E.J. Lattice Semiconductor Corporation - ICE65L04F-TVQ100C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	440
Number of Logic Elements/Cells	3520
Total RAM Bits	81920
Number of I/O	72
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice65l04f-tvq100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Packaging Options

iCE65 components are available in a variety of package options to support specific application requirements. The available options, including the number of available user-programmable I/O pins (PIOs), are listed in Table 2. Fully-tested Known-Good Die (KGD) DiePlus[™] are available for die stacking and highly space-conscious applications. All iCE65 devices are provided exclusively in Pb-free, RoHS-compliant packages.

Package	Package Body (mm)	Package Code	Ball/Lead Pitch (mm)	65L01	65L04	65L08
81-ball chip-scale BGA	5 x 5	CB81	0.5	63 <i>(0)</i>	—	—
84-pin quad flat no-lead package	7 x 7	QN84	0.5	67 <i>(0)</i>	—	—
100-pin very thin quad flat package	14 x 14	VQ100	0.5	72 (0) 🖕	 > 72 <i>(9)</i>	—
121-ball chip-scale BGA	6 x 6	CB121		92 <i>(0)</i>	,	—
132-ball chip-scale BGA	8 x 8	CB132	0.5	93 <i>(0)</i> 🔇		
196-ball chip-scale BGA	8 x 8	CB196	0.5	— `	150 <i>(18)</i>	💭 150 <i>(18)</i>
284-ball chip-scale BGA	12 x 12	CB284		—	176 <i>(20)</i> 🧲	🚽 222 <i>(25)</i>
Known Good Die	See DiePlus data sheet	DI	—	95 <i>(0)</i>	176 <i>(20)</i>	, 222 <i>(25)</i>

Table 2: iCE65 Family Packaging Options, Maximum I/O per Package

The iCE65L04 and the iCE65L08 are both available in the CB196 package and have similar footprints but are not completely pin compatible. See "Pinout Differences between iCE65L04 and iCE65L08 in CB196 Package" on page 73 for more information.

When iCE65 components are supplied in the same package style, devices of different gate densities share a common footprint. The common footprint improves manufacturing flexibility. Different models of the same product can share a common circuit board. Feature-rich versions of the end application mount a larger iCE65 device on the circuit board. Low-end versions mount a smaller iCE65 device.

Note the clock differences between the iCE65L04 and iCE65L08 in the CB196 package.

Differential Global Buffer Input

All eight global buffer inputs support single-ended I/O standards such as LVCMOS. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct SubLVDS, LVDS, or LVPECL differential clock input, as shown in Figure 16. The GBIN7 and its associated differential I/O pad accept a differential clock signal. A 100 Ω termination resistor is required across the two pads. Optionally, swap the outputs from the LVDS or LVPECL clock driver to invert the clock as it enters the iCE65 device.

Table 15 lists the pin or ball numbers for the differential global buffer input by package style. Although this differential input is the only one that connects directly to a global buffer, other differential inputs can connect to a global buffer using general-purpose interconnect, with slightly more signal delay.

Table 15: Differential Global Buffer Input Ball/Pin Number by Package

Differential Global						
Buffer Input	I/O			`L04	`L08	
(GBIN)	Bank	VQ100	CB132	CB196	CB196	CB284
GBIN7/DPxxB	2	13	N/A	G1	H3	L5
DPxxA	3	12	N/A	G2	H4	L3

The differential global buffer input is not available for iCE65 devices in the CB132 package. This restriction is an artifact of the pin compatibility between the CB132 and CB284 package.

Note the clock differences between the iCE65L04 and iCE65L08 in the CB196 package.

Automatic Global Buffer Insertion, Manual Insertion

The iCEcube development software automatically assigns high-fanout signals to a global buffer. However, to manual insert a global buffer input/global buffer (GBIN/GBUF) combination, use the **SB_IO_GB** primitive. To insert just a global buffer (GBUF), use the **SB_GB** primitive.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE65 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user-I/O pins into their high-impedance state. Similarly, the PIO pins can be forced into their high-impedance state via the JTAG controller.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE65 device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application. See Table 3 for more information.

The PIO flip-flops are always reset during configuration, although the output flip-flop can be inverted before leaving the iCE65 device, as shown in Figure 11.

RAM

Each iCE65 device includes multiple high-speed synchronous RAM blocks (RAM4K), each 4Kbit in size. As shown in Table 16 a single iCE65 integrates between 16 to 96 such blocks. Each RAM4K block is generically a 256-word deep by 16-bit wide, two-port register file, as illustrated in Figure 17. The input and output connections, to and from a RAM4K block, feed into the programmable interconnect resources.

Table 16: RAM4K Blocks per Device

Device	RAM4K Blocks	Default Configuration	RAM Bits per Block	Block RAM Bits				
iCE65L01	16			64K				
iCE65L04	20	256 x 16	4K (4,096)	80K				
iCE65L08	32		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	128K				

Using programmable logic resources, a RAM4K block implements a variety of logic functions, each with configurable input and output data width.

- Random-access memory (RAM)
 - Single-port RAM with a common address, enable, and clock control lines
 - Two-port RAM with separate read and write control lines, address inputs, and enable

When the WCLKE signal is Low, the clock to the RAM4K block is disabled, keeping the RAM in its lowest power mode.

