E·XFL Renesas Electronics America Inc - <u>R5S72625P144FP#UZ Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, I ² C, SCI, SD, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	89
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	640K × 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LFQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s72625p144fp-uz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	26.3.16	Interrupt Status Register 0 (INTSTS0)	1390
	26.3.17	Interrupt Status Register 1 (INTSTS1)	1395
	26.3.18	BRDY Interrupt Status Register (BRDYSTS)	1401
	26.3.19	NRDY Interrupt Status Register (NRDYSTS)	1403
	26.3.20	BEMP Interrupt Status Register (BEMPSTS)	1405
	26.3.21	Frame Number Register (FRMNUM)	1406
	26.3.22	µFrame Number Register (UFRMNUM)	1409
	26.3.23	USB Address Register (USBADDR)	1410
	26.3.24	USB Request Type Register (USBREQ)	1411
	26.3.25	USB Request Value Register (USBVAL)	1412
	26.3.26	USB Request Index Register (USBINDX)	1413
	26.3.27	USB Request Length Register (USBLENG)	1414
	26.3.28	DCP Configuration Register (DCPCFG)	1415
	26.3.29	DCP Maximum Packet Size Register (DCPMAXP)	1417
	26.3.30	DCP Control Register (DCPCTR)	
	26.3.31	Pipe Window Select Register (PIPESEL)	1428
	26.3.32	Pipe Configuration Register (PIPECFG)	1429
	26.3.33	Pipe Buffer Setting Register (PIPEBUF)	1436
	26.3.34	Pipe Maximum Packet Size Register (PIPEMAXP)	1439
	26.3.35	Pipe Timing Control Register (PIPEPERI)	
	26.3.36	PIPEn Control Registers (PIPEnCTR) (n = 1 to 9)	1443
	26.3.37	PIPEn Transaction Counter Enable Registers (PIPEnTRE) (n = 1 to 5)	1464
	26.3.38	PIPEn Transaction Counter Registers (PIPEnTRN) (n = 1 to 5)	1466
	26.3.39	Device Address n Configuration Registers (DEVADDn) (n = 0 to A)	1468
	26.3.40	USB AC Characteristics Switching Register 1 (USBACSWR1)	1471
26.4	Operatio	n	1472
	26.4.1	System Control and Oscillation Control	1472
	26.4.2	Interrupt Functions	1476
	26.4.3	Pipe Control	1499
	26.4.4	FIFO Buffer Memory	1509
	26.4.5	Control Transfers (DCP)	1524
	26.4.6	Bulk Transfers (PIPE1 to PIPE5)	1528
	26.4.7	Interrupt Transfers (PIPE6 to PIPE9)	1530
	26.4.8	Isochronous Transfers (PIPE1 and PIPE2)	1531
	26.4.9	SOF Interpolation Function	1543
	26.4.10	Pipe Schedule	1544
26.5	Usage N	otes	1546
	26.5.1	Procedure for Setting the USB Transceiver	1546
	26.5.2	Power Supply for USB Transceiver	1546

Figure 9.1 shows a block diagram of this module.

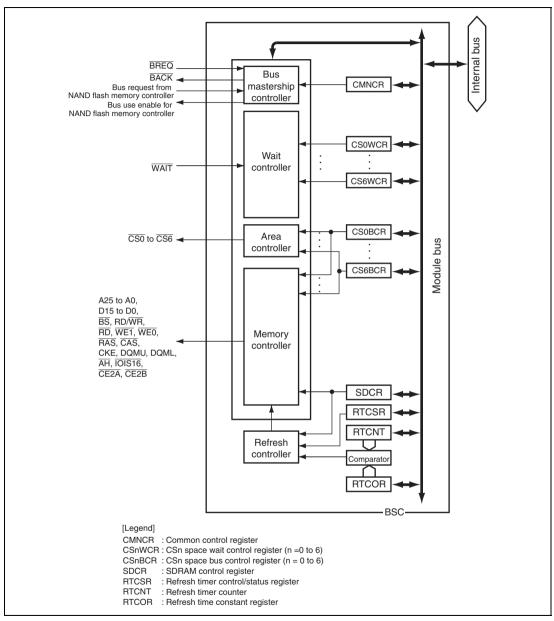


Figure 9.1 Block Diagram of Bus State Controller

Name	I/O	Function
WE0/DQML	Output	Indicates that D7 to D0 are being written to.
		Connected to the byte select signal when a SRAM with byte selection is connected.
		Functions as the select signals for D7 to D0 when SDRAM is connected.
RAS	Output	Connects to RAS pin when SDRAM is connected.
CAS	Output	Connects to CAS pin when SDRAM is connected.
CKE	Output	Connects to CKE pin when SDRAM is connected.
WAIT	Input	External wait input
BREQ	Input	Bus request input
BACK	Output	Bus enable output
IOIS16	Input	Indicates 16-bit I/O of PCMIA.
		Enabled only in little endian mode. The pin should be driven low in big endian mode.

