

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	40
Program Memory Size	16KB (16K × 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.18x24.18)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c554sfaa-512

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DESCRIPTION	1
FEATURES	1
ORDERING INFORMATION	2
PART NUMBER DERIVATION	2
BLOCK DIAGRAM	2
PINNING INFORMATION	3
Plastic Leaded Chip Carrier pin functions	3
LOGIC SYMBOL	3
PIN DESCRIPTION	4
SPECIAL FUNCTION REGISTERS	6
OSCILLATOR CHARACTERISTICS	8
RESET	8
LOW POWER MODES	8
Stop Clock Mode	8
Idle Mode	8
Power-Down Mode	8
POWER OFF FLAG	9
Design Consideration	g
	g
Reduced EMI Mode	g
Expanded Data RAM Addressing	10
Dual DPTR	11
DPTR Instructions	11
Enhanced UART	13
Automatic Address Recognition	13
Timer T2	15
Timer T3, The Watchdog Timer	20
Serial I/O	21
Port 5 Operation	21
Pulse Width Modulated Outputs	21
Analog-to-Digital Converter	21
Power Reduction Modes	26
Interrupts	28
ABSOLUTE MAXIMUM RATINGS	61
DEVICE SPECIFICATIONS	61
DC ELECTRICAL CHARACTERISTICS	62
AC ELECTRICAL CHARACTERISTICS	65
EXPLANATION OF THE AC SYMBOLS	67
EPROM CHARACTERISTICS	72
Program Verification	72
Security Bits	72
REVISION HISTORY	74

PINNING INFORMATION

Plastic Leaded Chip Carrier pin functions

P87C554

9 1 61 0 60 10 PLASTIC LEADED CHIP CARRIER 26 44 27 43 Pin Function Pin Function Pin Function 1 P5.0/ADC0 24 P3.0/RxD 47 PSEN P3.1/TxD 2 V_{DD} 25 48 ALE/PROG STADC P3.2/INT0 3 26 49 EA/V_{PP} P3.3/INT1 PWM0 4 27 P0.7/AD7 50 PWM1 5 6 28 P3.4/T0 51 P0.6/AD6 FW P3.5/T1 29 P0.5/AD5 52 P4.0/CMSR0 P3.6/WR 30 7 P0.4/AD4 53 P4.1/CMSR1 P3.7/RD 8 31 P0.3/AD3 54 P4.2/CMSR2 9 32 NC P0.2/AD2 55 P4.3/CMSR3 NC 10 33 56 P0.1/AD1 P4.4/CMSR4 11 34 XTAL2 57 P0.0/AD0 P4.5/CMSR5 12 35 XTAL1 58 AVref-P4.6/CMT0 13 36 V_{SS} AVref+ 59 P4.7/CMT1 14 37 V_{SS} NC 60 AVSS 15 RST 38 61 $\mathsf{AV}_{\mathsf{DD}}$ P1.0/CT0I P2.0/A08 39 16 62 P5.7/ADC7 P1.1/CT1I P2.1/A09 17 40 P5.6/ADC6 P2.2/A10 63 P1.2/CT2I 41 18 P5.5/ADC5 P1.3/CT3I 42 P2.3/A11 64 19 P2.4/A12 65 P5.4/ADC4 20 P1.4/T2 43 P1.5/RT2 P2.5/A13 66 P5.3/ADC3 21 44 P1.6/SCL P2.6/A14 67 P5.2/ADC2 22 45 23 P1.7/SDA 46 P2.7/A15 68 P5.1/ADC1 SU00208

LOGIC SYMBOL Vss V_{DD} XTAL1 XTAL2 EA/V_{PP} -LOW ORDER ALE/PROG ADDRESS AND DATA BUS PORT PSEN 4 . 4 -> AVSS ≻ ► AVDD ≻ ≻ AVref+ • AVref-STADC CT0I ► CT1I CT2I CT3I T2 RT2 PWM0 -> PWM1 • ≻ PORT • ◄___ ≯ • → SCL ≻ ADC0-7 SDA ≻ > ŝ ⋗ PORT > HIGH ORDER ADDRESS AND DATA BUS -> -POR. -> CMSR0-5 4 ► 4 RxD/DATA • PORT • → TxD/CLOCK ->-• -> ლ ◀ INT₀ 4 PORT INT1 -> -СМТ0 🗲 • • T0 CMT1 4 T1 -> WR > RST • ≁ ► RD EW SU00210

2002 Mar 25

P87C554

MODE	PROGRAM MEMORY	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3	PORT 4	PWM0/ PWM1
Idle	Internal	1	1	Data	Data	Data	Data	Data	High
Idle	External	1	1	Float	Data	Address	Data	Data	High
Power-down	Internal	0	0	Data	Data	Data	Data	Data	High
Power-down	External	0	0	Float	Data	Data	Data	Data	High

 Table 2. External Pin Status During Idle and Power-Down Modes

With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

POWER OFF FLAG

The Power Off Flag (POF) is set by on-chip circuitry when the V_{CC} level on the P87C554 rises from 0 to 5 V. The POF bit can be set or cleared by software allowing a user to determine if the reset is the result of a power-on or a warm start after powerdown. The V_{CC} level must remain above 3 V for the POF to remain unaffected by the V_{CC} level.

Design Consideration

• When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE™ Mode

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked by:

- 1. Pull ALE low while the device is in reset and PSEN is high;
- 2. Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Reduced EMI Mode

The ALE-Off bit, AO (AUXR.0) can be set to disable the ALE output. It will automatically become active when required for external memory accesses and resume to the OFF state after completing the external memory access.

