

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

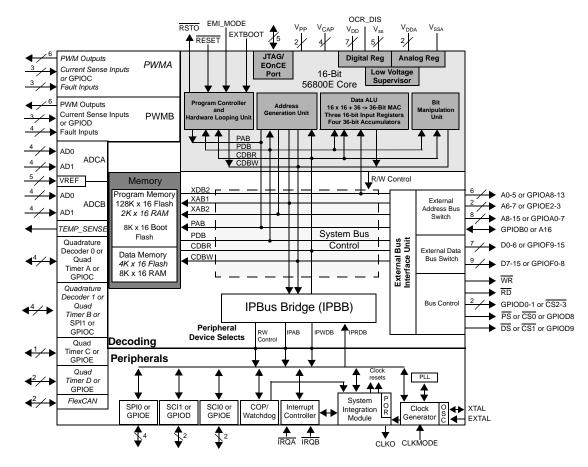
Details

E·XFI

Details		
Product Status	Active	
Core Processor	56800E	
Core Size	16-Bit	
Speed	40MHz	
Connectivity	EBI/EMI, SCI, SPI	
Peripherals	POR, PWM, WDT	
Number of I/O	62	
Program Memory Size	256KB (128K x 16)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	8K x 16	
Voltage - Supply (Vcc/Vdd)	2.25V ~ 3.6V	
Data Converters	A/D 16x12b	
Oscillator Type	External	
Operating Temperature	-40°C ~ 105°C (TA)	
Mounting Type	Surface Mount	
Package / Case	144-LQFP	
Supplier Device Package	144-LQFP (20x20)	
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc56f8156vfve	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



56F8356/56F8156 General Description

Note: Features in italics are NOT available in the 56F8156 device.

- Up to 60 MIPS at 60MHz core frequency
- DSP and MCU functionality in a unified, C-efficient architecture
- Access up to 1MB of off-chip program and data memory
- Chip Select Logic for glueless interface to ROM and SRAM
- 256KB of Program Flash
- 4KB of Program RAM
- 8KB of Data Flash
- 16KB of Data RAM
- 16KB of Boot Flash
- Up to two 6-channel PWM modules
- Four 4-channel, 12-bit ADCs

- Temperature Sensor
- Up to two Quadrature Decoders
- Optional on-chip regulator
- FlexCAN module
- Two Serial Communication Interfaces (SCIs)
- Up to two Serial Peripheral Interfaces (SPIs)
- Up to four general-purpose Quad Timers
- Computer Operating Properly (COP) / Watchdog
- JTAG/Enhanced On-Chip Emulation (OnCE™) for unobtrusive, real-time debugging
- Up to 62 GPIO lines
- 144-pin LQFP Package

56F8356 / 56F8156 Block Diagram

56F8356 Technical Data, Rev. 13

Table 2-2 Signal and Package Information for the 144-Pin LQFP (Continued)

Signal Name	Pin No.	Туре	State During Reset	Signal Description
DS (CS1) (GPIOD9)	47	Output Input/ Output	In reset, output is disabled, pull-up is enabled	Data Memory Select — This signal is actually $\overline{CS1}$ in the EMI, which is programmed at reset for compatibility with the 56F80x DS signal. DS is asserted low for external data memory access.Depending upon the state of the DRV bit in the EMI bus control register (BCR), \overline{DS} is tri-stated when the external bus is inactive. $\overline{CS1}$ resets to provide the \overline{DS} function as defined on the 56F80x devices.Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				To deactivate the internal pull-up resistor, clear bit 9 in the GPIOD_PUR register.
GPIOD0	48	Input/ Output	Input, pull-up enabled	Port D GPIO — These two GPIO pins can be individually programmed as input or output pins.
(CS2)		Output	enabled	Chip Select — $\overline{CS2}$ - $\overline{CS3}$ may be programmed within the EMI
GPIOD1	49			module to act as chip selects for specific areas of the external memory map.
(CS3)				Depending upon the state of the DRV bit in the EMI bus control register (BCR), A0–A16 and EMI control signals are tri-stated when the external bus is inactive.
				Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.
				At reset, these pins are configured as GPIO.
				To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOD_PUR register.
				Example: GPIOD0, clear bit 0 in the GPIOD_PUR register.
TXD0	4	Output	In reset, output is	Transmit Data — SCI0 transmit data output
(GPIOE0)		Input/ Output	disabled, pull-up is enabled	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI output.
				To deactivate the internal pull-up resistor, clear bit 0 in the GPIOE_PUR register.

Table 2-2 Signal and Package Information for the 144-Pin LQFP (Continued)

Signal Name	Pin No.	Туре	State During Reset	Signal Description
RXD0	5	Input	Input,	Receive Data — SCI0 receive data input
(GPIOE1)		Input/ Output	pull-up enabled	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI output.
				To deactivate the internal pull-up resistor, clear bit 1 in the GPIOE_PUR register.
TXD1	42	Output	In reset, output is	Transmit Data — SCI1 transmit data output
(GPIOD6)		Input/ Output	disabled, pull-up is enabled	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
			chabled	After reset, the default state is SCI output.
				To deactivate the internal pull-up resistor, clear bit 6 in the GPIOD_PUR register.
RXD1	43	Input	Input, pull-up	Receive Data — SCI1 receive data input
(GPIOD7)		Input/ Output	enabled	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI input.
				To deactivate the internal pull-up resistor, clear bit 7 in the GPIOD_PUR register.
тск	121	Schmitt Input	Input, pulled low internally	Test Clock Input — This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/EOnCE port. The pin is connected internally to a pull-down resistor.
TMS	122	Schmitt Input	Input, pulled high internally	Test Mode Select Input — This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.
				Note: Always tie the TMS pin to V _{DD} through a 2.2K resistor.
TDI	123	Schmitt Input	Input, pulled high internally	Test Data Input — This input pin provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.

Table 4-10 External Memory Integration Registers Address Map (Continued) (EMI_BASE = \$00 F020)

Register Acronym	Address Offset	Register Description	Reset Value
CSOR 0	\$8	Chip Select Option Register 0	0x5FCB programmed for chip select for program space, word wide, read and write, 11 waits
CSOR 1	\$9	Chip Select Option Register 1	0x5FAB programmed for chip select for data space, word wide, read and write, 11 waits
CSOR 2	\$A	Chip Select Option Register 2	
CSOR 3	\$B	Chip Select Option Register 3	
CSOR 4	\$C	Chip Select Option Register 4	
CSOR 5	\$D	Chip Select Option Register 5	
CSOR 6	\$E	Chip Select Option Register 6	
CSOR 7	\$F	Chip Select Option Register 7	
CSTC 0	\$10	Chip Select Timing Control Register 0	
CSTC 1	\$11	Chip Select Timing Control Register 1	
CSTC 2	\$12	Chip Select Timing Control Register 2	
CSTC 3	\$13	Chip Select Timing Control Register 3	
CSTC 4	\$14	Chip Select Timing Control Register 4	
CSTC 5	\$15	Chip Select Timing Control Register 5	
CSTC 6	\$16	Chip Select Timing Control Register 6	
CSTC 7	\$17	Chip Select Timing Control Register 7	
BCR	\$18	Bus Control Register	0x016B sets the default number of wait states to 11 for both read and write accesses

Table 4-11 Quad Timer A Registers Address Map (TMRA_BASE = \$00 F040)

Register Acronym	Address Offset	Register Description
TMRA0_CMP1	\$0	Compare Register 1
TMRA0_CMP2	\$1	Compare Register 2
TMRA0_CAP	\$2	Capture Register
TMRA0_LOAD	\$3	Load Register
TMRA0_HOLD	\$4	Hold Register
TMRA0_CNTR	\$5	Counter Register
TMRA0_CTRL	\$6	Control Register

Table 4-12 Quad Timer B Registers Address Map (Continued)
(TMRB_BASE = \$00 F080)
Quad Timer B is NOT available in the 56F8156 device

Register Acronym	Address Offset	Register Description
TMRB1_SCR	\$17	Status and Control Register
TMRB1_CMPLD1	\$18	Comparator Load Register 1
TMRB1_CMPLD2	\$19	Comparator Load Register 2
TMRB1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRB2_CMP1	\$20	Compare Register 1
TMRB2_CMP2	\$21	Compare Register 2
TMRB2_CAP	\$22	Capture Register
TMRB2_LOAD	\$23	Load Register
TMRB2_HOLD	\$24	Hold Register
TMRB2_CNTR	\$25	Counter Register
TMRB2_CTRL	\$26	Control Register
TMRB2_SCR	\$27	Status and Control Register
TMRB2_CMPLD1	\$28	Comparator Load Register 1
TMRB2_CMPLD2	\$29	Comparator Load Register 2
TMRB2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRB3_CMP1	\$30	Compare Register 1
TMRB3_CMP2	\$31	Compare Register 2
TMRB3_CAP	\$32	Capture Register
TMRB3_LOAD	\$33	Load Register
TMRB3_HOLD	\$34	Hold Register
TMRB3_CNTR	\$35	Counter Register
TMRB3_CTRL	\$36	Control Register
TMRB3_SCR	\$37	Status and Control Register
TMRB3_CMPLD1	\$38	Comparator Load Register 1
TMRB3_CMPLD2	\$39	Comparator Load Register 2
TMRB3_COMSCR	\$3A	Comparator Status and Control Register

Register Acronym	Address Offset	Register Description
TMRC2_SCR	\$27	Status and Control Register
TMRC2_CMPLD1	\$28	Comparator Load Register 1
TMRC2_CMPLD2	\$29	Comparator Load Register 2
TMRC2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRC3_CMP1	\$30	Compare Register 1
TMRC3_CMP2	\$31	Compare Register 2
TMRC3_CAP	\$32	Capture Register
TMRC3_LOAD	\$33	Load Register
TMRC3_HOLD	\$34	Hold Register
TMRC3_CNTR	\$35	Counter Register
TMRC3_CTRL	\$36	Control Register
TMRC3_SCR	\$37	Status and Control Register
TMRC3_CMPLD1	\$38	Comparator Load Register 1
TMRC3_CMPLD2	\$39	Comparator Load Register 2
TMRC3_COMSCR	\$3A	Comparator Status and Control Register

Table 4-13 Quad Timer C Registers Address Map (Continued) (TMRC_BASE = \$00 F0C0)

Table 4-14 Quad Timer D Registers Address Map (TMRD_BASE = \$00 F100) Quad Timer D is NOT available in the 56F8156 device

Register Acronym	Address Offset	Register Description
TMRD0_CMP1	\$0	Compare Register 1
TMRD0_CMP2	\$1	Compare Register 2
TMRD0_CAP	\$2	Capture Register
TMRD0_LOAD	\$3	Load Register
TMRD0_HOLD	\$4	Hold Register
TMRD0_CNTR	\$5	Counter Register
TMRD0_CTRL	\$6	Control Register
TMRD0_SCR	\$7	Status and Control Register
TMRD0_CMPLD1	\$8	Comparator Load Register 1
TMRD0_CMPLD2	\$9	Comparator Load Register 2
TMRD0_COMSCR	\$A	Comparator Status and Control Register

Table 4-23 Serial Communication Interface 0 Registers Address Map (SCI0_BASE = \$00 F280)

Register Acronym	Address Offset	Register Description
SCI0_SCIBR	\$0	Baud Rate Register
SCI0_SCICR	\$1	Control Register
		Reserved
SCI0_SCISR	\$3	Status Register
SCI0_SCIDR	\$4	Data Register

Table 4-24 Serial Communication Interface 1 Registers Address Map (SCI1_BASE = \$00 F290)

