address instruct	The W register is loaded with the eight-bit literal 'k'. The pro- gram counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.					

RRF	Rotate Right f through Carry						
Syntax:	[label]	RRF	f,d				
Operands:	0 ≤ f ≤ 1 d ∈ [0,1	27]					
Operation:	See description below						
Status Affected:	С						
Encoding:	00	1100	dfff	ffff			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1' the result is placed back in register 'f'.						

RETURN	Return from Subroutine				
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS \rightarrow PC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.				

SLEEP	Go into Standby mode					
Syntax:	[<i>labe</i> l]	SLEE	Р			
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler,} \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	00	0000	0110	0011		
Description:	The power-down Status bit, PD is cleared. Time out Status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.					

2: Frequency denotes system clock frequency. When using the HFINTOSC the system clock is after the postscaler.

3: The internal shunt regulator of the PIC16HV785 keeps VDD at or below 5.0V (nominal).

19.2 DC Characteristics: PIC16F785/HV785-I (Industrial)^{(1), (2)}

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param					Max Units	Conditions		
No.	Device Characteristics	Min	турт	мах		VDD		
D010	Supply Current (IDD)	—	11	23	μA	2.0	Fosc = 32 kHz	
		—	18	38	μA	3.0	LP Oscillator mode	
		—	35	75	μA	5.0		
D011		—	140	240	μA	2.0	Fosc = 1 MHz	
		_	220	380	μA	3.0	XT Oscillator mode	
		—	380	550	μA	5.0		
D012		—	260	360	μA	2.0	Fosc = 4 MHz	
		_	420	650	μA	3.0	XT Oscillator mode	
		_	0.8	1.1	mA	5.0		
D013		—	130	220	μΑ	2.0	Fosc = 1 MHz	
		_	215	360	μA	3.0	EC Oscillator mode	
		_	360	520	μΑ	5.0		
D014		_	220	340	μA	2.0	Fosc = 4 MHz	
		_	375	550	μA	3.0	EC Oscillator mode	
		_	0.65	1	mA	5.0		
D015		_	8	20	μA	2.0	Fosc = 31 kHz	
		—	16	40	μA	3.0	INTRC mode	
		—	31	65	μA	5.0		
D016		_	340	450	μA	2.0	Fosc = 4 MHz	
		—	500	700	μΑ	3.0	INTOSC mode	
			800	1200	μA	5.0		
D017		_	230	400	μA	2.0	Fosc = 4 MHz	
			400	680	μA	3.0	EXTRC mode	
		—	0.63	1.1	mA	5.0]	
D018		_	2.6	3.25	mA	4.5	Fosc = 20 MHz	
			2.8	3.35	mA	5.0	HS Oscillator mode	

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
- 3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.
- 4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. When A/D is off, it will not consume any current other than leakage current. the power-down current spec includes any such leakage from the A/D module.

19.3 DC Characteristics: PIC16F785/HV785-E (Extended)^{(1), (2)}

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param						Conditions			
No.	Device Characteristics	Min	Тур†	Мах	Max Units				
D010E	Supply Current (IDD)	-	11	23	μA	2.0	Fosc = 32 kHz		
		_	18	38	μA	3.0	LP Oscillator mode		
		_	35	75	μA	5.0			
D011E		_	140	240	μA	2.0	Fosc = 1 MHz		
		_	220	380	μA	3.0	XT Oscillator mode		
		_	380	550	μA	5.0			
D012E		—	260	360	μA	2.0	Fosc = 4 MHz		
		—	420	650	μA	3.0	XT Oscillator mode		
		—	0.8	1.1	mA	5.0			
D013E		—	130	220	μA	2.0	Fosc = 1 MHz		
		—	215	360	μA	3.0	EC Oscillator mode		
		—	360	520	μA	5.0			
D014E		—	220	340	μA	2.0	Fosc = 4 MHz		
		—	375	550	μA	3.0	EC Oscillator mode		
		—	0.65	1.0	mA	5.0			
D015E		_	8	20	μΑ	2.0	Fosc = 31 kHz		
		—	16	40	μA	3.0	INTRC mode		
		—	31	65	μA	5.0			
D016E		_	340	450	μA	2.0	Fosc = 4 MHz		
		—	500	700	μΑ	3.0	INTOSC mode		
		—	800	1200	μΑ	5.0			
D017E			230	400	μA	2.0	Fosc = 4 MHz		
			400	680	μA	3.0	EXTRC mode		
			0.63	1.1	mA	5.0			
D018E			2.6	3.25	mA	4.5	Fosc = 20 MHz		
		-	2.8	3.35	mA	5.0	HS Oscillator mode		