	Table 18: RAM4K Write Operations									
	WDATA[15:0]	MASK[15:0]	WADDR[7:0]	WE	WCLKE	WCLK				
				Write	Clock					
Operation	Data	Mask Bit	Address	Enable	Enable	Clock	RAM Location			
Disabled	Х	Х	Х	Х	Х	0	No change			
Disabled					0	Х	No change			
Disabled	Х	Х	Х	0	Х	Х	No change			
Write	WDATA[i]	MASK[i] = 0	WADDR	1	1	1	RAM[WADDR][i]			
Data							= WDATA[i]			
Masked	Х	MASK[i] = 1	WADDR	1	1	1	RAM[WADDR][i]			
Write							= No change			

To write data into the RAM4K block, perform the following operations.

- Supply a valid address on the WADDR[7:0] address input port
- Supply valid data on the WDATA[15:0] data input port
- To write or mask selected data bits, set the associated MASK input port accordingly. For example, write operations on data bit D[i] are controlled by the associated MASK[i] input.
 - MASK[i] = 0: Write operations are enabled for data line WDATA[i]
 - MASK[i] = 1: Mask write operations are disabled for data line WDATA[i]
- Enable the RAM4K write port (WE = 1)
- Enable the RAM4K write clock (WCLKE = 1)
- Apply a rising clock edge on WCLK (assuming that the clock is not inverted)

Read Operations

Figure 19 shows the logic involved in reading a location from RAM. Table 19 describes various read operations for a RAM4K block. By default, all RAM4K read operations are synchronized to the rising edge of RCLK although the clock is invertible as shown in Figure 19.

Table 19: RAM4K Read Operations

	RADDR[7:0]	RE	RCLKE	RCLK	
		Read	Clock		
Operation	Address	Enable	Enabe	Clock	RDATA[15:0]
After configuration, before first valid Read Data operation	Х	Х	Х	X	Undefined
Disabled	Х	Х	Х	0	No Change
Disabled		Х	0	Х	No Change
Disabled	Х	0	Х	Х	No change
Read Data	RADDR	1	1	1	RAM[RADDR]

To read data from the RAM4K block, perform the following operations.

- Supply a valid address on the RADDR[7:0] address input port
- Enable the RAM4K read port (RE = 1)
- Enable the RAM4K read clock (RCLKE = 1)
- Apply a rising clock edge on RCLK
- After the clock edge, the RAM contents located at the specified address (RADDR) appear on the RDATA output port

Read Data Register Undefined Immediately after Configuration

Unlike the flip-flops in the Programmable Logic Blocks and Programmable I/O pins, the RDATA[15:0] read data output register is not automatically reset after configuration. Consequently, immediately following configuration and before the first valid Read Data operation, the initial RDATA[15:0] read value is undefined.

Pre-loading RAM Data

The data contents for a RAM4K block can be optionally pre-loaded during iCE65 configuration. If not pre-loaded during configuration, then the RAM contents must be initialized by the iCE65 application before the RAM contents are valid.

Pre-loading the RAM data in the configuration bitstream increases the size of the configuration image accordingly.

RAM Contents Preserved during Configuration

RAM contents are preserved (write protected) during configuration, assuming that voltage supplies are maintained throughout. Consequently, data can be passed between multiple iCE65 configurations by leaving it in a RAM4K block and then skipping pre-loading during the subsequent reconfiguration. See "Cold Boot Configuration Option" and "Warm Boot Configuration Option" for more information.

Low-Power Setting

To place a RAM4K block in its lowest power mode, keep WCLKE = 0 and RCLKE = 0. In other words, when not actively using a RAM4K block, disable the clock inputs.

Configuration Image Size

Table 23 shows the number of memory bits required to configure an iCE65 device. Two values are provided for each device. The "Logic Only" value indicates the minimum configuration size, the number of bits required to configure only the logic fabric, leaving the RAM4K blocks uninitialized. The "Logic + RAM4K" column indicates the maximum configuration size, the number of bits to configure the logic fabric and to pre-initialize all the RAM4K blocks.

Figure 23: iCE65 SPI Master Configuration Interface

The SPI configuration interface is used primarily during development before mass production, where the configuration is then permanently programmed in the NVCM configuration memory. However, the SPI interface can also be the primary configuration interface allowing easy in-system upgrades and support for multiple configuration images.

The SPI control signals are defined in Table 25. Table 26 lists the SPI interface ball or pins numbers by package.

Table 25: SPI Master Configuration Interface Pins (SPI SS B High before Configuration)

Signal Name	Direction	Description				
SPI_VCC	Supply	SPI Flash PROM voltage supply input.				
SPI_SO	Output	SPI Serial Output from the iCE65 device.				
SPI_SI	Input	SPI Serial Input to the iCE65 device, driven by the select SPI serial Flash PROM.				
SPI_SS_B	Output	SPI Slave Select output from the iCE65 device. Active Low.				
SPI_SCK	Output	SPI Slave Clock output from the iCE65 device.				

After configuration, the SPI port pins are available to the user-application as additional PIO pins, supplied by the SPI VCC input voltage, essentially providing a fifth "mini" I/O bank.

	•			
SPI Interface	VQ100	CB132	CB196	CB284
SPI_VCC	50	L11	L11	R15
PIOS/SPI_SO	45	M11	M11	T15
PIOS/SPI_SI	46	P11	P11	V15
PIOS/SPI_SS_B	49	P13	P13	V17
PIOS/SPI_SCK	48	P12	P12	V16

Table 26: SPI Interface Ball/Pin Numbers by Package

SPI PROM Requirements

The iCE65 mobileFPGA SPI Flash configuration interface supports a variety of SPI Flash memory vendors and product families. However, Lattice Semiconductor does not specifically test, qualify, or otherwise endorse any specific SPI Flash vendor or product family. The iCE65 SPI interface supports SPI PROMs that they meet the following requirements.