		7	6	5	4	3	2	1	0	
	PCON (87H)	SMOD1	SMOD0	POF	WLE	GF1	GF0	PD	IDL	
		(MSB)							(LSB)	
BIT	SYMBOL	FUNCTIO	N							
PCON.7	SMOD1	Double Ba used in m	aud rate bit odes 1, 2,	. When se or 3.	et to logic '	1, the bauc	d rate is do	oubled whe	en the seria	al port SIO0 is being
PCON.6	SMOD0	Selects S	M0/FE for	SCON.7 b	oit.					
PCON.5	POF	Power Off	Flag							
PCON.4	WLE	Watchdog cleared w	Load Ena	ble. This f ſ3 is loade	ilag must b ed.	e set by s	oftware pr	ior to loadi	ng timer T	3 (watchdog timer). It is
PCON.3	GF1	General-p	urpose flag	g bit.						
PCON.2	GF0	General-p	urpose flag	g bit.						
PCON.1	PD	Power-do	wn bit. Set	ting this b	it activates	the powe	r-down mo	ode. It can	only be se	t if input EW is high.
	IDL	Idle mode	bit. Setting	n this bit a	ctivates th	e Idle mod	le.			

Figure 3. Power Control Register (PCON)

Figure 5. Internal and External Data Memory Address Space with EXTRAM = 0

Dual DPTR

The dual DPTR structure (see Figure 6) is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.

The DPS bit status should be saved by software when switching between DPTR0 and DPTR1.

Figure 6.

Note that bit 2 is not writable and is always read as a zero. This allows the DPS bit to be quickly toggled simply by executing an INC AUXR1 instruction without affecting the other bits.

DPTR Instructions

The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:

INC DPTR	Increments the data pointer by 1
MOV DPTR, #data16	Loads the DPTR with a 16-bit constant
MOV A, @ A+DPTR	Move code byte relative to DPTR to ACC
MOVX A, @ DPTR	Move external RAM (16-bit address) to ACC
MOVX @ DPTR , A	Move ACC to external RAM (16-bit address)
JMP @ A + DPTR	Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the low or high byte in an instruction which accesses the SFRs. See application note AN458 for more details.

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:

Slave 0	SADDR	=	1100	0000
	SADEN	=	<u>1111</u>	<u>1001</u>
	Given	=	1100	0XX0
Slave 1	SADDR	=	1110	0000
	SADEN	=	<u>1111</u>	<u>1010</u>
	Given	=	1110	0X0X
Slave 2	SADDR	=	1110	0000
	SADEN	=	<u>1111</u>	<u>1100</u>
	Given	=	1110	00XX

In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are trended as don't-cares. In most cases, interpreting the don't-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H) are leaded with 0s. This produces a given address of all "don't cares" as well as a Broadcast address of all "don't cares". This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.

Timer T2

Timer T2 is a 16-bit timer consisting of two registers TMH2 (HIGH byte) and TML2 (LOW byte). The 16-bit timer/counter can be switched off or clocked via a prescaler from one of two sources: $f_{OSC}/12$ or an external signal. When Timer T2 is configured as a counter, the prescaler is clocked by an external signal on T2 (P1.4). A rising edge on T2 increments the prescaler, and the maximum repetition rate is one count per machine cycle (1 MHz with a 12 MHz oscillator).

The maximum repetition rate for Timer T2 is twice the maximum repetition rate for Timer 0 and Timer 1. T2 (P1.4) is sampled at S2P1 and again at S5P1 (i.e., twice per machine cycle). A rising edge is detected when T2 is LOW during one sample and HIGH during the next sample. To ensure that a rising edge is detected, the input signal must be LOW for at least 1/2 cycle and then HIGH for at least 1/2 cycle. If a rising edge is detected before the end of S2P1, the timer will be incremented during the following cycle; otherwise it will be incremented one cycle later. The prescaler has a programmable division factor of 1, 2, 4, or 8 and is cleared if its division factor or input source is changed, or if the timer/counter is reset.

Timer T2 may be read "on the fly" but possesses no extra read latches, and software precautions may have to be taken to avoid misinterpretation in the event of an overflow from least to most significant byte while Timer T2 is being read. Timer T2 is not loadable and is reset by the RST signal or by a rising edge on the input signal RT2, if enabled. RT2 is enabled by setting bit T2ER (TM2CON.5).

When the least significant byte of the timer overflows or when a 16-bit overflow occurs, an interrupt request may be generated.

Either or both of these overflows can be programmed to request an interrupt. In both cases, the interrupt vector will be the same. When the lower byte (TML2) overflows, flag T2B0 (TM2CON) is set and flag T2OV (TM2IR) is set when TMH2 overflows. These flags are set one cycle after an overflow occurs. Note that when T2OV is set, T2B0 will also be set. To enable the byte overflow interrupt, bits ET2 (IEN1.7, enable overflow interrupt, see Figure 11) and T2IS0 (TM2CON.6, byte overflow interrupt select) must be set. Bit TWB0 (TM2CON.4) is the Timer T2 byte overflow flag.

To enable the 16-bit overflow interrupt, bits ET2 (IE1.7, enable overflow interrupt) and T2IS1 (TM2CON.7, 16-bit overflow interrupt select) must be set. Bit T2OV (TM2IR.7) is the Timer T2 16-bit overflow flag. All interrupt flags must be reset by software. To enable both byte and 16-bit overflow, T2IS0 and T2IS1 must be set and two interrupt service routines are required. A test on the overflow flags indicates which routine must be executed. For each routine, only the corresponding overflow flag must be cleared.