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

FIGURE 19-6: BROWN-OUT RESET TIMING AND CHARACTERISTICS

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2	_	_	μS	VDD = 5.0V, -40°C to +85°C
			11	18	24	μS	Extended temperature
31	TWDT	Watchdog Timer Time-out Period	10	17	25	ms	VDD = 5.0V, -40°C to +85°C
		(No Prescaler)	10	17	30	ms	Extended temperature
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc		_	Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28*	64	132*	ms	VDD = 5.0V, -40°C to +85°C
34	Tioz	I/O High-impedance from MCLR	—	—	2.0	μS	
		Low or Watchdog Timer Reset					
35	VBOR	Brown-out Reset Voltage	2.025	_	2.175	V	
36	TBOR	Brown-out Reset Pulse Width	100*	_	_	μS	$VDD \le VBOR (D005)$

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

21.0 PACKAGING INFORMATION

21.1 Package Marking Information

The following sections give the technical details of the packages.

* Standard PIC[®] device marking consists of Microchip part number, year code, week code, and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Interrupt Context Saving120
Code Protection
Comparator Module63
Associated Registers74
C1 Output State Versus Input Conditions63
C2 Output State Versus Input Conditions
Comparator Interrupts69
Effects of Reset69
Comparator Voltage Reference (CVREF)
Specifications157
Comparators
C2OUT as T1 Gate52
Specifications157
Compare Module. See Capture/Compare/PWM (CCP)
CONFIG Register
Configuration Bits
Customer Change Notification Service
Customer Notification Service
Customer Support

D

Data EEPROM Memory	
Associated Registers	
Code Protection	103, 106
Data Memory	9
DC and AC Characteristics	
Graphs and Tables	
DC Characteristics	
Extended and Industrial	148
Industrial and Extended	143
Development Support	
Device Overview	5

Е

)3
)4
)4
)3
)5
)5
)5
)5
39
39
77
32
11
. 4

Fail-Safe Clock Monitor	
Fail-Safe Condition Clearing	
Reset and Wake-up from Sleep	
Firmware Instructions	
Fuses. See Configuration Bits	

G

9
4
5
4

Instruction Format	127
Instruction Set	127
ADDLW	129
ADDWF	129
ANDLW	129
ANDWF	129
MOVF	132
RRF	133
SLEEP	133
SUBLW	134
SUBWF	134
SWAPF	134
TRIS	134
XORLW	134
XORWF	135
BCF	129
BSF	129
BTFSC	130
BIFSS	130
CALL	130
CLRF	130
	130
CLRWDT	130
	131
DECF	131
DECFSZ	131
G010	131
INCF	131
	131
	132
	132
	132
	132
	102
	122
	133
DI E	133
Summary Table	128
INTCON Register	17
Internal Oscillator Block	,
INTOSC	
Specifications	153
Internal Sampling Switch (Rss) Impedance	. 86
Internet Address	201
Interrupts.	117
(CCP) Compare	58
A/D	85
Associated Registers	119
Comparator	69
Context Saving	120
Data EEPROM Memory Write	104
Interrupt-on-Change	37
Oscillator Fail (OSF)	31
PORTA Interrupt-on-change	118
RA2/INT	118
TMR0	118
TMR1	52
TMR2 to PR2 Match 55	5, 56
INTOSC Specifications	153
IOCA (Interrupt-on-Change)	37
IOCA Register	37
L	
Load Conditions	150

NOTES: