E·XFL Renesas Electronics America Inc - <u>R5S72624W144FP#U0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	I ² C, SCI, SD, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	89
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LFQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s72624w144fp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	17.4.2	Master Transmit Operation	
	17.4.3	Master Receive Operation	871
	17.4.4	Slave Transmit Operation	
	17.4.5	Slave Receive Operation	
	17.4.6	Clocked Synchronous Serial Format	
	17.4.7	Noise Filter	
	17.4.8	Example of Use	
17.5	Interrupt	Requests	
17.6	Bit Sync	hronous Circuit	
17.7	Usage N	otes	890
	17.7.1	Note on Setting for Multi-Master Operation	
	17.7.2	Note on Master Receive Mode	
	17.7.3	Note on Setting ACKBT in Master Receive Mode	
	17.7.4	Note on the States of Bits MST and TRN when Arbitration is Lost	
	17.7.5	Note on I ² C-bus Interface Master Receive Mode	
	17.7.6	Note on IICRST and BBSY bits	
	17.7.7	Note on Issuance of Stop Conditions in Master Transmit Mode while	
		ACKE = 1	
Section	on 18 S	Serial Sound Interface	
18.1	Features		893
18.2	Input/Ou	ıtput Pins	
18.3	Register	Description	
	18.3.1	Control Register (SSICR)	899
	18.3.2	Status Register (SSISR)	
	18.3.3	Transmit Data Register (SSITDR)	
	18.3.4	Receive Data Register (SSIRDR)	
	18.3.5	FIFO Control Register (SSIFCR)	
	18.3.6	FIFO Status Register (SSIFSR)	
	18.3.7	Transmit FIFO Data Register (SSIFTDR)	
	18.3.8	Receive FIFO Data Register (SSIFRDR)	917
18.4	Operatio	n Description	
	18.4.1	Bus Format	
	18.4.2	Non-Compressed Modes	919
	18.4.3	Operation Modes	
	18.4.4	Transmit Operation	
	18.4.5	Receive Operation	
	18.4.6	Serial Bit Clock Control	
18.5	Usage N	otes	937
	0345011		

7.2 Input/Output Pins

Table 7.1 shows the pin configuration.

Table 7.1Pin Configuration

Pin Name	Symbol	I/O	Function
Nonmaskable interrupt input pin	NMI	Input	Input of nonmaskable interrupt request signal
Interrupt request input pins	IRQ7 to IRQ0	Input	Input of maskable interrupt request
	PINT7 to PINT0	Input	signals

7.3.5 IRQ Interrupt Request Register (IRQRR)

IRQRR is a 16-bit register that indicates interrupt requests from external input pins IRQ7 to IRQ0. If edge detection is set for the IRQ7 to IRQ0 interrupts, writing 0 to the IRQ7F to IRQ0F bits after reading IRQ7F to IRQ0F = 1 cancels the retained interrupts.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	-	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R/(W)*	R/(W)*	R/(W)*	• R/(W)*	• R/(W)*	^k R/(W) [,]	[∗] R/(W) [∗]	* R/(W)*

Note: * Only 0 can be written to clear the flag after 1 is read.

Bit	Bit Name	Initial Value	R/W	Description
15 to 8		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
7	IRQ7F	0	R/(W)*	IRQ Interrupt Request
6	IRQ6F	0	R/(W)*	These bits indicate the status of the IRQ7 to IRQ0
5	IRQ5F	0	R/(W)*	Level detection:
4	IRQ4F	0	R/(W)*	0: IRQn interrupt request has not occurred
3	IRQ3F	0	R/(W)*	[Clearing condition]
2	IRQ2F	0	R/(W)*	• IRQn input is high
1	IRQ1F	0	R/(W)*	1: IRQn interrupt has occurred
0	IRQ0F	0	R/(W)*	 [Setting condition] IRQn input is low Edge detection: 0: IRQn interrupt request is not detected [Clearing conditions] Cleared by reading IRQnF while IRQnF = 1, then writing 0 to IRQnF Cleared by executing IRQn interrupt exception handling 1: IRQn interrupt request is detected [Setting condition] Edge corresponding to IRQn1S or IRQn0S of ICR1 has occurred at IRQn pin

n = 7 to 0

(5) Burst ROM (Clocked Synchronous)