Timer T2 may be reset by a rising edge on RT2 (P1.5) if the Timer T2 external reset enable bit (T2ER) in T2CON is set. This reset also clears the prescaler. In the idle mode, the timer/counter and prescaler are reset and halted. Timer T2 is controlled by the TM2CON special function register (see Figure 12).

Timer T2 Extension: When a 12 MHz oscillator is used, a 16-bit overflow on Timer T2 occurs every 65.5, 131, 262, or 524 ms, depending on the prescaler division ratio; i.e., the maximum cycle time is approximately 0.5 seconds. In applications where cycle times are greater than 0.5 seconds, it is necessary to extend Timer T2. This is achieved by selecting fosc/12 as the clock source (set T2MS0, reset T2MS1), setting the prescaler division ration to 1/8 (set T2P0, set T2P1), disabling the byte overflow interrupt (reset T2IS0) and enabling the 16-bit overflow interrupt (set T2IS1). The following software routine is written for a three-byte extension which gives a maximum cycle time of approximately 2400 hours.

OVINT:	PUSH	ACC	;save accumulator
	PUSH	PSW	;save status
	INC	TIMEX1	;increment first byte (low order)
			;of extended timer
	MOV	A,TIMEX	1
	JNZ	INTEX	;jump to INTEX if ;there is no overflow
	INC	TIMEX2	;increment second byte
	MOV	A,TIMEX2	2
	JNZ	INTEX	;jump to INTEX if there is no overflow
	INC	TIMEX3	;increment third byte (high order)
INTEX:	CLR	T2OV	;reset interrupt flag
	POP	PSW	;restore status
	POP	ACC	;restore accumulator
	RETI		;return from interrupt

Timer T2, Capture and Compare Logic: Timer T2 is connected to four 16-bit capture registers and three 16-bit compare registers. A capture register may be used to capture the contents of Timer T2 when a transition occurs on its corresponding input pin. A compare register may be used to set, reset, or toggle port 4 output pins at certain pre-programmable time intervals.

The combination of Timer T2 and the capture and compare logic is very powerful in applications involving rotating machinery, automotive injection systems, etc. Timer T2 and the capture and compare logic are shown in Figure 13.

Bit

ADCON.7

ADCON.6

ADCON.5

ADCON.4

80C51 8-bit microcontroller - 12 clock operation 16K/512 OTP/RAM, 8 channel 10-bit A/D, I²C, PWM, capture/compare, high I/O

ADCON (C5H)

Symbol

ADC.1

ADC.0

ADEX

ADCI

-									
	7	6	5	4	3	2	1	0	Reset Value = xx00 0000B
C5H)	ADC.1	ADC.0	ADEX	ADCI	ADCS	AADR2	AADR1	AADR0	
	(MSB)							(LSB)	
Fun	ction								
Bit 1 of ADC result Bit 0 of ADC result Enable external start of conversion by STADC 0 = Conversion can be started by software only (by setting ADCS) 1 = Conversion can be started by software or externally (by a rising edge on STADC)									
ADC invok the A	interrupt fl ed if it is e DC canno	ag: this fl nabled. T t start a n	ag is set he flag r ew conv	when a nay be rersion.	n A/D co cleared l ADCI ca	onversion by the inte	result is r errupt serviset by soft	eady to be vice routine ware.	read. An interrupt is . While this flag is set,
ADC	ADC start and status: setting this bit starts an A/D conversion. It may be set by software or by the								

ADCON.3	ADCS	ADC start and status: setting this bit starts an A/D conversion. It may be set by software or by the external signal STADC. The ADC logic ensures that this signal is HIGH while the ADC is busy. On completion of the conversion, ADCS is reset immediately after the interrupt flag has been set. ADCS cannot be reset by software. A new conversion may not be started while either ADCS or ADCI is high.

ADCI	ADCS	ADC Status
0	0	ADC not busy; a conversion can be started
0	1	ADC busy; start of a new conversion is blocked
1	0	Conversion completed; start of a new conversion requires ADCI=0
1	1	Conversion completed; start of a new conversion requires ADCI=0

If ADCI is cleared by software while ADCS is set at the same time, a new A/D conversion with the same channel number may be started.

But it is recommended to reset ADCI before ADCS is set.

ADCON.2 AADR2 Analogue input select: this binary coded address selects one of the ADCON.1

AADR1 eight analogue port bits of P5 to be input to the converter. It can only

ADCON.0 AADR0 be changed when ADCI and ADCS are both LOW.

AADR2	AADR1	AADR0	Selected Analog Channel
0	0	0	ADC0 (P5.0)
0	0	1	ADC1 (P5.1)
0	1	0	ADC2 (P5.2)
0	1	1	ADC3 (P5.3)
1	0	0	ADC4 (P5.4)
1	0	1	ADC5 (P5.5)
1	1	0	ADC6 (P5.6)
1	1	1	ADC7 (P5.7)

Figure 23. ADC Control Register (ADCON)

Product data

Figure 26. Effective Conversion Characteristic

P87C554

Figure 38. Serial Input/Output Configuration

Figure 39. Shift-in and Shift-out Timing

In the following text, it is assumed that ENS1 = "1".

STA, THE START FLAG

STA = "1": When the STA bit is set to enter a master mode, the SIO1 hardware checks the status of the I2C bus and generates a START condition if the bus is free. If the bus is not free, then SIO1 waits for a STOP condition (which will free the bus) and generates a START condition after a delay of a half clock period of the internal serial clock generator.

If STA is set while SIO1 is already in a master mode and one or more bytes are transmitted or received, SIO1 transmits a repeated START condition. STA may be set at any time. STA may also be set when SIO1 is an addressed slave. STA = "0": When the STA bit is reset, no START condition or repeated START condition will be generated.

STO, THE STOP FLAG

STO = "1": When the STO bit is set while SIO1 is in a master mode, a STOP condition is transmitted to the I^2C bus. When the STOP condition is detected on the bus, the SIO1 hardware clears the STO flag. In a slave mode, the STO flag may be set to recover from an error condition. In this case, no STOP condition is transmitted to the I^2C bus. However, the SIO1 hardware behaves as if a STOP condition has been received and switches to the defined "not addressed" slave receiver mode. The STO flag is automatically cleared by hardware. More Information on SIO1 Operating Modes: The four operating modes are:

- Master Transmitter
- Master Receiver
- Slave Receiver
- Slave Transmitter

Data transfers in each mode of operation are shown in Figures 40–43. These figures contain the following abbreviations:

Abbreviation	Explanation
S	Start condition
SLA	7-bit slave address
R	Read bit (high level at SDA)
W	Write bit (low level at SDA)
A	Acknowledge bit (low level at SDA)
Ā	Not acknowledge bit (high level at SDA)
Data	8-bit data byte
Р	Stop condition

In Figures 40-43, circles are used to indicate when the serial interrupt flag is set. The numbers in the circles show the status code held in the S1STA register. At these points, a service routine must be executed to continue or complete the serial transfer. These service routines are not critical since the serial transfer is suspended until the serial interrupt flag is cleared by software.

When a serial interrupt routine is entered, the status code in S1STA is used to branch to the appropriate service routine. For each status code, the required software action and details of the following serial transfer are given in Tables 6-10.

Master Transmitter Mode: In the master transmitter mode, a number of data bytes are transmitted to a slave receiver (see Figure 40). Before the master transmitter mode can be entered, S1CON must be initialized as follows:

	7	6	5	4	3	2	1	0
S1CON (D8H)	CR2	ENS1	STA	STO	SI	AA	CR1	CR0
	bit rate	1	0	0	0	х	— bitr	ate —

CR0, CR1, and CR2 define the serial bit rate. ENS1 must be set to logic 1 to enable SIO1. If the AA bit is reset, SIO1 will not acknowledge its own slave address or the general call address in the event of another device becoming master of the bus. In other words, if AA is reset, SIO0 cannot enter a slave mode. STA, STO, and SI must be reset.

The master transmitter mode may now be entered by setting the STA bit using the SETB instruction. The SIO1 logic will now test the I²C bus and generate a start condition as soon as the bus becomes free. When a START condition is transmitted, the serial interrupt flag (SI) is set, and the status code in the status register (S1STA) will be 08H. This status code must be used to vector to an interrupt service routine that loads S1DAT with the slave address and the data direction bit (SLA+W). The SI bit in S1CON must then be reset before the serial transfer can continue.

When the slave address and the direction bit have been transmitted and an acknowledgment bit has been received, the serial interrupt flag (SI) is set again, and a number of status codes in S1STA are possible. There are 18H, 20H, or 38H for the master mode and also 68H, 78H, or B0H if the slave mode was enabled (AA = logic 1). The appropriate action to be taken for each of these status codes is detailed in Table 6. After a repeated start condition (state 10H). SIO1 may switch to the master receiver mode by loading S1DAT with SLA+R).

Master Receiver Mode: In the master receiver mode, a number of data bytes are received from a slave transmitter (see Figure 41). The transfer is initialized as in the master transmitter mode. When the start condition has been transmitted, the interrupt service routine must load S1DAT with the 7-bit slave address and the data direction bit (SLA+R). The SI bit in S1CON must then be cleared before the serial transfer can continue.

When the slave address and the data direction bit have been transmitted and an acknowledgment bit has been received, the serial interrupt flag (SI) is set again, and a number of status codes in S1STA are possible. These are 40H, 48H, or 38H for the master mode and also 68H, 78H, or B0H if the slave mode was enabled (AA = logic 1). The appropriate action to be taken for each of these status codes is detailed in Table 7. ENS1, CR1, and CR0 are not affected by the serial transfer and are not referred to in Table 7. After a repeated start condition (state 10H), SIO1 may switch to the master transmitter mode by loading S1DAT with SLA+W.

Slave Receiver Mode: In the slave receiver mode, a number of data bytes are received from a master transmitter (see Figure 42). To initiate the slave receiver mode, S1ADR and S1CON must be loaded as follows:

The upper 7 bits are the address to which SIO1 will respond when addressed by a master. If the LSB (GC) is set, SIO1 will respond to the general call address (00H); otherwise it ignores the general call address.

	7	6	5	4	3	2	1	0
S1CON (D8H)	CR2	ENS1	STA	STO	SI	AA	CR1	CR0
	х	1	0	0	0	1	х	х

CR0, CR1, and CR2 do not affect SIO1 in the slave mode. ENS1 must be set to logic 1 to enable SIO1. The AA bit must be set to enable SIO1 to acknowledge its own slave address or the general call address. STA, STO, and SI must be reset.

When S1ADR and S1CON have been initialized, SIO1 waits until it is addressed by its own slave address followed by the data direction bit which must be "0" (W) for SIO1 to operate in the slave receiver mode. After its own slave address and the W bit have been received, the serial interrupt flag (I) is set and a valid status code can be read from S1STA. This status code is used to vector to an interrupt service routine, and the appropriate action to be taken for each of these status codes is detailed in Table 8. The slave receiver mode may also be entered if arbitration is lost while SIO1 is in the master mode (see status 68H and 78H).

If the AA bit is reset during a transfer, SIO1 will return a not acknowledge (logic 1) to SDA after the next received data byte. While AA is reset, SIO1 does not respond to its own slave address or a general call address. However, the I²C bus is still monitored and address recognition may be resumed at any time by setting AA. This means that the AA bit may be used to temporarily isolate SIO1 from the I²C bus.