- The PROM must operate at 3.3V or 2.5V in order to trigger the iCE65 FPGA's power-on reset circuit.
- The PROM must support the **0x0B** Fast Read command, using a 24-bit start address and has 8 dummy bits before the PROM provides first data (see Figure 25: SPI Fast Read Command).
- The PROM must have enough bits to program the iCE65 device (see Table 27: Smallest SPI PROM Size (bits), by Device, by Number of Images).
- The PROM must support data operations at the upper frequency range for the selected iCE65 internal oscillator frequency (see Table 57). The oscillator frequency is selectable when creating the FPGA bitstream image.

Supported JTAG Commands

The JTAG interface supports the IEEE 1149.1 mandatory instructions, including EXTEST, SAMPLE/PRELOAD, and BYPASS.

Package and Pinout Information

Maximum User I/O Pins by Package and by I/O Bank

Table 34 lists the maximum number of user-programmable I/O pins by package, with additional detail showing user I/O pins by I/O bank. In some cases, a smaller iCE65 device is packaged in a larger package with unconnected (N.C.) pins or balls, resulting in fewer overall I/O pins. See Table 35 for device-specific I/O counts by package.

	CB81	QN84	VQ100	CB132	CB196	CB284
Package Leads	81	84	100	132	196	284
Package Body (mm)	5 x 5	7 x 7	14 x 14	8 x 8	8 x 8	12 x 12
Ball Array (balls)	9 x 9	N/A	N/A	14 x 14	14 x 14	22 x 22
Ball/Lead Pitch (mm)	0.5	0.5	0.5	0.5	0.5	0.5
Maximum user I/O, all I/O banks	63	67	72	95	150	222
PIO Pins in Bank 0	17	17	19	26	37	60
PIO Pins in Bank 1	16	17	19	21	38	55
PIO Pins in Bank 2	12	11	12	20	35	53
PIO Pins in Bank 3	18	18	18	24	36	50
PIO Pins in SPI Interface	4	4	4	4	4	4

Table 34: User I/O by Package, by I/O Bank

Printed Circuit Board Layout Information

For information on how to use the iCE65 packages on a printed circuit board (PCB) design, consult the following application note.

AN010: iCE65 Printed Circuit Board (PCB Layout) Guidelines

Maximum User I/O by Device and Package

Table 35 lists the maximum available user I/O by device and by and package type. Not all devices are available in all packages. Similarly, smaller iCE65 devices may have unconnected balls in some packages. Devices sharing a common package have similar footprints.

Table 35: Maximum User I/O by Device and Package									
		Device							
Package	iCE65L01	iCE65L04	iCE65L08						
CB81	63	—	—						
QN84	67	—	—						
VQ100	72	72							
CB132	93	95	—						
CB196	—	150	150						
CB284	—	176	222						

Signal Name	Direction	I/O Bank	Pull-up during Config	Description
TMS	Input	1	No	JTAG Test Mode Select. If using the JTAG interface, use a $10k\Omega$ pull-up resistor to VCCIO_1. Tie off to GND when unused.
тск	Input	1	No	JTAG Test Clock. If using the JTAG interface, use a $10k\Omega$ pull- up resistor to VCCIO_1. Tie off to GND when unused.
TDO	Output	1	No	JTAG Test Data Output.
TRST_B	Input	1	No	JTAG Test Reset, active Low. Keep Low during normal operation; High for JTAG operation.
VCC	Supply	All	N/A	Internal core voltage supply. All must be connected.
VCCIO_0	Supply	0	N/A	Voltage supply to I/O Bank 0. All such pins or balls on the package must be connected. Can be disconnected or turned off without affecting the Power-On Reset (POR) circuit.
VCCIO_1	Supply	1	N/A	Voltage supply to I/O Bank 1. All such pins or balls on the package must be connected. Required to guarantee a valid input voltage on TRST_B JTAG pin.
VCCIO_2	Supply	2	N/A	Voltage supply to I/O Bank 2. All such pins or balls on the package must be connected. Required input to the Power-On Reset (POR) circuit.
VCCIO_3	Supply	3	N/A	Voltage supply to I/O Bank 3. All such pins or balls on the package must be connected. Can be disconnected or turned off without affecting the Power-On Reset (POR) circuit.
SPI_VCC	Supply	SPI	N/A	SPI interface voltage supply input. Must have a valid voltage even if configuring from NVCM. Required input to the Power-On Reset (POR) circuit.
VPP_FAST	Supply	All	N/A	Direct programming voltage supply. If unused, leave floating or unconnected during normal operation.
VPP_2V5	Supply	All	N/A	Programming supply voltage. When the iCE65 device is active, VPP_2V5 must be in the valid range between 2.3 V to 3.47 V to release the Power-On Reset circuit, even if the application is not using the NVCM.
VREF	Voltage Reference	3	N/A	Input reference voltage in I/O Bank 3 for the SSTL I/O standard. This pin only appears on the CB284 package and for die-based products.

N/A = Not Applicable

iCE65 Package Footprint Diagram Conventions

Figure 31 illustrates the naming conventions used in the following footprint diagrams. Each PIO pin is associated with an I/O Bank. PIO pins in I/O Bank 3 that support differential inputs are also numbered by differential input pair.