• CS0WCR

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BW	[1:0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-		W[3:0]		WM	-	-	-	-	-	-
Initial value:	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
31 to 18	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
17, 16	BW[1:0]	00	R/W	Number of Burst Wait Cycles
				Specify the number of wait cycles to be inserted between the second or subsequent access cycles in burst access.
				00: No cycle
				01: 1 cycle
				10: 2 cycles
				11: 3 cycles
15 to 11	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

Bit	Bit Name	Initial Value	R/W	Description
31	тс	0	R/W	Transfer Count Mode
				Specifies whether to transmit data once or for the count specified in DMATCR by one transfer request. This function is valid only in on-chip peripheral module request mode. Note that when this bit is set to 0, the TB bit must not be set to 1 (burst mode). Do not set TC to 1 when a module other than multi-function timer pulse unit 2, compare-match timer, controller area network, CD-ROM decoder, or A/D converter is set as the transfer request source.
				0: Transmits data once by one transfer request
				 Transmits data for the count specified in DMATCR by one transfer request
30		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
29	RLDSAR	0	R/W	SAR Reload Function ON/OFF
				Enables (ON) or disables (OFF) the function to reload SAR and DMATCR.
				0: Disables (OFF) the function to reload SAR and DMATCR
				1: Enables (ON) the function to reload SAR and DMATCR
28	RLDDAR	0	R/W	DAR Reload Function ON/OFF
				Enables (ON) or disables (OFF) the function to reload DAR and DMATCR.
				0: Disables (OFF) the function to reload DAR and DMATCR
				1: Enables (ON) the function to reload DAR and DMATCR
27		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

Auto request, external request, and on-chip peripheral module request are available for the transfer request. DACK can be output in read cycle or write cycle in dual address mode. The AM bit in the channel control register (CHCR) can specify whether the DACK is output in read cycle or write cycle.

Figure 10.4 Example of DMA Transfer Timing in Dual Mode (Transfer Source: Normal Memory, Transfer Destination: Normal Memory)

(1) Example of Complementary PWM Mode Setting Procedure

An example of the complementary PWM mode setting procedure is shown in figure 11.38.

Figure 11.38 Example of Complementary PWM Mode Setting Procedure

Section 12 Compare Match Timer

This LSI has an on-chip compare match timer module consisting of two-channel 16-bit timers. This module has a 16-bit counter, and can generate interrupts at set intervals.

12.1 Features

- Independent selection of four counter input clocks at two channels Any of four internal clocks (Pφ/8, Pφ/32, Pφ/128, and Pφ/512) can be selected.
- Selection of DMA transfer request or interrupt request generation on compare match by direct memory access controller setting
- When not in use, this module can be stopped by halting its clock supply to reduce power consumption.

Figure 12.1 shows a block diagram.

Figure 12.1 Block Diagram

Bit	Bit Name	Initial Value	R/W	Description
4	CIE	0	R/W	Carry Interrupt Enable Flag
				When the carry flag (CF) is set to 1, the CIE bit enables interrupts.
				0: A carry interrupt is not generated when the CF flag is set to 1
				1: A carry interrupt is generated when the CF flag is set to 1
3	AIE	0	R/W	Alarm Interrupt Enable Flag
				When the alarm flag (AF) is set to 1, the AIE bit allows interrupts.
				0: An alarm interrupt is not generated when the AF flag is set to 1
				1: An alarm interrupt is generated when the AF flag is set to 1
2, 1	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
0	AF	Undefined	R/W	Alarm Flag
				The AF flag is set when the alarm time, which is set by an alarm register (ENB bit in RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, or RYRAR is set to 1), and counter match.
				0: Alarm register and counter not match
				[Clearing condition]
				When 0 is written to AF.
				1: Alarm register and counter match*
				[Setting condition]
				When alarm register (only a register with ENB bit set to 1) and counter match
				Note: * Writing 1 holds previous value.