Register Acronym	Address Offset	Register Description
SCI1_SCIBR	\$0	Baud Rate Register
SCI1_SCICR	\$1	Control Register
		Reserved
SCI1_SCISR	\$3	Status Register
SCI1_SCIDR	\$4	Data Register

Table 4-25 Serial Peripheral Interface 0 Registers Address Map (SPI0_BASE = \$00 F2A0)

Register Acronym	Address Offset	Register Description
SPI0_SPSCR	\$0	Status and Control Register
SPI0_SPDSR	\$1	Data Size Register
SPI0_SPDRR	\$2	Data Receive Register
SPI0_SPDTR	\$3	Data Transmitter Register

(0.10/1_2/02_2 +0011220)									
Register Acronym	Address Offset	Register Description	Reset Value						
GPIOA_IENR	\$5	Interrupt Enable Register	0 x 0000						
GPIOA_IPOLR	\$6	Interrupt Polarity Register	0 x 0000						
GPIOA_IPR	\$7	Interrupt Pending Register	0 x 0000						
GPIOA_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000						
GPIOA_PPMODE	\$9	Push-Pull Mode Register	0 x 3FFF						
GPIOA_RAWDATA	\$A	Raw Data Input Register	—						

Table 4-29 GPIOA Registers Address Map (Continued) (GPIOA_BASE = \$00 F2E0)

Table 4-30 GPIOB Registers Address Map (GPIOB_BASE = \$00F300)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOB_PUR	\$0	Pull-up Enable Register	0 x 00FF
GPIOB_DR	\$1	Data Register	0 x 0000
GPIOB_DDR	\$2	Data Direction Register	0 x 0000
GPIOB_PER	\$3	Peripheral Enable Register	0 x 000F for 20-bit EMI address at reset.
			0 x 0000 for all other cases.
			See Table 4-4 for details.
GPIOB_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOB_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOB_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOB_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOB_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOB_PPMODE	\$9	Push-Pull Mode Register	0 x 00FF
GPIOB_RAWDATA	\$A	Raw Data Input Register	—

Table 4-31 GPIOC Registers Address Map (GPIOC_BASE = \$00 F310)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOC_PUR	\$0	Pull-up Enable Register	0 x 07FF
GPIOC_DR	\$1	Data Register	0 x 0000
GPIOC_DDR	\$2	Data Direction Register	0 x 0000
GPIOC_PER	\$3	Peripheral Enable Register	0 x 07FF

Register Acronym	Address Offset	Register Description
SIM_CONTROL	\$0	Control Register
SIM_RSTSTS	\$1	Reset Status Register
SIM_SCR0	\$2	Software Control Register 0
SIM_SCR1	\$3	Software Control Register 1
SIM_SCR2	\$4	Software Control Register 2
SIM_SCR3	\$5	Software Control Register 3
SIM_MSH_ID	\$6	Most Significant Half JTAG ID
SIM_LSH_ID	\$7	Least Significant Half JTAG ID
SIM_PUDR	\$8	Pull-up Disable Register
		Reserved
SIM_CLKOSR	\$A	Clock Out Select Register
SIM_GPS	\$B	Quad Decoder 1 / Timer B / SPI 1 Select Register
SIM_PCE	\$C	Peripheral Clock Enable Register
SIM_ISALH	\$D	I/O Short Address Location High Register
SIM_ISALL	\$E	I/O Short Address Location Low Register

Table 4-35 System Integration Module Registers Address Map (SIM_BASE = \$00 F350)

Table 4-36 Power Supervisor Registers Address Map (LVI_BASE = \$00 F360)

Register Acronym	Address Offset	Register Description
LVI_CONTROL	\$0	Control Register
LVI_STATUS	\$1	Status Register

Table 4-37 Flash Module Registers Address Map (FM_BASE = \$00 F400)

Register Acronym	Address Offset	Register Description			
FMCLKD	\$0	Clock Divider Register			
FMMCR	\$1	Module Control Register			
		Reserved			
FMSECH	\$3	Security High Half Register			
FMSECL	\$4	Security Low Half Register			

- Programmable priority levels for each IRQ
- Two programmable Fast Interrupts
- Notification to SIM module to restart clocks out of Wait and Stop modes
- Drives initial address on the address bus after reset

For further information, see **Table 4-5**, Interrupt Vector Table Contents.

5.3 Functional Description

The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the active interrupt requests for that level. Within a given priority level, zero is the highest priority, while number 81 is the lowest.

5.3.1 Normal Interrupt Handling

Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the vector number to determine the vector address. In this way, an offset is generated into the vector table for each interrupt.

5.3.2 Interrupt Nesting

Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be serviced. The following tables define the nesting requirements for each priority level.

SR[9] ¹	SR[8] ¹	Permitted Exceptions	Masked Exceptions
0	0	Priorities 0, 1, 2, 3	None
0	1	Priorities 1, 2, 3	Priority 0
1	0	Priorities 2, 3	Priorities 0, 1
1	1	Priority 3	Priorities 0, 1, 2

Table 5-1 Interrupt Mask Bit Definition

1. Core status register bits indicating current interrupt mask within the core.

Table 5-2 Interrupt Priority Encoding

IPIC_LEVEL[1:0] ¹	Current Interrupt Priority Level	Required Nested Exception Priority
00	No Interrupt or SWILP	Priorities 0, 1, 2, 3
01	Priority 0	Priorities 1, 2, 3
10	Priority 1	Priorities 2, 3
11	Priorities 2 or 3	Priority 3

Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$0	IPR0	R W	0	0	BKPT_	U0 IPL	STPC	NT IPL	0	0	0	0	0	0	0	0	0	0
\$1	IPR1	R W	0	0	0	0	0	0	0	0	0	0	RX_RE	G IPL	TX_REG IPL		TRBUF IPL	
\$2	IPR2	R	FMCE	BE IPL	FMC	C IPL	FMEF	rr ipl	LOC	K IPL	LVI	IPL	0	0 IRQB IPL			IRQA IPL	
\$3	IPR3	R W		IOD PL		IOE PL		IOF	FCMSG	BUF IPL	FCWK	UP IPL	FCERF	I R IPL	FCBO	FF IPL	0	0
\$4	IPR4	R	SPI0_F	RCV IPL	SPI1_X	MIT IPL		_RCV PL	0	0	0	0	GPIC IPL			IOB PL		PIOC PL
\$5	IPR5	R W	DEC1_>	(IRQ IPL	DEC1_H	HRQ IPL		_RCV PL	SCI1_R	ERR IPL	0	0	SCI1_TI	DL IPL	SCI1_X	MIT IPL	SPI0_2	KMIT IPL
\$6	IPR6	R W	TMR	C0 IPL	TMR	03 IPL	TMR	D2 IPL	TMR	D1 IPL	TMR	D0 IPL	0	0	DEC0_>	(IRQ IPL	DEC0_	HIRQ IPL
\$7	IPR7	R W	TMR	A0 IPL	TMRE	33 IPL	TMRE	32 IPL	TMRE	31 IPL	TMRE	30 IPL	TMRC	B IPL	TMR	C2 IPL	TMR	C1 IPL
\$8	IPR8	R W	SCI0_F	RCV IPL	SCI0_R	ERR IPL	0	0	SCI0_T	IDL IPL	SCI0_X	MIT IPL	TMRAS	3 IPL	TMR	A2 IPL	TMR	A1 IPL
\$9	IPR9	R W	PWMA	A F IPL	PWME	3 F IPL		IA_RL PL	PWMB	_RL IPL	ADCA_	_ZC IPL	ABCB_Z	CIPL	ADCA_	CC IPL	ADCB	_CC IPL
\$A	VBA	R W	0	0	0						VECTO	R BASE	ADDRESS					
\$В	VBA0	R W	0	0	0	0	0	0	0	0	0		FAST INTERRUPT 0					
\$C	FIVAL0	R W								FAST IN								
\$D	FIVAH0	R W	0	0	0	0	0	0	0	0	0	0	0 FAST INTERRUPT 0 VECTOR ADDRESS HIGH			н		
\$E	FIM1	R W	0	0	0	0	0	0	0	0	0			FAST	INTERR	UPT 1		
\$F	FIVAL1	R W						•		FAST IN CTOR A								
\$10	FIVAH1	R W	0	0	0	0	0	0	0	0	0	0	0			r interr R addre		Н
\$11	IRQP0	R W							PE	NDING ['	16:2]							1
\$12	IRQP1	R W								PENDI	NG [32:1]	7]						
\$13	IRQP2	R W								PENDI	NG [48:3:	3]						
\$14	IRQP3	R W								PENDI	NG [64:49	9]						
\$15	IRQP4	R W								PENDI	NG [80:6	5]						
\$16	IRQP5	R	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
	Reserved	W																
\$1D	ICTL	R	INT	IF	PIC				VAB				INT_DIS	1	IRQB STATE	IRQA STATE	IRQB	IRQA
		W															EDG	EDG
				= Reserv	ved													