Figure 38: VQ100 Package Mechanical Drawing: NVCM Programmed Device Marking

Description	Symbol	Min.	Nominal	Max.	Units	
Loodo por Edgo	Х			25		
Leads per Edge	Y			25		Leads
Number of Signal Leads	5	n		100		
Maximum Size	Х	E	_	16.0	_	
(lead tip to lead tip)	Y	D	_	16.0		
Pody Sizo	Х	E1	-	14.0	-	
Bouy Size	Y	D1	—	14.0	—	
Edge Pin Center to	Х	E2	_	12.0	—	
Center	Y	D2	—	12.0	_	
Lead Pitch	е	—	0.50	_	~~	
Lead Width		b	0.17	0.20	0.27	THT
Total Package Height		А	—	1.20	-	
Stand Off		A1	0.05	_	0.15	
Body Thickness		A2	0.95	1.00	1.05	
Lead Length		L1	—	1.00	_	
Lead Thickness	с	0.09		0.20		
Coplanarity			—	0.08	—	

Top Marking Format

Line	Content	Description
1	Logo	Logo
	iCE65L01F	Part number
2	-T	Power/Speed
	ENG	Engineering
3	VQ100C	Package type and
	NXXXXXXX	Lot number
4	ZZZZZZZZ	NVCM Program. code
5	YYWW	Date Code
6	© CCCCCC	Country

Thermal Resistance

Junction-to-Ambient					
θIA (°C/W)					
0 LFM	200 LFM				
38	32				

Ball Function	Ball Number	Pin Type	Bank
PIO0	A5	PIO	0
PIOO	A6	PIO	0
PIQO	A8	PIO	0
PIOO	A10	PIO	0
PIOO	B3		0
PIOO	B4	PIO	0
PIOO	85		0
PIOO	BS		0
PIOO	BO	PIO	0
PIOO	D3		0
	C3		0
PIOO	C7		0
PIOU		PIO	0
PIOU	<u> </u>	PIO	0
PIOU	D5	PIO	0
PIOU	D7	PIO	0
PIOO	E5	PIO	0
PIO0	E6	PIO	0
PIO0	E7	PIO	0
PIO0	F7	PIO	0
VCCIO_0	B7	VCCIO	0
GBIN2/PIO1	F9	GBIN	1
GBIN3/PIO1	F8	GBIN	1
PIO1	A11	PIO	1
PIO1	B11	PIO	1
PIO1	C11	PIO	1
PIO1	D8	PIO	1
PIO1	D9	PIO	1
PIO1	D10	PIO	1
PIO1	D10	PIO	1
PIO1	F8	PIO	1
PIO1	F9	PIO	1
PIO1	F11	PIO	1
	F10		1
PIO1	67		1
PIO1	68	PIO	1
	0	PIO	1
PIOI DIO1	C10		1
			1
PIOI DIO1			1
PIOI		PIO	1
PIOI		PIO	1
	<u>П10</u>		1
	EIU	VCCIO	l
CDONE		CONFIG	2
CRESET_B	K7	CONFIG	2
GBIN4/PIO2	L8	GBIN	2
GBIN5/PIO2	L9	GBIN	2
PIO2	H4	PIO	2
PIO2	H5	PIO	2
PIO2	H11	PIO	2
PIO2	J4	PIO	2
PIO2	J5	PIO	2

	Ball Number	Pin Type by Device			
	iCE65L04				CB132 Ball
Ball Function	iCE65L08	iCE65L04	iCE65L08	Bank	Equivalent
PIOO	E15	PIO	PIO	0	A11
PIOO	E16	PIO	PIO	0	A12
PIOO	G8	PIO	PIO	0	C4
PIOO	G9	PIO	PIO	0	C5
PIOO	G10	PIO	PIO	0	C6
PIOO	G11	PIO	PIO	0	C7
PIOO	G12	PIO	PIO	0	C8
PIOO	G13	PIO	PIO	0	C9
PIOO	G14	PIO	PIO	0	C10
PIOO	G15	PIO	PIO	0	C11
PIOO	G16	PIO	PIO	0	C12
PIOO	H9	PIO	PIO	0	D5
PIOO	H10	PIO	PIO	0	D6
PIOO	H11	PIO	PIO	0	D7
PIOO	H12	PIO	PIO	0	D8
PIOO	H13	PIO	PIO	0	D9
PIOO	H14	PIO	PIO	0	D10
PIOO	H15	PIO	PIO	0	D11
VCCIO_0	A8	VCCIO	VCCIO	0	—
VCCIO_0	A21	VCCIO	VCCIO	0	—
VCCIO_0	E12	VCCIO	VCCIO	0	A8
VCCIO_0	K10	VCCIO	VCCIO	0	F6
GBIN2/PIO1	L18	GBIN	GBIN	1	G14
GBIN3/PIO1	K18	GBIN	GBIN	1	F14
PIO1 (●)	A22	N.C.	PIO	1	—
PIO1 (●)	AA22	N.C.	PIO	1	-
PIO1 (●)	B22	N.C.	PIO	1	—
PIO1	C20	PIO	PIO	1	—
PIO1 (●)	C22	N.C.	PIO	1	—
PIO1	D20	PIO	PIO	1	—
PIO1 (●)	D22	N.C.	PIO	1	—
PIO1	E20	PIO	PIO	1	—
PIO1 (●)	E22	N.C.	PIO	1	—
PIO1	F18	PIO	PIO	1	B14
PIO1	F20	PIO	PIO	1	—
PIO1 (●)	F22	N.C.	PIO	1	—
PIO1	G18	PIO	PIO	1	C14
PIO1	G20	PIO	PIO	1	—
PIO1	G22	PIO	PIO	1	—
PI01	H16	PIO	PIO	1	D12
PIO1	H18	PIO	PIO	1	D14
PIO1	H20	PIO	PIO	1	—
PIO1	J15	PIO	PIO	1	E11
PIO1	J16	PIO	PIO	1	E12
PIO1	J18	PIO	PIO	1	E14
PIO1 (●)	J22	N.C.	PIO	1	—
PI01	K15	PIO	PIO	1	F11
PIO1	K16	PIO	PIO	1	F12
PIO1	K20	PIO	PIO	1	—
PIO1 (●)	K22	N.C.	PIO	1	—