Figure 40. Format and States in the Master Transmitter Mode

P87C554

Table 8. Slave Receiver Mode

STATUS	STATUS OF THE	APPLICATION SO	APPLICATION SOFTWARE RESPONSE		SE				
CODE	I ² C BUS AND			TO S1	CON		NEXT ACTION TAKEN BY SIO1 HARDWARE		
(S1STA) SIO1 HARDWARE		TO/FROM STDAT	STA	STO	SI	AA			
60H	Own SLA+W has been received; ACK	No S1DAT action or	Х	0	0	0	Data byte will be received and NOT ACK will be returned		
	has been returned	no S1DAT action	Х	0	0	1	Data byte will be received and ACK will be returned		
68H	Arbitration lost in SLA+R/W as master; Own SLA+W has	No S1DAT action or	Х	0	0	0	Data byte will be received and NOT ACK will be returned		
	been received, ACK returned	no S1DAT action	Х	0	0	1	Data byte will be received and ACK will be returned		
70H	General call address (00H) has been	No S1DAT action or	X	0	0	0	Data byte will be received and NOT ACK will be returned		
	been returned	no S1DAT action	Х	0	0	1	Data byte will be received and ACK will be returned		
78H	Arbitration lost in SLA+R/W as master; General call address	No S1DAT action or	X	0	0	0	Data byte will be received and NOT ACK will be returned		
	has been received, ACK has been returned	no S1DAT action	Х	0	0	1	Data byte will be received and ACK will be returned		
80H	Previously addressed with own SLV address: DATA has	Read data byte or	Х	0	0	0	Data byte will be received and NOT ACK will be returned		
	been received; ACK has been returned	read data byte	х	0	0	1	Data byte will be received and ACK will be returned		
88H	Previously addressed with own SLA; DATA	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address		
	byte has been received; NOT ACK has been returned	read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1		
		read data byte or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free		
		read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1. A START condition will be transmitted when the bus becomes free.		
90H	Previously addressed with General Call;	Read data byte or	Х	0	0	0	Data byte will be received and NOT ACK will be returned		
	received; ACK has been returned	read data byte	х	0	0	1	Data byte will be received and ACK will be returned		
98H	Previously addressed with General Call;	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address		
	DATA byte has been received; NOT ACK has been returned	read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1		
		read data byte or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free		
		read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1. A START condition will be transmitted when the bus becomes free.		

P87C554

Figure 45. Forced Access to a Busy I²C Bus

I²C BUS OBSTRUCTED BY A LOW LEVEL ON SCL OR SDA An I²C bus hang-up occurs if SDA or SCL is pulled LOW by an uncontrolled source. If the SCL line is obstructed (pulled LOW) by a device on the bus, no further serial transfer is possible, and the SIO1 hardware cannot resolve this type of problem. When this occurs, the problem must be resolved by the device that is pulling the SCL bus line LOW.

If the SDA line is obstructed by another device on the bus (e.g., a slave device out of bit synchronization), the problem can be solved by transmitting additional clock pulses on the SCL line (see Figure 46). The SIO1 hardware transmits additional clock pulses when the STA flag is set, but no START condition can be generated because the SDA line is pulled LOW while the I²C bus is considered free. The SIO1 hardware attempts to generate a START condition after every two additional clock pulses on the SCL line. When the SDA line is eventually released, a normal START condition is transmitted, state 08H is entered, and the serial transfer continues.

If a forced bus access occurs or a repeated START condition is transmitted while SDA is obstructed (pulled LOW), the SIO1

hardware performs the same action as described above. In each case, state 08H is entered after a successful START condition is transmitted and normal serial transfer continues. Note that the CPU is not involved in solving these bus hang-up problems.

BUS ERROR

A bus error occurs when a START or STOP condition is present at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data or an acknowledge bit.

The SIO1 hardware only reacts to a bus error when it is involved in a serial transfer either as a master or an addressed slave. When a bus error is detected, SIO1 immediately switches to the not addressed slave mode, releases the SDA and SCL lines, sets the interrupt flag, and loads the status register with 00H. This status code may be used to vector to a service routine which either attempts the aborted serial transfer again or simply recovers from the error condition as shown in Table 10.