5.6.5 Interrupt Priority Register 4 (IPR4)

Base + \$4	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	SPI0	_RCV	SPI1_	XMIT	SPI1_	_RCV	0	0	0	0	GP	IOA	GP	IOB	GPI	IOC
Write	IF	۲L	IF	۲L	IF	Ľ					IF	۲L	IF	۲L	IF	۲L
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-7 Interrupt Priority Register 4 (IPR4)

5.6.5.1 SPI0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)— Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.2 SPI1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.3 SPI1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1

- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.5 Timer B, Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.6 Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.7 Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.8 Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

6.5 Register Descriptions

Table	6-1	SIM	Reg	isters
				F350)

Address Offset	Address Acronym	Register Name	Section Location
Base + \$0	SIM_CONTROL	Control Register	6.5.1
Base + \$1	SIM_RSTSTS	Reset Status Register	6.5.2
Base + \$2	SIM_SCR0	Software Control Register 0	6.5.3
Base + \$3	SIM_SCR1	Software Control Register 1	6.5.3
Base + \$4	SIM_SCR2	Software Control Register 2	6.5.3
Base + \$5	SIM_SCR3	Software Control Register 3	6.5.3
Base + \$6	SIM_MSH_ID	Most Significant Half of JTAG ID	6.5.4
Base + \$7	SIM_LSH_ID	Least Significant Half of JTAG ID	6.5.5
Base + \$8	SIM_PUDR	Pull-up Disable Register	6.5.6
		Reserved	
Base + \$A	SIM_CLKOSR	CLKO Select Register	6.5.7
Base + \$B	SIM_GPS	GPIO Peripheral Select Register	6.5.7
Base + \$C	SIM_PCE	Peripheral Clock Enable Register	6.5.8
Base + \$D	SIM_ISALH	I/O Short Address Location High Register	6.5.9
Base + \$E	SIM_ISALL	I/O Short Address Location Low Register	6.5.10

Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$0	SIM_	R	0	0	0	0	0	0	0	0	0	EMI_	ONCE	SW		OP_		IT_
ΨŪ	CONTROL	W										MODE	EBL	RST	DIS	ABLE	DISA	ABLE
\$1	SIM_	R	0	0	0	0	0	0	0	0	0	0	SWR	COPR	EXTR	POR	0	0
	RSTSTS	W																
\$2	SIM_SCR0	R								FIE	LD							
		N N																
\$3	SIM_SCR1	R W								FIE	LD							
		R																
\$4	SIM_SCR2	W								FIE	LD							
		R																
\$5	SIM_SCR3	W								FIE	LD							
* C	SIM_MSH_	R	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0
\$6	ID	W																
\$7	SIM_LSH_ID	R	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1
Ψï		W																
\$8	SIM_PUDR	R	0	PWMA	CAN	EMI_	RESET	IRQ	хвоот	PWMB	PWMA	0	CTRL	0	JTAG	0	0	0
	_	W	0	1	-	MODE	-				0		_					
	Reserved		-			-	-	-										
\$A	SIM_ CLKOSR	R W	0	0	0	0	0	0	A23	A22	A21	A20	CLKDIS		(CLKOSE	L	
	CEROSK	vv R	0	0	0	0	0	0	0	0	0	0	0	0			1	
\$B	SIM_GPS	W	0	0	0	0	0	0	0	0	0	0	0	0	C3	C2	C1	C0
		R															PWM	PWM
\$C	SIM_PCE	W	EMI	ADCB	ADCA	CAN	DEC1	DEC0	TMRD	TMRC	TMRB	TMRA	SCI1	SCI0	SPI1	SPI0	B	A
* D	0114 104111	R	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
φD	\$D SIM_ISALH W																ISAL[23:22]
\$E	SIM_ISALL	R								ISAL	21.61							
φ⊑	SINI_ISALL	W								ISAL	21.0]							