Package Mechanical Drawing

CB284: 12 x 12 mm, 284-ball, 0.5 mm ball-pitch, chip-scale ball grid array

Description	Symbol	Min.	Nominal	Max.	Units	
Number of Ball Columns	X			22		Columns
Number of Ball Rows	Y			22		Rows
Number of Signal Balls		n		284		Balls
Rody Size		E	11.90	12.00	12.10	
Bouy Size	Y	D	11.90	12.00	12.10	
Ball Pitch		е	-	0.50	—	
Ball Diameter		b	0.27	_	0.37	
Edge Ball Center to	Х	E1	-	10.50	—	
Center	Y	D1	-	10.50	—	
Package Height		A	-	—	1.00	
Stand Off		A1	0.16	_	0.26	

Top Marking Format

Line	Content	Description
1	Logo	Logo
	iCE65L08F	Part number
2	-T	Power/Speed
	ENG	Engineering
3	CB284C	Package type and
	NXXXXXXX	Lot number
4	YYWW	Date Code
5	N/A	Blank
6	0 CCCCCC	Country

Thermal Resistance

Junction-to-Ambient					
θJA (°C/W)					
0 LFM	200 LFM				
35	28				

Die Cross Reference

The tables in this section list all the pads on a specific die type and provide a cross reference on how a specific pad connects to a ball or pin in each of the available package offerings. Similarly, the tables provide the pad coordinates for the die-based version of the product (DiePlus). These tables also provide a way to prototype with one package option and then later move to a different package or die.

As described in "Input and Output Register Control per PIO Pair" on page 16, PIO pairs share register control inputs. Similarly, as described in "Differential Inputs and Outputs" on page 12, a PIO pair can form a differential input or output. PIO pairs in I/O Bank 3 are optionally differential inputs or differential outputs. PIO pairs in all other I/O Banks are optionally differential outputs. In the tables, differential pairs are surrounded by a heavy blue box.

iCE65L04

Table 45 lists all the pads on the iCE65L04 die and how these pads connect to the balls or pins in the supported package styles. Most VCC, VCCIO, and GND pads are double-bonded inside the package although the table shows only a single connection.

For additional information on the iCE65L04 DiePlus product, please refer to the following data sheet.

DiePlus Advantage FPGA Known Good Die

iCE65L04 DiePlus									
Pad Name	VO100	CB132	CB196	CB284	Dad	Y (um)	V (um)		
	101	DIJZ	CI	CD201	T uu	120.40			
P103_00/DP00A	1	BI		F5	1	129.40	2,687.75		
P103_01/DP00B	2	C1	B1	G5	2	231.40	2,642.74		
PIO3_02/DP01A	3	C3	D3	G7	3	129.40	2,597.75		
PIO3_03/DP01B	4	D3	C3	H7	4	231.40	2,552.74		
GND	5	F1	F1	K5	5	129.40	2,507.75		
GND	—	—	—	—	6	231.40	2,462.74		
VCCIO_3	6	E3	E3	J7	7	129.40	2,417.75		
VCCIO_3	—	—	—	—	8	231.40	2,372.74		
PIO3_04/DP02A	7	D4	D1	H8	9	129.40	2,327.75		
PIO3_05/DP02B	8	E4	D2	J8	10	231.40	2,292.74		
PIO3_06/DP03A	—	D1	E1	H5	11	129.40	2,257.75		
PIO3_07/DP03B	—	E1	E2	J5	12	231.40	2,222.74		
VCC	—	—	H9	D3	13	129.40	2,187.75		
PIO3_08/DP04A	9	F4	D4	K8	14	231.40	2,152.74		
PIO3_09/DP04B	10	F3	E4	K7	15	129.40	2,117.75		
PIO3_10/DP05A	—	—	F3	E3	16	231.40	2,082.74		
PIO3_11/DP05B	—	—	F4	F3	17	129.40	2,047.75		
GND	—	H6	A9	M10	18	231.40	2,012.74		
PIO3_12/DP06A	—	—	F5	G3	19	129.40	1,977.75		
PIO3_13/DP06B	—	—	E5	H3	20	231.40	1,942.74		
GND	—	—	A9	J3	21	129.40	1,907.75		
GND	—	—	—	—	22	231.40	1,872.74		
PIO3_14/DP07A	—	—	—	H1	23	129.40	1,837.75		
PIO3_15/DP07B	—	—	—	J1	24	231.40	1,802.74		
VCCIO_3	—	—	K1	K3	25	129.40	1,767.75		
VCC	11	G6	G6	L10	26	231.40	1,732.74		
PIO3_16/DP08A	—	—	—	K1	27	129.40	1,697.75		
PIO3_17/DP08B	—	—	—	L1	28	231.40	1,662.74		

Table 45: iCE65L04 Die Cross Reference

iCE65L08

Table 46 lists all the pads on the iCE65L08 die and how these pads connect to the balls or pins in the supported package styles. Most VCC, VCCIO, and GND pads are double-bonded inside the package although the table shows only a single connection.