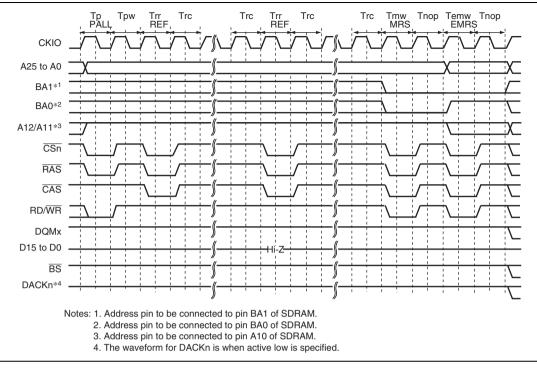


Figure 9.31 EMRS Command Issue Timing

(2) Basic Timing for I/O Card Interface

Figures 9.42 and 9.43 show the basic timing for the PCMCIA I/O card interface.

When accessing an I/O card through the PCMCIA interface, be sure to access the space as cachedisabled.

Switching between I/O card and IC memory card interfaces in the respective address spaces is accomplished by the SA[1:0] bit settings in CS5WCR and CS6WCR.

The IOIS16 pin can be used for dynamic adjustment of the width of the I/O bus in access to an I/O card via the PCMCIA interface when little endian mode has been selected. When the bus width of area 5 or 6 is set to 16 bits and the IOIS16 signal is driven high during a cycle of word-unit access to the I/O card bus, the bus width will be recognized as 8 bits and only 8 bits of data will be accessed during the current cycle of the I/O card bus. Operation will automatically continue with access to the remaining 8 bits of data.

The $\overline{IOIS16}$ signal is sampled on falling edges of the CKIO in Tpci0 as well as all Tpci0w cycles for which the TED3 to TED0 bits are set to 1.5 cycles or more, and the $\overline{CE2A}$ and $\overline{CE2B}$ signals are updated after 1.5 cycles of the CKIO signal from the sampling point of Tpci0. Ensure that the $\overline{IOIS16}$ signal is defined at all sampling points and does not change along the way.

Set the TED3 to TED0 bits to satisfy the requirement of the PC card in use with regard to setup timing from $\overline{\text{ICIORD}}$ or $\overline{\text{ICIORD}}$ to $\overline{\text{CE1}}$ or $\overline{\text{CE2}}$.

The basic waveforms for dynamic bus-size adjustment are shown in figure 9.43.

Since the $\overline{IOIS16}$ signal is not supported in big endian mode, the $\overline{IOIS16}$ signal should be fixed to the low level when big endian mode has been selected.

Table 11.15 TIORH_3 (Channel 3)

					Description
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_3 Function	TIOC3B Pin Function
0	0	0	0	Output	Output retained*
			1	compare register	Initial output is 0
				register	0 output at compare match
		1	0		Initial output is 0
					1 output at compare match
			1		Initial output is 0
					Toggle output at compare match
	1	0	0		Output retained
			1		Initial output is 1
					0 output at compare match
		1	0		Initial output is 1
					1 output at compare match
			1		Initial output is 1
					Toggle output at compare match
1	Х	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х		Input capture at both edges
[Leaen	d]				

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

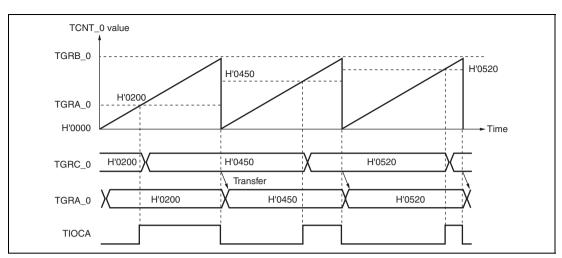


Figure 11.19 Example of Buffer Operation When TCNT_0 Clearing is Selected for TGRC_0 to TGRA_0 Transfer Timing

11.4.4 Cascaded Operation

In cascaded operation, two 16-bit counters for different channels are used together as a 32-bit counter.