16.3.10 Clock Delay Register (SPCKD)

SPCKD sets a period from the beginning of SSL signal assertion to RSPCK oscillation (RSPCK delay) when the SCKDEN bit in the command register (SPCMD) is 1. If the contents of SPCKD are changed while the MSTR and SPE bits in the control register (SPCR) are 1 with the function of this module enabled in master mode, the subsequent operation cannot be guaranteed.

When using this module in slave mode, set B'000 to SCKDL2 to SCKDL0.

Bit:	7	6	5	4	3	2	1	0
	—	—	—	_	_	SCK DL2	SCK DL1	SCK DL0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7 to 3	_	All 0	R	Reserved
				The write value should always be 0. Otherwise, operation cannot be guaranteed.
2	SCKDL2	0	R/W	RSPCK Delay Setting
1	SCKDL1	0	R/W	These bits set an RSPCK delay value when the
0	SCKDL0	0	R/W	SCKDEN bit in SPCMD is 1.
				The relationship between the setting of SCKDL2 to SCKDL0 and the RSPCK delay value is shown below.
				000: 1 RSPCK
				001: 2 RSPCK
				010: 3 RSPCK
				011: 4 RSPCK
				100: 5 RSPCK
				101: 6 RSPCK
				110: 7 RSPCK
				111: 8 RSPCK

(3) MSB First Transfer (8-Bit Data)

Figure 16.10 shows the operation of the transmit buffer (SPDR) and the shift register when this module performs an 8-bit data length MSB-first data transfer.

The CPU or direct memory access controller writes T07 to T00 to the transmit buffer. If the shift register is empty, this module copies the data in the transmit buffer to the shift register, and fully populates the shift register. When serial transfer starts, this module outputs data from bit 7 of the shift register, and shifts in the data from the LSB (bit 0) of the shift register. When the RSPCK cycle required for the serial transfer of 8 bits has passed, received data R07 to R00 is stored in bits 7 to 0 of the shift register. After completion of the serial transfer, data that existed before the transfer is retained in bits 31 to 8 in the shift register. In this state, this module copies the data from the shift register to the receive buffer, and empties the shift register. If the receive buffer does not have a space for the receive data length after receive data has been copied from the shift register to the receive data length should be read from the receive buffer to secure the necessary area in the receive buffer.

If another serial transfer is started before the CPU or direct memory access controller writes to the transmit buffer, received data R07 to R00 is shifted out from the shift register.

(b) Unlocking

When the control bits indicate the lock (H'3, H'A, or H'B) or unlock (H'6) operation and the byte data for the number of bytes specified by the message length bits are transmitted/received in a single communications frame, the slave unit is unlocked by the master unit. In this case, the bit (bit 2) relevant to locking in the byte indicating the slave status is cleared to 0.

Note that locking and unlocking are not done in broadcast communications.

Note: * There are three ways to cause a locked unit to unlock itself.

- Perform a power-on reset
- Put the unit in deep standby mode
- Issue an unlock command through the IEBus command register (IECMR)

Note that the LCK flag in IEFLG can be used to check whether the unit is locked or unlocked.

21.1.4 Bit Format

Figure 21.4 shows the bit format (conceptual diagram) configuring the IEBus communications frame.

Each period of the bit format for use of active high signals is described below.

- Preparation period: first logic 1 period (high level)
- Synchronous period: subsequent logic 0 period (low level)
- Data period: period indicating bit value (logic 1: high level, logic 0: low level)
- Halt period: last logic 1 period (high level)

21.5 Software Control Flows

21.5.1 Initial Setting

Figure 21.8 shows the flowchart for the initial setting.

Figure 21.8 Flowchart for Initial Setting

Figure 22.4 shows the block format, which consists of 192 continuous frames. One block begins at the starting frame (preamble B) and ends at the 192nd frame (frame 191), and the preamble is used to identify all subframes. Each block has a total of 384 subframes, which are classified into three categories: subframe 0 indicating the beginning of a new block, subframe 1 (usually the channel 1), and subframe 2 (usually the channel 2). Usually, the music data sent and received by the SPDIF is continuous so that continuous blocks appear.

Figure 22.4 Block Format

Table 22.2 shows the binary values of the Renesas SPDIF preambles. The polarity of these preambles differs depending on the status of the preceding symbol (parity bit).

Table 22.2	Binary	Preamble	Values
-------------------	--------	----------	--------

Preamble	Preceding Symbol's Status = 0	Preceding Symbol's Status = 1
В	11101000	00010111
М	11100010	00011101
W	11100100	00011011

Note: As shown in figure 22.3, the even parity bit at time slot 31 of a subframe determines the type of a preamble for one cycle of transmission. Usually, therefore, any one is selected from the set states that are sent through the Renesas SPDIF. However, IEC60958 requires decoding both types in view of connection with the preamble polarity reversed; the Renesas SPDIF has preambles decoded according to table 22.2.

Channel status information is encoded at the rate of one bit per subframe, making the channel status information per block have a total of 192 bits for each of subframes 1 and 2. For the format of the channel status, refer to the IEC 60958 standard.

25.7.2 Writing to the Control-Code Area when 4-Symbol ECC Circuit is in Use

Follow the procedure given below to write to the control-code area when the 4-symbol ECC circuit is in use. If this procedure is not followed, correct writing to the control-code area of the flash memory will not be possible.

		Initial		
Bit	Bit Name	Value	R/W	Description
8	SQCLR	0	R/W*	Toggle Bit Clear
				This bit should be set to 1 to clear the expected value (to set DATA0 as the expected value) of the sequence toggle bit for the next transaction of the pertinent pipe.
				0: Invalid
				1: Specifies DATA0.
				Setting this bit to 1 allows this module to set DATA0 as the expected value of the sequence toggle bit of the pertinent pipe. This module always sets this bit to 0.
				When the host controller function is selected, setting this bit to 1 for the pipe for bulk OUT transfer, this module starts the next transfer of the pertinent pipe with the PING token.
				Set the SQCLR bit to 1 while CSSTS is 0 and PID is NAK.
				Before modifying this bit after modifying the PID bits for the corresponding pipe from BUF to NAK, check that CSSTS and PBUSY are 0. However, if the PID bits have been modified to NAK by this module, checking PBUSY is not necessary.

26.4 Operation

26.4.1 System Control and Oscillation Control

This section describes the register operations that are necessary to the initial settings of this module, and the registers necessary for power consumption control.

(1) Resets

Table 26.15 lists the types of controller resets. For the initialized states of the registers following the reset operations, see section 26.3, Register Description.

Table 26.15 Types of Reset

Name	Operation
Power-on reset	Low level input from the \overline{RES} pin
USB bus reset	Automatically detected by this module from the $D+$ and $D-$ lines when the function controller function is selected

(2) Controller Function Selection

This module can select the host controller function or function controller function using the DCFM bit in SYSCFG. Changing the DCFM bit should be done in the initial settings immediately after a power-on reset or in the D+ pull-up disabled (DPRPU = 0) and D + /D – pull-down disabled (DRPD = 0) state.

(3) Enabling High-Speed Operation

This module can select a USB communication speed (communication bit rate). When the host controller function is selected, the high-speed operation or full-speed/low-speed operation can be set. When the function controller function is selected, either the high-speed operation or full-speed operation can be selected. In order to enable the high-speed operation for this module, the HSE bit in SYSCFG should be set to 1. If high-speed mode has been enabled, this module executes the reset handshake protocol, and the USB communication speed is set automatically. The results of the reset handshake can be confirmed using the RHST bit in DVSTCTR.

If high-speed operation has been disabled, this module operates at full-speed or low-speed. If the function controller function is also selected, this module operates at full-speed.

Changing the HSE bit should be done between the ATTCH interrupt detection and bus reset execution when the host controller function is selected, or with the D+ line pull-up disabled (DPRPU = 0) when the host controller function is selected.