= Reserved

Figure 6-2 SIM Register Map Summary

6.5.1 SIM Control Register (SIM_CONTROL)

Base + \$0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	EMI_	ONCE	SW	STO	DP_	WA	IT_
Write										MODE	EBL	RST	DISA	BLE	DISA	BLE
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-3 SIM Control Register (SIM_CONTROL)

6.5.1.1 Reserved—Bits 15–7

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read								FIEL								
Write								FIEL	D							
POR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)

6.5.3.1 Software Control Data 1 (FIELD)—Bits 15–0

This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is intended for use by a software developer to contain data that will be unaffected by the other reset sources (RESET pin, software reset, and COP reset).

6.5.4 Most Significant Half of JTAG ID (SIM_MSH_ID)

This read-only register displays the most significant half of the JTAG ID for the chip. This register reads \$01F4.

Base + \$6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0
Write																
RESET	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0

Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)

6.5.5 Least Significant Half of JTAG ID (SIM_LSH_ID)

This read-only register displays the least significant half of the JTAG ID for the chip. This register reads \$601D.

Base + \$7	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	1	1	0	0	0	0	0	0	0	0	1	1	1	0	1
Write																
RESET	0	1	1	0	0	0	0	0	0	0	0	1	1	1	0	1

Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)

Note: Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller (by asserting TRST) and the device (by asserting external chip reset) to return to normal unsecured operation.

7.2.4 Product Analysis

The recommended method of unsecuring a programmed device for product analysis of field failures is via the backdoor key access. The customer would need to supply Technical Support with the backdoor key and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows backdoor key access must be set.

An alternative method for performing analysis on a secured hybrid controller would be to mass-erase and reprogram the Flash with the original code, but modify the security bytes.

To insure that a customer does not inadvertently lock himself out of the device during programming, it is recommended that he program the backdoor access key first, his application code second, and the security bytes within the FM configuration field last.

Part 8 General Purpose Input/Output (GPIO)

8.1 Introduction

This section is intended to supplement the GPIO information found in the **56F8300 Peripheral User Manual** and contains only chip-specific information. This information supercedes the generic information in the **56F8300 Peripheral User Manual**.

8.2 Memory Maps

The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and GPIOx_PER registers change from port to port. Tables 4-29 through 4-34 define the actual reset values of these registers.

8.3 Configuration

There are six GPIO ports defined on the 56F8356/56F8156. The width of each port and the associated peripheral function is shown in **Table 8-1** and **Table 8-2**. The specific mapping of GPIO port pins is shown in **Table 8-3**.