For additional information on the iCE65L08 DiePlus product, please refer to the following data sheet.

DiePlusAdvantage FPGA Known Good Die

Table 46: iCE65L08 Die Cross Reference									
iCE65L08	Available	Packages	DiePlus						
Pad Name	CB196	CB284	Pad	X (μm)	Y (µm)				
PIO3_00/DP00A	—	B1	1	129.735	3,882.665				
PIO3_01/DP00B	—	C1	2	231.735	3,837.665				
PIO3_02/DP01A	C1	F5	3	129.735	3,792.665				
PIO3_03/DP01B	B1	G5	4	231.735	3,747.665				
GND	C2	K5	5	129.735	3,702.665				
GND	—	—	6	231.735	3,657.665				
VCCIO_3	E3	J7	7	129.735	3,612.665				
VCCIO_3	—	—	8	231.735	3,567.665				
PIO3_04/DP02A	D3	E3	9	129.735	3,512.665				
PIO3_05/DP02B	C3	F3	10	231.735	3,477.665				
PIO3_06/DP03A	D1	G3	11	129.735	3,442.665				
PIO3_07/DP03B	D2	H3	12	231.735	3,407.665				
VCC	F2	D3	13	129.735	3,372.665				
VCC	—	—	14	231.735	3,337.665				
PIO3_08/DP04A	D4	D1	15	129.735	3,302.665				
PIO3_09/DP04B	E4	E1	16	231.735	3,267.665				
PIO3_10/DP05A	—	H1	17	129.735	3,232.665				
PIO3_11/DP05B	—	J1	18	231.735	3,197.665				
GND	F1	M10	19	129.735	3,162.665				
GND	—	—	20	231.735	3,127.665				
PIO3_12/DP06A	E2	H5	21	129.735	3,092.665				
PIO3_13/DP06B	E1	J5	22	231.735	3,057.665				
GND	L3	J3	23	129.735	3,022.665				
GND	—	—	24	231.735	2,987.665				
PIO3_14/DP07A	F5	K1	25	129.735	2,952.665				
PIO3_15/DP07B	E5	L1	26	231.735	2,917.665				
VCCIO_3	E3	K3	27	129.735	2,882.665				
VCCIO_3	—	—	28	231.735	2,847.665				
VCC	G6	L10	29	129.735	2,812.665				
VCC	—	—	30	231.735	2,777.665				
PIO3_16/DP08A	F4	G7	31	129.735	2,742.665				
PIO3_17/DP08B	F3	H7	32	231.735	2,707.665				
VCCIO_3	K1	F1	33	129.735	2,672.665				
VCCIO_3	<u> </u>	—	34	231.735	2,637.665				
GND	—	Gl	35	129./35	2,602.665				
		—	30	231./35	2,507.005				
PIO3_18/DP09A	G3	K8	3/	129./35	2,532.665				
P103_19/DP09B	G4	K/	38	231./35	2,497.665				

iCE65L08	Available	Packages	DiePlus			
Pad Name	CB196	CB284	Pad	X (μm)	Υ (μm)	
TDI	M12	T16	177	4,470.5	634.615	
TMS	P14	V18	178	4,572.5	684.615	
ТСК	L12	R16	179	4,470.5	734.615	
TDO	N14	U18	180	4,572.5	784.615	
TRST_B	M14	T18	181	4,470.5	834.615	
PIO1_00	M13	R18	182	4,572.5	884.615	
PIO1_01	K11	P16	183	4,470.5	934.615	
PIO1_02	L13	P15	184	4,572.5	984.615	
PIO1_03	L14	P18	185	4,470.5	1,034.615	
GND	G9	N18	186	4,572.5	1,084.615	
GND	—	—	187	4,470.5	1,134.615	
PIO1_04	J11	N16	188	4,572.5	1,184.615	
 PIO1_05	K12	N15	189	4,470.5	1,234.62	
VCCIO_1	F9	M18	190	4,572.5	1,287.115	
VCCIO_1			191	4,470.5	1,322.115	
PIO1 06	J12	M15	192	4,572.5	1,357.115	
 PIO1_07	K14	M16	193	4,470.5	1,392.115	
PIO1 08	_	T20	194	4.572.5	1.427.115	
PIO1 09	_	W20	195	4,470.5	1,462.115	
 PIO1 10		V20	196	4.572.5	1.497.115	
VCC	H9	M13	197	4,470.5	1,532.115	
VCC	_	—	198	4,572.5	1,567.115	
PIO1_11	—	R20	199	4,470.5	1,602.115	
PIO1 12	—	Y22	200	4,572.5	1,637.115	
 PIO1_13	_	AA22	201	4,470.5	1,672.115	
PIO1 14	—	U20	202	4,572.5	1,707.115	
 PI01_15	J13	W22	203	4,470.5	1,742.115	
PIO1 16	H11	P20	204	4,572.5	1,777.115	
 PIO1_17	J10	V22	205	4,470.5	1,812.115	
PIO1 18	H12	U22	206	4,572.5	1,847.115	
GND	K10	N20	207	4,470.5	1,882.115	
GND	—	—	208	4,572.5	1,917.110	
PIO1_19	H13	T22	209	4,470.5	1,952.115	
PIO1_20	—	M20	210	4,572.5	1,987.115	
PIO1_21	H10	R22	211	4,470.5	2,022.115	
PIO1_22	—	P22	212	4,572.5	2,057.115	
VCCIO_1	F9	J20	213	4,470.5	2,092.115	
VCCIO_1	—	—	214	4,572.5	2,127.115	
PIO1_23	G10	M22	215	4,470.5	2,162.115	
PIO1_24	G11	N22	216	4,572.5	2,197.115	
PIO1_25	—	K22	217	4,470.5	2,232.115	
PIO1_26	—	L22	218	4,572.5	2,267.115	
GBIN3/PIO1_27	G12	K18	219	4,470.5	2,302.11	
GBIN2/PIO1_28	F10	L18	220	4,572.5	2,337.115	
PIO1_29	—	J22	221	4,470.5	2,372.115	