This function works by counting the channel 1 counter clock upon overflow/underflow of TCNT_2 as set in bits TPSC0 to TPSC2 in TCR.

Underflow occurs only when the lower 16-bit TCNT is in phase-counting mode.

Table 11.42 shows the register combinations used in cascaded operation.

Note: When phase counting mode is set for channel 1, the counter clock setting is invalid and the counters operates independently in phase counting mode.

Table 11.42 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits
Channels 1 and 2	TCNT_1	TCNT_2

For simultaneous input capture of TCNT_1 and TCNT_2 during cascaded operation, additional input capture input pins can be specified by the input capture control register (TICCR). The edge detection that is the condition for input capture uses a signal representing the logical OR of the original input pin and the added input pins. For details, see (4) Cascaded Operation Example (c).

(c) Initialization

In complementary PWM mode, there are six registers that must be initialized. In addition, there is a register that specifies whether to generate dead time (it should be used only when dead time generation should be disabled).

Before setting complementary PWM mode with bits MD3 to MD0 in the timer mode register (TMDR), the following initial register values must be set.

TGRC_3 operates as the buffer register for TGRA_3, and should be set with 1/2 the PWM carrier cycle + dead time Td. The timer cycle buffer register (TCBR) operates as the buffer register for the timer cycle data register (TCDR), and should be set with 1/2 the PWM carrier cycle. Set dead time Td in the timer dead time data register (TDDR).

When dead time is not needed, the TDER bit in the timer dead time enable register (TDER) should be cleared to 0, TGRC_3 and TGRA_3 should be set to 1/2 the PWM carrier cycle + 1, and TDDR should be set to 1.

Set the respective initial PWM duty values in buffer registers TGRD_3, TGRC_4, and TGRD_4.

The values set in the five buffer registers excluding TDDR are transferred simultaneously to the corresponding compare registers when complementary PWM mode is set.

Set TCNT_4 to H'0000 before setting complementary PWM mode.

Table 11.54	Registers and	Counters 1	Requiring	Initialization
-------------	----------------------	------------	-----------	----------------

Register/Counter	Set Value
TGRC_3	1/2 PWM carrier cycle + dead time Td (1/2 PWM carrier cycle + 1 when dead time generation is disabled by TDER)
TDDR	Dead time Td (1 when dead time generation is disabled by TDER)
TCBR	1/2 PWM carrier cycle
TGRD_3, TGRC_4, TGRD_4	Initial PWM duty value for each phase
TCNT_4	H'0000
Note: The TGBC 3 set value must	he the sum of 1/2 the PWM carrier cycle set in TCBB and

Note: The TGRC_3 set value must be the sum of 1/2 the PWM carrier cycle set in TCBR and dead time Td set in TDDR. When dead time generation is disabled by TDER, TGRC_3 must be set to 1/2 the PWM carrier cycle + 1.

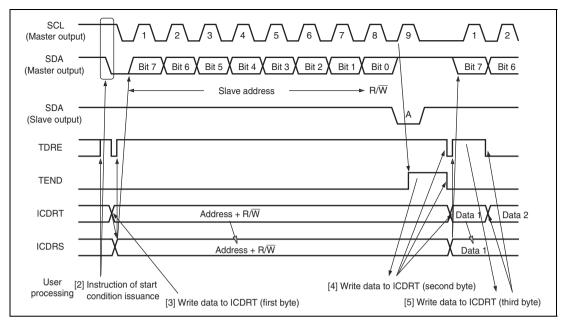


Figure 17.5 Master Transmit Mode Operation Timing (1)