	!**********	**********	*****	*****	*****
	! SI01 EQU	ATE LIST			
	!*********	***************************************	*****	******	********************************
		NS OF THE SIO1 SPECIAL FUN	CTION REGI	STERS	
	!**********		****	*****	******
00D8	S1CON	-0xd8			
00D9	SISTA	-0xd9			
00DA 00DB	SIDAI	–UXda			
0008	STADK	-OXUD			
00A8	IEN0	-0xa8			
00B8	IP0	–02b8			
	!*********	**********	*****	******	*****
	! BIT LOCA	TIONS			
	!********	***************************************	*****	********	******
00DD	STA	–0xdd	!	STA bit in	S1CON
00BD	SI01HP	–0xbd	!	IP0, SI01	Priority bit
	l*********	******	****	*****	*****
	! IMMEDIA ⁻ !*********	E DATA TO WRITE INTO REGI	STER S1CO	N ******	******
00D5	ENS1_NO	STA_STO_NOTSI_AA_CR0	-	-0xd5	! Generates STOP ! (CR0 = 100kHz)
00C5	ENS1_NO	STA_NOTSTO_NOTSI_AA_CR	0 -	-0xc5	! Releases BUS and
00C1	ENS1_NO	STA_NOTSTO_NOTSI_NOTAA	_CR0 -	-0xc1	! Releases BUS and ! NOT ACK
00E5	ENS1_STA	_NOTSTO_NOTSI_AA_CR0	-	-0xe5	! Releases BUS and ! set STA
	! **********	******	*****	*****	*****
	: ! GENERAI	IMMEDIATE DATA			
	!********	***************************************	*****	*****	**********
0031	OWNSLA	–0x31	!	Own SLA-	General Call
00A0	ENSI01	-0xa0	!	EA+ES1, e	enable SIO1 interrupt
0001	PAG1	-0x01	:	select PA(G1 as HADD
00C0	SLAW	-0xc0	!	SLA+W to	be transmitted
00C1	SLAR	-0xc1	!	SLA+R to	be transmitted
0018	SELRB3	–0x18	!	Select Reg	gister Bank 3
	!**********	*****	*****	*****	*****
	! LOCATIO	NS IN DATA RAM	*****	*****	******
0030	MTD	-0x30	!	MST/TRX	/DATA base address
0038	MRD	–0x38	!	MST/REC	/DATA base address
0040	SRD	-0x40	!	SLV/REC/	DATA base address
0048	STD	–0x48	!	SLV/TRX/	DATA base address
0053	BACKUP	-0x53	!	Backup fro	om NUMBYTMST NUMBYTMST in case
			!	of an Arbit	ration Loss.
0052	NUMBYTM	ST -0x52	!	Number of	f bytes to transmit as MST
0051	SLA	-0x51	!	Contains S	SLA+R/W to be
0050		0.450	!	transmitte	d.
0000	ΠΑυυ	-UX0U	!	till STATE	25.

				**********	***************************************	******
		! Example ! start a MA	to initialize I	IC Inte	rface as slave receiver or slave transm f or a MASTER RECEIVE function. 4 b	itter and bytes will be transmitted or received.
		.sect .base	strt 0x00			
0000	4100			ajmp	INIT	! RESET
		.sect .base	initial 0x200			
0200	75DB31	INIT:		mov	S1ADR,#OWNSLA	! Load own SLA + enable ! general call recognition
0203 0205 0207	D296 D297 755001			setb setb	P1(6) P1(7) HADD #PAG1	! P1.6 High level. ! P1.7 High level.
0207 020A	43A8A0			orl	IEN0,#ENSI01	! Enable SI01 interrupt
020D 020F	C2BD 75D8C5			clr mov	SI01HP S1CON, #ENS1_NOTSTA_NOTSTO	! SI01 interrupt low priority _NOTSI_AA_CR0 ! Initialize SLV funct.
		!********	*****	*******	****	*****
		! ! START M	IASTER TR	ANSMI	T FUNCTION	
		!				
0212 0215 0218	755204 7551C0 D2DD			mov mov setb	NUMBYTMST,#0x4 SLA,#SLAW STA	! Transmit 4 bytes. ! SLA+W, Transmit funct. ! set STA in S1CON
		!				
		! START M !	IASTER RE	CEIVE	FUNCTION	
021A 021D 0220	755204 7551C1 D2DD			mov mov setb	NUMBYTMST,#0x4 SLA,#SLAR STA	! Receive 4 bytes. ! SLA+R, Receive funct. ! set STA in S1CON
		!********** ! SI01 INTI			 E	*****
		.sect .base	intvec 0x00			! SI01 interrupt vector
		! S1STA ar ! They serv ! The RET ! S1STA ar	nd HADD ar ve as return instruction s nd jumps to	e push addres sets the the righ	ed onto the stack. ss for the RET instruction. e Program Counter to address HADD, nt subroutine.	
002B 002D	C0D0 C0D9			push push	psw S1STA	!save psw
002F 0031	C050 22			push ret	HADD	! JMP to address HADD,S1STA.
		! ! STATE ! ACTION	: 00, Bus e : Enter not	error. t addre	ssed SLV mode and release bus. STO	reset.
		.sect .base	st0 0x100			
0100	75D8D5			mov	S1CON,#ENS1_NOTSTA_STO_NOT	TSI_AA_CR0 ! clr SI
0103 0105	D0D0 32			pop reti	psw	. 500 010,000

		!*********	************	*******	****************	***********************************			
		! MASTER	STATE SEI	RVICE	ROUTINES	**************************************			
		I State 08 and State 10 are both for MST/TRX and MST/REC. I The R/W bit decides whether the next state is within I MST/TRX mode or within MST/REC mode.							
		! ! STATE ! ACTION	: 08, A, ST : SLA+R/V	ART co V are tr	ondition has been transmitted. ansmitted, ACK bit is received.				
		.sect .base	mts8 0x108						
0108 010B	8551DA 75D8C5			mov mov	S1DAT,SLA S1CON,#ENS1_NOTSTA_NOTSTO	!Load SLA+R/W _NOTSI_AA_CR0			
010E	01A0			ajmp	INITBASE1				
		! ! STATE !	: 10, A rep transmitt	eated sed.	START condition has been				
		! .sect .base	mts10 0x110						
0110 0113	8551DA 75D8C5			mov mov	S1DAT,SLA S1CON,#ENS1_NOTSTA_NOTSTO	! Load SLA+R/W _NOTSI_AA_CR0 ! clr_SI			
010E	01A0			ajmp	INITBASE1				
		.sect .base	ibase1 0xa0						
00A0 00A3 00A5	75D018 7930 7838	INITBASE	1:	mov mov mov	psw,#SELRB3 r1,#MTD r0 #MRD				
00A7 00AA 00AC	855253 D0D0 32			mov pop reti	BACKUP,NUMBYTMST psw	! Save initial value			
		************* ************ ! MASTER *****	TRANSMIT	TER S	TATE SERVICE ROUTINES	*****			
		!***********	******	*******	***************************************	*********			
		! ! STATE ! ! ACTION	: 18, Previ ACK has : First DAT	ous sta been r A is tra	ate was STATE 8 or STATE 10, SLA+V eceived. ansmitted, ACK bit is received.	V have been transmitted,			
		.sect .base	mts18 0x118						
0118 011B 011D	75D018 87DA 01B5			mov mov ajmp	psw,#SELRB3 S1DAT,@r1 CON				