Differential Inputs

Figure 50: Differential Input Specifications

Differential input voltage:

Table 52: Recommended Operating Conditions for Differential Inputs

I/O	V	CCIO_3 (V)		V _{ID} (mV)			V _{ICM} (V)			
Standard	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max		
LVDS	2.38	2.50	2.63	250	350	450	$\frac{\text{VCCIO}_3}{2} - 0.30$	$\frac{\text{VCCIO}_3}{2}$	$\frac{\text{VCCIO}_3}{2} + 0.30$		
SubLVDS	1.71	1.80	1.89	100	150	200	$\frac{\text{VCCIO}_3}{2} - 0.25$	$\frac{\text{VCCIO}_3}{2}$	$\frac{\text{VCCIO}_3}{2} + 0.25$		

Differential Outputs

Output common mode voltage:

 $V_{OCM} = \frac{VCCIO_x}{2} \pm \Delta V_{OCM}$

 $V_{ID} = |V_{IN_B} - V_{IN_A}|$

Differential output voltage:

 $V_{OD} = |V_{OUT_B} - V_{OUT_A}|$

Table 53: Recommended Operating Conditions for Differential Outputs

I/O	VCCIO_x (V)			Ω		V _{OD} (mV)			V _{OCM} (V)		
Standard	Min	Nom	Max	Rs	R _P	Min	Nom	Max	Min	Nom	Max
LVDS	2.38	2.50	2.63	150	140	300	350	400	$\frac{\text{VCCIO}}{2} - 0.15$	$\frac{\text{VCCIO}}{2}$	$\frac{\text{VCCIO}}{2} + 0.15$
SubLVDS	1.71	1.80	1.89	270	120	100	150	200	$\frac{\text{VCCIO}}{2} - 0.10$	$\frac{\text{VCCIO}}{2}$	$\frac{\text{VCCIO}}{2} + 0.10$

1.0

0.0

0.5

Figure 53: Typical LVCMOS Output High Characteristics (I/O Banks 0, 1, 2, and SPI)

1.5

V_{ol}(V)

2.0

2.5

3.0

Figure 54: Input with Internal Pull-Up Resistor Enabled (I/O Banks 0, 1, 2, and SPI)

Internal Configuration Oscillator Frequency

Table 57 shows the operating frequency for the iCE65's internal configuration oscillator.

	Oscillator	Frequency (MHz)			
Symbol	Mode	Min.	Max.	Description	
f _{OSCD}	Default	4.0	6.8	Default oscillator frequency. Slow enough to safely operate with any SPI serial PROM.	
f _{OSCL}	Low Frequency	14	21	Supported by most SPI serial Flash PROMs	
f _{osch}	High Frequency	21	31	Supported by some high-speed SPI serial Flash PROMs	
	Off	0	0	Oscillator turned off by default after configuration to save power.	

Table 57: Internal Oscillator Frequency

Configuration Timing

Table 58 shows the maximum time to configure an iCE65 device, by oscillator mode. The calculations use the slowest frequency for a given oscillator mode from Table 57 and the maximum configuration bitstream size from Table 1 which includes full RAM4K block initialization. The configuration bitstream selects the desired oscillator mode based on the performance of the configuration data source.

Table 58: Maximum SPI Master or NVCM Configuration Timing by Oscillator Mode

Symbol	Description	Device	Default	Low Freq.	High Freq.	Units
t _{CONFIGL}	Time from when	iCE65L01	53	25	11	ms
	Reset (POR) threshold is	iCE65L04	115	55	25	ms
	application starts.	iCE65L08	230	110	50	ms

Table 59 provides timing for the CRESET_B and CDONE pins.