34.2 Input/Output Pins

Table 34.1 Pin Configuration

Pin Name	Symbol	I/O	Function
Serial data input/output clock pin	ТСК	Input	Data is serially supplied to this module from the data input pin (TDI), and output from the data output pin (TDO), in synchronization with this clock.
Mode select input pin	TMS	Input	The state of the TAP control circuit is determined by changing this signal in synchronization with TCK. The protocol complies with the JTAG standard (IEEE Std.1149.1).
Reset input pin	TRST	Input	Input is accepted asynchronously with respect to TCK, and when low, this module is reset. TRST must be low for a period when power is turned on regardless of using the function. See section 34.4.2, Reset Configuration, for more information.
Serial data input pin	TDI	Input	Data is transferred to this module by changing this signal in synchronization with TCK.
Serial data output pin	TDO	Output	Data is read from this module by reading this pin in synchronization with TCK. The initial value of the data output timing is the TCK falling edge, but this initial value can be changed to the TCK rising edge by inputting the TDO transition timing switching command to SDIR. See section 34.4.3, TDO Output Timing, for more information.
ASE mode select pin	ASEMD*	Input	If a low level is input at the $\overline{\text{ASEMD}}$ pin while the $\overline{\text{RES}}$ pin is asserted, ASE mode is entered; if a high level is input, product chip mode is entered. In ASE mode, dedicated emulator function can be used. The input level at the $\overline{\text{ASEMD}}$ pin should be held for at least one cycle after $\overline{\text{RES}}$ negation.

Note: * When the emulator is not in use, fix this pin to the high level.

Module Name	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
Renesas	TDAD	_	_	_	_	_	_	_	_
SPDIF									
Internace									
	RDAD	_						_	_
CD-ROM	CROMEN	SUBC_EN	CROM_EN	CROM_STP	_	_			_
decoder	CROMSY0	SY_AUT	SY_IEN	SY_DEN	_	_			_
	CROMCTL0	MD_DESC	_	MD_AUTO	MD_AUTOS1	MD_AUTOS2	MD_SEC[2]	MD_SEC[1]	MD_SEC[0]
	CROMCTL1	M2F2EDC	MD_DEC[2]	MD_DEC[1]	MD_DEC[0]	_		MD_ PQREP[1]	MD_ PQREP[0]
	CROMCTL3	STP_ECC	STP_EDC		STP_MD	STP_MIN		_	_
	CROMCTL4	_	LINK2		EROSEL	NO_ECC			
	CROMCTL5	_							MSF_LBA_ SEL
	CROMST0	_		ST_SYIL	ST_SYNO	ST_BLKS	ST_BLKL	ST_SECS	ST_SECL
	CROMST1	_				ER2_HEAD0	ER2_HEAD1	ER2_HEAD2	ER2_HEAD3
	CROMST3	ER2_SHEAD0	ER2_SHEAD1	ER2_SHEAD2	ER2_SHEAD3	ER2_SHEAD4	ER2_SHEAD5	ER2_SHEAD6	ER2_SHEAD7
	CROMST4	NG_MD	NG_MDCMP1	NG_MDCMP2	NG_MDCMP3	NG_MDCMP4	NG_MDDEF	NG_MDTIM1	NG_MDTIM2
	CROMST5	ST_AMD[2]	ST_AMD[1]	ST_AMD[0]	ST_MDX	LINK_ON	LINK_DET	LINK_SDET	LINK_OUT1
	CROMST6	ST_ERR	_	ST_ECCABT	ST_ECCNG	ST_ECCP	ST_ECCQ	ST_EDC1	ST_EDC2
	CBUFST0	BUF_REF	BUF_ACT	_	_	_			_
	CBUFST1	BUF_ECC	BUF_EDC	_	BUF_MD	BUF_MIN	_		_
	CBUFST2	BUF_NG	_	_	_	_			_
	HEAD00	HEAD00[7]	HEAD00[6]	HEAD00[5]	HEAD00[4]	HEAD00[3]	HEAD00[2]	HEAD00[1]	HEAD00[0]
	HEAD01	HEAD01[7]	HEAD01[6]	HEAD01[5]	HEAD01[4]	HEAD01[3]	HEAD01[2]	HEAD01[1]	HEAD01[0]
	HEAD02	HEAD02[7]	HEAD02[6]	HEAD02[5]	HEAD02[4]	HEAD02[3]	HEAD02[2]	HEAD02[1]	HEAD02[0]
	HEAD03	HEAD03[7]	HEAD03[6]	HEAD03[5]	HEAD03[4]	HEAD03[3]	HEAD03[2]	HEAD03[1]	HEAD03[0]