75D8D5

D0D0

32

0120

0123

0125

80C51 8-bit microcontroller – 12 clock operation 16K/512 OTP/RAM, 8 channel 10-bit A/D, I²C, PWM, capture/compare, high I/O

! STATE ! ACTION	: 20, SLA- : Transmit	⊦W hav STOP	e been transmitted, NOT ACK has been received condition.
.sect .base	mts20 0x120		
		mov	S1CON,#ENS1_NOTSTA_STO_NOTSI_AA_CR0 ! set_STO. dr_SI
		pop reti	psw
! STATE ! ACTION !	: 28, DATA : If Transn else tran	A of S1I nitted D smit ne	DAT have been transmitted, ACK received. NATA is last DATA then transmit a STOP condition, ext DATA.
sect	mts28		
.base	0x128		
.base	0x128	djnz mov	NUMBYTMST,NOTLDAT1 ! JMP if NOT last DA S1CON,#ENS1_NOTSTA_STO_NOTSI_AA_CR0
.base	0x128	djnz mov ajmp	NUMBYTMST,NOTLDAT1 ! JMP if NOT last DA S1CON,#ENS1_NOTSTA_STO_NOTSI_AA_CR0 ! clr SI, set AA RETmt
sect base	0x128 mts28sb 0x0b0	djnz mov ajmp	NUMBYTMST,NOTLDAT1 ! JMP if NOT last S1CON,#ENS1_NOTSTA_STO_NOTSI_AA_CR0 ! clr SI, set AA RETmt

		.base	0x128		
0128 012B	D55285 75D8D5			djnz mov	NUMBYTMST,NOTLDAT1 ! JMP if NOT last DATA S1CON,#ENS1_NOTSTA_STO_NOTSI_AA_CR0
012E	01B9			ajmp	RETmt
00B0 00B3 00B5 00B8 00B9 00BB	75D018 87DA 75D8C5 09 D0D0 32	.sect .base NOTLDAT CON: RETmt	mts28sb 0x0b0 1:	mov mov mov inc pop reti	psw,#SELRB3 S1DAT,@r1 S1CON,#ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0 ! clr SI, set AA r1 psw
		! STATE ! ACTION	: 30, DATA : Transmit	of S1I a STO	DAT have been transmitted, NOT ACK received. P condition.
		.sect .base	mts30 0x130		
0130	75D8D5			mov	S1CON,#ENS1_NOTSTA_STO_NOTSI_AA_CR0 ! set STO. clr SI
0133 0135	D0D0 32			pop reti	psw
		! ! STATE ! ACTION !	: 38, Arbiti : Bus is re A new S	ration lo leased, TART c	ost in SLA+W or DATA. , not addressed SLV mode is entered. condition is transmitted when the IIC bus is free again.
		! .sect .base	mts38 0x138		
0138 013B	75D8E5 855352			mov mov	S1CON,#ENS1_STA_NOTSTO_NOTSI_AA_CR0 NUMBYTMST.BACKUP

013E 01B9

P87C554

ajmp RETmt

! ACTION : Read DATA.

		! !	IF receive THEN su ELSE ne	ed DAT perfluc xt DAT	A was the last ous DATA will be received and NOT A A will be received and ACK returned.	ACK returned
		.sect .base	srs80 0x180			
0180 0183 0185	75D018 A6DA 01D8			mov mov ajmp	psw,#SELRB3 @r0,S1DAT REC2	! Read received DATA
		.sect .base	srs80s 0xd8			
00D8 00DA	D906 75D8C1	REC2: LDAT:		djnz mov	r1,NOTLDAT3 S1CON,#ENS1_NOTSTA_NOTSTC	D_NOTSI_NOTAA_CR0
00DD 00DF	D0D0 32			pop reti	psw	
00E0	75D8C5	NOTLDAT	3:	mov	S1CON,#ENS1_NOTSTA_NOTSTC	D_NOTSI_AA_CR0 !clr SI, set AA
00E3 00E4	08 D0D0	RETsr:		inc pop	r0 psw	
00E6	32			reti		
		! ! STATE ! ACTION !	: 88, Previ : No save Recognit	ously a of DAT ion of c	ddressed with own SLA. DATA receiv A, Enter NOT addressed SLV mode. own SLA. General call recognized, if \$	ved NOT ACK returned.
		.sect .base	srs88 0x188			
0188	75D8C5			mov	S1CON,#ENS1_NOTSTA_NOTSTO	D_NOTSI_AA_CR0
018B	01E4			ajmp	RETsr	
		!! ! STATE ! ! ACTION !	: 90, Previ DATA ha : Read DA After Ger the secon DATA wil	ously a s been TA. neral ca nd DAT I be rec	Iddressed with general call. received, ACK has been returned. all only one byte will be received with A will be received with NOT ACK. ceived and NOT ACK returned.	аск
		.sect .base	srs90 0x190			
0190 0193 0195	75D018 A6DA 01DA	1		mov mov ajmp	psw,#SELRB3 @r0,S1DAT LDAT	! Read received DATA
		! STATE ! ! ACTION	: 98, Previ DATA ha : No save Recognit	ously a s been of DAT ion of c	Iddressed with general call. received, NOT ACK has been return A, Enter NOT addressed SLV mode. own SLA. General call recognized, if S	ed. S1ADR. 0–1.
		.sect .base	srs98 0x198			
0198	75D8C5			mov	S1CON,#ENS1_NOTSTA_NOTSTC	D_NOTSI_AA_CR0
019B 019D	D0D0 32			pop reti	psw	
2002 M	ar 25				58	

!------! STATE : 80, Previously addressed with own SLA. DATA received, ACK returned.