Table 59: General Configuration Timing

					All Grades		
Symbol	From	То	Description	Min.	Max.	Units	
t_{creset_b}	CREST_B	CREST_B	Minimum CRESET_B Low pulse width required configuration, from falling edge to rising edge to reserve the second se	200	—	ns	
t _{done_io}	CDONE High	PIO pins active	Number of configuration clock cycles afte High before the PIO pins are activated.	—	49	Clock cycles	
			SPI Peripheral Mode (Clock = SPI_SCK, cycles measured rising-edge to rising-edge)		Depends on SPI_SCK frequency		
			NVCM or SPI Master Mode by internal oscillator frequency setting (Clock = internal oscillator)	Default	7.20	12.25	μs
				Low	2.34	3.50	μs
				High	1.59	2.33	μs

Revision History

Version	Date	Description	
2.42	30-MAR-2012	Changed company name. Updated Table 1	
2.41	1-AUG-2011	Added VQ100 marking for NVCM programming.	
2.4	13-MAY-2011	Added L01 CB121 package Figure 39. Added note "else VCCIO_1 draws current" to JTAG inputs TCK, TDI and TMS do not have the input pull-up resistor and must be tied off to GND when unused, Table 32. Input pin leakage current Table 49 split by bank. QN84 package drawing, Figure 35, added note "underside metal is at ground potential", increased thermal resistance. Added Marking Format and Thermal resistance to CB81 Packag Mechanical Drawing Figure 37	
2.3	18-OCT-2010	Added L01 CB81 and L08 CB132 packages.	
2.2.3	12-OCT-2010	Changed Figure 29: Application Processor Waveforms for SPI Peripheral Mode Configuration Process and Table 60 from 300 µs CRESET_B to 800 µs for iCE65L01/04 and 1200 µs for iCE65L08.	
2.2.2	8-OCT-2010	Added iCE65L04 marking specification to Figure 47 CB196 Package Mechanical Drawing.	
2.2.1	5-OCT-2010	Changed FSPI_SCK from 0.125 MHz to 1 MHz in SPI Peripheral Configuration Interface and in Table 60.	
2.2	6-AUG-2010	Programmable Interconnect section removed.	
2.1.1	26-MAY-2010	Switched labels on Figure 53 LVCMOS Output High, $VCCIO = 1.8V$ with $VCCIO = 2.5V$.	
2.1	15-MAR-2010	Added JTAG unused input tie off guideline. Added marking specification and thermal characteristics to package drawings. Added production datasheet for iCE65L01 with timing update, including QN84, VQ100 and CB132. Added NVCM shut-off on SPI configuration. Added non-standard VCCIO operating conditions. Increased the minimum voltage supply specification for LVCMOS33 to 3.14V in Table 48.	
2.0.1	12-NOV-2009	Recommended Operation Conditions, Table 47, replaced junction with ambient.	
2.0	14-SEPT-2009	Finalized production data sheet for iCE65L04 and iCE65L08. Improved SubLVDS input specification V_{ICM} in Table 52. CS63 and CC72 packages removed and placed in iCE DiCE KGD, Known Good Die datasheet. Added "IBIS Models for I/O Banks 0, 1, 2 and the SPI Bank". Added "Printed Circuit Board Layout Information".	
1.5.1	13-JUL-2009	Updated the text in "SPI PROM Requirements" section. Minor label change in Figure 48.	
1.5	20-JUN-2009	Updated timing information and added –T high-speed device option (affected Figure 2, Table 48, Table 54, Table 55, Table 56, and Table 61). Added support for 3.3V LVCMOS I/Os in I/O Bank 3 (affected Figure 7, Table 5, Table 7, Table 8, Table 47, Table 48, and Table 51). Added a section about the SPI Peripheral Configuration Interface and timing in Table 60. Added a warning that a Warm Boot operation can only jump to another configuration image that has Warm Boot disabled. Updated configuration image size and configuration time for the iCE65L02 in Table 27 and Table 58. Reduced the minimum voltage supply specification for LVCMOS33 to 2.7V in Table 48. Added information about which power rails can be disconnected without effecting the Power-On Reset (POR) circuit and clarified description of VPP_2V5 pin in Table 36. Added I/O characterization curves (Figure 52, Figure 53, and Figure 54). Minor changes to Figure 20 and Figure 21. Changed timing per Figures 54-58 and Tables 55-57.	
1.4.4	25-MAR-2009	Clarified the voltage requirements for the VPP_2V5 pin in Table 36 and notes under Table 48.	
1.4.3	9-MAK-2009	for ball T22 on CB284 package (Figure 48).	
1.4.2	27-FEB-2009	Updated Table 14, Table 23, Table 26, Table 30, Table 33, Table 35, and Table 46. Updated I/O Bank 3 information in Table 7 and Table 48.	
1.4.1	24-FEB-2009	Based on characterization data, reduced 32KHz operating current by 40% in Table 1, Table 61, and Figure 1. Corrected that SSTL18 standards require VREF pin in Table 7. Correct ball numbers for GBIN4/GBIN5 for CS110 package.	
1.4	9-FEB-2009	Added footprint and pinout information for the VQ100 Very-thin Quad Flat Package. Added footprint for iCE65L08 in CB196 (Figure 46) and added Table 43 showing the differences between the 'L04 and 'L08 in the CB196 package. Unified the package footprint nomenclature in the Package and Pinout Information section. Added note to Global Buffer Inputs that the differential clock direct input is not available on the CB132 package. Added tables showing the ball/pin number for various control functions, by package (Table 14, Table 23, Table 26, Table 30, and Table 33). Corrected the GBIN/GBUF designations. GBIN4 and GBIN5 were swapped as were GBIN6 and GBIN7. This change affected all pinout tables and footprint diagrams. Updated and corrected "Differential Global Buffer Input." Tested and corrected the clock-enable and reset connections between global buffers and various resources (Table 11, Table 12, and Table 13). Added "Automatic Global Buffer Insertion, Manual Insertion." Added "Die Cross Reference" section. Improved industrial temperature range by lowering	