Medule Neme	Register	Bit 01/00/15/7	Bit 20/20/14/6	Bit 20/21/12/5	Bit 09/00/10/4	Bit 07/10/11/2	Bit 06/19/10/0	Bit 05/17/0/1	Bit 04/16/9/0
	Appreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
USB 2.0 host/function	D1FIFO	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT
module		FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT	FIFOPORT
		[23]	[22]	[21]	[20]	[19]	[18]	[17]	[16]
		FIFOPORT [15]	FIFOPORT [14]	FIFOPORT [13]	FIFOPORT [12]	FIFOPORT [11]	FIFOPORT [10]	FIFOPORT[9]	FIFOPORT[8]
		FIFOPORT[7]	FIFOPORT[6]	FIFOPORT[5]	FIFOPORT[4]	FIFOPORT[3]	FIFOPORT[2]	FIFOPORT[1]	FIFOPORT[0]
	CFIFOSEL	RCNT	REW	_	_	MBW[1]	MBW[0]	_	BIGEND
		_	_	ISEL	_	CURPIPE[3]	CURPIPE[2]	CURPIPE[1]	CURPIPE[0]
	CFIFOCTR	BVAL	BCLR	FRDY	_	DTLN[11]	DTLN[10]	DTLN[9]	DTLN[8]
		DTLN[7]	DTLN[6]	DTLN[5]	DTLN[4]	DTLN[3]	DTLN[2]	DTLN[1]	DTLN[0]
	D0FIFOSEL	RCNT	REW	DCLRM	DREQE	MBW[1]	MBW[0]	_	BIGEND
		_	_	_	_	CURPIPE[3]	CURPIPE[2]	CURPIPE[1]	CURPIPE[0]
	D0FIFOCTR	BVAL	BCLR	FRDY	_	DTLN[11]	DTLN[10]	DTLN[9]	DTLN[8]
		DTLN[7]	DTLN[6]	DTLN[5]	DTLN[4]	DTLN[3]	DTLN[2]	DTLN[1]	DTLN[0]
	D1FIFOSEL	RCNT	REW	DCLRM	DREQE	MBW[1]	MBW[0]	_	BIGEND
		_	_	—	_	CURPIPE[3]	CURPIPE[2]	CURPIPE[1]	CURPIPE[0]
	D1FIFOCTR	BVAL	BCLR	FRDY	_	DTLN[11]	DTLN[10]	DTLN[9]	DTLN[8]
		DTLN[7]	DTLN[6]	DTLN[5]	DTLN[4]	DTLN[3]	DTLN[2]	DTLN[1]	DTLN[0]
	INTENB0	VBSE	RSME	SOFE	DVSE	CTRE	BEMPE	NRDYE	BRDYE
		_	_	_	_		_	_	_
	INTENB1	—	BCHGE	_	DTCHE	ATTCHE	_	_	_
		_	EOFEPRE	SIGNE	SACKE		_	_	_
	BRDYENB	_	_	_	_		_	PIPE9BRDYE	PIPE8BRDYE
		PIPE7BRDYE	PIPE6BRDYE	PIPE5BRDYE	PIPE4BRDYE	PIPE3BRDYE	PIPE2BRDYE	PIPE1BRDYE	PIPE0BRDYE
	NRDYENB	_	_	_	_		_	PIPE9NRDYE	PIPE8NRDYE
		PIPE7NRDYE	PIPE6NRDYE	PIPE5NRDYE	PIPE4NRDYE	PIPE3NRDYE	PIPE2NRDYE	PIPE1NRDYE	PIPE0NRDYE
	BEMPENB	_	_	_	_		_	PIPE9BEMPE	PIPE8BEMPE
		PIPE7BEMPE	PIPE6BEMPE	PIPE5BEMPE	PIPE4BEMPE	PIPE3BEMPE	PIPE2BEMPE	PIPE1BEMPE	PIPE0BEMPE
	SOFCFG	_	_	_	_	_	_	_	TRNENSEL
		_	BRDYM	_	_	_	_	_	_

RENESAS