Product data

2002 Mar 25

Prod	uct	data
------	-----	------

```
P87C554
```

		! STATE : B8, DATA has been transmitted, ACK received. ! ACTION : DATA will be transmitted, ACK bit is received. !							
01B8 01BB 01BD	75D018 87DA 01F8	.sect .base	stsb8 0x1b8	mov mov ajmp	psw,#SELRB3 S1DAT,@r1 SCON				
		.sect .base	scn 0xf8						
00F8	75D8C5	SCON:		mov	S1CON,#ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0 ! clr SL set AA				
00FB 00FC 00FE	09 D0D0 32			inc pop reti	r1 psw				
		! STATE : C0, DATA has been transmitted, NOT ACK received. ! ACTION : Enter not addressed SLV mode.							
		.sect	stsc0						
01C0	75D8C5	.0030	0.100	mov	S1CON,#ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0				
01C3 01C5	D0D0 32			pop reti	psw				
		! ! STATE ! ACTION	: C8, Last : Enter not	DATA h addres	as been transmitted (AA=0), ACK received. seed SLV mode.				
		.sect	stsc8						
01C8	75D8C5	.0030	0,100	mov	S1CON,#ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0 ! clr SL set AA				
01CB 01CD	D0D0 32			pop reti	psw				
		!*********** !*******	******	*******	***************************************				
		! END OF \$							

DC ELECTRICAL CHARACTERISTICS

 $V_{SS},\,AV_{SS}=0\,\,V$

			LIN	LINUT	
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNII
I _{DD}	Supply current operating	See notes 1 and 2 f _{OSC} = 16 MHz		16	mA
I _{ID}	Idle mode	See notes 1 and 3 $f_{OSC} = 16 \text{ MHz}$		4	mA
I _{PD}	Power-down current	See notes 1 and 4; 2 V < V _{PD} < V _{DD} max		50	μA
Inputs					
V _{IL}	Input low voltage, except EA, P1.6, P1.7		-0.5	0.2V _{DD} -0.1	V
V _{IL1}	Input low voltage to EA		-0.5	0.2V _{DD} -0.3	V
V _{IL2}	Input low voltage to P1.6/SCL, P1.7/SDA ⁵		-0.5	0.3V _{DD}	V
V _{IH}	Input high voltage, except XTAL1, RST		0.2V _{DD} +0.9	V _{DD} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST		0.7V _{DD}	V _{DD} +0.5	V
V _{IH2}	Input high voltage, P1.6/SCL, P1.7/SDA ⁵		0.7V _{DD}	6.0	V
IIL	Logical 0 input current, ports 1, 2, 3, 4, except P1.6, P1.7	V _{IN} = 0.45 V		-50	μA
ITL	Logical 1-to-0 transition current, ports 1, 2, 3, 4, except P1.6, P1.7	See note 6		-650	μΑ
±I _{IL1}	Input leakage current, port 0, EA, STADC, EW	0.45 V < V _I < V _{DD}		10	μA
±I _{IL2}	Input leakage current, P1.6/SCL, P1.7/SDA	0 V < V _I < 6 V 0 V < V _{DD} < 5.5 V		10	μA
±I _{IL3}	Input leakage current, port 5	0.45 V < V _I < V _{DD}		1	μA
$\pm I_{IL4}$	Input leakage current, ports 1, 2, 3, 4 in high impedance mode	0.45 V < V _{in} < V _{DD}		10	μA
Outputs		_			
V _{OL}	Output low voltage, ports 1, 2, 3, 4, except P1.6, P1.7	I _{OL} = 1.6mA ⁷		0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN, PWM0, PWM1	$I_{OL} = 3.2 \text{mA}^7$		0.4	V
V _{OL2}	Output low voltage, P1.6/SCL, P1.7/SDA	I _{OL} = 3.0mA ⁷		0.4	V
V _{OH}	Output high voltage, ports 1, 2, 3, 4, except P1.6/SCL, P1.7/SDA	V _{CC} = 2.7 V I _{OH} = -20 μA	V _{CC} – 0.7		V
		V _{CC} = 4.5 I _{OH} = -30 μA	V _{CC} – 0.7		V
V _{OH1}	Output high voltage (port 0 in external bus mode, ALE, <u>PSEN</u> , PWM0, <u>PWM1</u>) ⁸	V _{CC} = 2.7 V I _{OH} = -3.2mA	V _{CC} – 0.7		V
V _{OH2}	Output high voltage (RST)	-I _{OH} = 400 μA -I _{OH} = 120 μA	2.4 ססע 0.8V		V V
R _{RST}	Internal reset pull-down resistor		40	225	kΩ
C _{IO}	Pin capacitance	Test freq = 1 MHz, T _{amb} = 25°C		10	pF
Analog In	Duts				
AV _{DD}	Analog supply voltage: 87C554 ⁹	$AV_{DD} = V_{DD} \pm 0.2 V$	2.7	5.5	V
AI _{DD}	Analog supply current: operating:	Port 5 = 0 to AV _{DD}		1.2	mA
Al _{ID}	Idle mode: 87C554			50	μA
Al _{PD}	Power-down mode: 87C554	2 V < AV _{PD} < AV _{DD} max		50	μA