10.10 Serial Peripheral Interface (SPI) Timing

Characteristic	Symbol	Min	Max	Unit	See Figure
Cycle time Master Slave	t _C	50 50		ns ns	10-10, 10-11, 10-12, 10-13
Enable lead time Master Slave	t _{ELD}	 25	_	ns ns	10-13
Enable lag time Master Slave	t _{ELG}	 100	_	ns ns	10-13
Clock (SCK) high time Master Slave	t _{CH}	17.6 25	_	ns ns	10-10, 10-11, 10-12, 10-13
Clock (SCK) low time Master Slave	t _{CL}	24.1 25	_	ns ns	10-13
Data set-up time required for inputs Master Slave	t _{DS}	20 0		ns ns	10-10, 10-11, 10-12, 10-13
Data hold time required for inputs Master Slave	t _{DH}	0 2	_	ns ns	10-10, 10-11, 10-12, 10-13
Access time (time to data active from high-impedance state) Slave	t _A	4.8	15	ns	10-13
Disable time (hold time to high-impedance state) Slave	t _D	3.7	15.2	ns	10-13
Data Valid for outputs Master Slave (after enable edge)	t _{DV}	_	4.5 20.4	ns ns	10-10, 10-11, 10-12, 10-13
Data invalid Master Slave	t _{DI}	0 0	_	ns ns	10-10, 10-11, 10-12
Rise time Master Slave	t _R		11.5 10.0	ns ns	10-10, 10-11, 10-12, 10-13

Table 10-18 SPI Timing¹

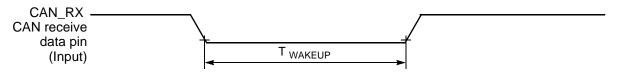


Figure 10-18 Bus Wake Up Detection

10.15 JTAG Timing

Symbol	Min	Мах	Unit	See Figure
f _{OP}	DC	SYS_CLK/8	MHz	10-19
f _{OP}	DC	SYS_CLK/4	MHz	10-19
t _{PW}	50	_	ns	10-19
t _{DS}	5	_	ns	10-20
t _{DH}	5	_	ns	10-20
t _{DV}		30	ns	10-20
t _{TS}	—	30	ns	10-20
t _{TRST}	2T ²	_	ns	10-21
	f _{OP} f _{OP} t _{PW} t _{DS} t _{DH} t _{DV} t _{TS}	$\begin{array}{c c} f_{OP} & DC \\ \hline f_{OP} & DC \\ \hline t_{PW} & 50 \\ \hline t_{DS} & 5 \\ \hline t_{DH} & 5 \\ \hline t_{DV} & - \\ \hline t_{TS} & - \end{array}$	$\begin{array}{c c c c c c c c c c } \hline f_{OP} & DC & SYS_CLK/8 \\ \hline f_{OP} & DC & SYS_CLK/4 \\ \hline f_{PW} & 50 & \\ \hline t_{PW} & 50 & \\ \hline t_{DS} & 5 & \\ \hline t_{DH} & 5 & \\ \hline t_{DH} & 5 & \\ \hline t_{DV} & & 30 \\ \hline t_{TS} & & 30 \\ \hline \end{array}$	f_{OP} DC SYS_CLK/8 MHz f_{OP} DC SYS_CLK/4 MHz f_{OP} DC SYS_CLK/4 MHz t_{PW} 50 — ns t_{DS} 5 — ns t_{DH} 5 — ns t_{DV} — 30 ns t_{TS} — 30 ns

Table 10-23 JTAG Timing

1. TCK frequency of operation must be less than 1/8 the processor rate.

2. T = processor clock period (nominally 1/60MHz)

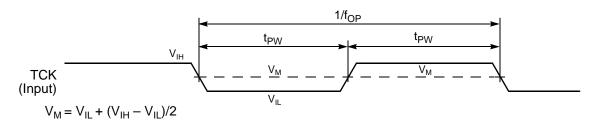


Figure 10-19 Test Clock Input Timing Diagram

where:

- T_T = Thermocouple temperature on top of package (^oC)
- Ψ_{JT} = Thermal characterization parameter (^oC)/W
- P_D = Power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

12.2 Electrical Design Considerations

CAUTION This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct device operation:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the device, and from the board ground to each V_{SS} (GND) pin
- The minimum bypass requirement is to place six 0.01–0.1 μ F capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA}. Ceramic and tantalum capacitors tend to provide better performance tolerances.