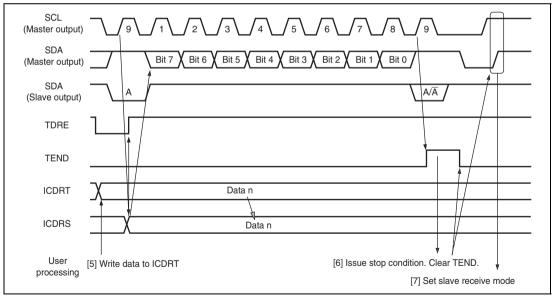
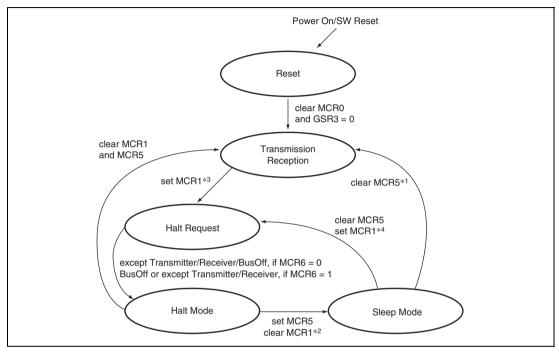
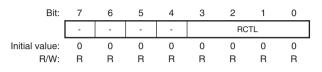


Figure 17.6 Master Transmit Mode Operation Timing (2)

Figure 20.15 shows allowed state transitions.

- Please don't set MCR5 (Sleep Mode) without entering Halt Mode.
- After MCR1 is set, please don't clear it before GSR4 is set and this module enters Halt Mode.




Figure 20.15 Halt Mode/Sleep Mode

- Notes: 1. MCR5 can be cleared by automatically by detecting a dominant bit on the CAN Bus if MCR7 is set or by writing '0'.
 - 2. MCR1 is cleared in SW. Clearing MCR1 and setting MCR5 have to be carried out by the same instruction.
 - 3. MCR1 must not be cleared in SW, before GSR4 is set. MCR1 can be set automatically in HW when this module moves to Bus Off and MCR14 and MCR6 are both set.
 - 4. When MCR5 is cleared and MCR1 is set at the same time, this module moves to Halt Request. Right after that, it moves to Halt Mode with no reception/transmission.

The following table shows conditions to access registers.

21.3.11 IEBus Receive Control Field Register (IERCTL)

IERCTL indicates the control field value in slave/broadcast reception. This register is enabled when slave/broadcast receive starts, and the contents are changed at the time of setting the RXS flag in IERSR. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
3 to 0	RCTL	0000	R	IEBus Receive Control Field
				Indicates the control field value in slave/broadcast reception. This register is enabled when slave/broadcast reception starts, and the contents are changed at the time of setting the RXS flag.

24.4.2 Multi Mode

Multi mode should be selected when performing A/D conversion once on one or more channels.

In multi mode, A/D conversion is performed once for a maximum of eight specified analog input channels, as follows:

- 1. A/D conversion starts from the analog input channel with the lowest number (e.g. AN0, AN1, ..., AN3) when the ADST bit in ADCSR is set to 1 by software, the multi-function timer pulse unit 2, or external trigger input.
- 2. When A/D conversion is completed on each channel, the A/D conversion result is sequentially transferred to the A/D data register corresponding to that channel.
- 3. After A/D conversion on all selected channels has completed, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated.
- 4. The ADST bit that remains 1 during A/D conversion is automatically cleared to 0 when A/D conversion is completed, and the A/D converter becomes idle. If the ADST bit is cleared to 0 during A/D conversion, A/D conversion is halted and the A/D converter becomes idle. The ADF bit is cleared by reading ADF while ADF = 1, then writing 0 to the ADF bit.

A/D conversion is to be performed once on all the specified channels. The conversion results are transferred for storage into the A/D data registers corresponding to the channels.

When the operating mode or analog input channel selection must be changed during A/D conversion, to prevent incorrect operation, first clear the ADST bit to 0 to halt A/D conversion. After making the necessary changes, set the ADST bit to 1. A/D conversion will start again from the first channel in the group. The ADST bit can be set at the same time as the mode or channel selection is changed.

Typical operations when three channels (AN0 to AN2) are selected in multi mode are described next. Figure 24.3 shows a timing diagram for this example.

- 1. Multi mode is selected (MDS2 = 1, MDS1 = 0), analog input channels AN0 to AN2 are selected (CH[2:0] = 010), and A/D conversion is started (ADST = 1).
- 2. A/D conversion of the first channel (AN0) starts. When A/D conversion is completed, the A/D conversion result is transferred into ADDRA.
- 3. Next, the second channel (AN1) is selected automatically and A/D conversion starts.
- 4. Conversion proceeds in the same way through the third channel (AN2).
- 5. When conversion of all selected channels (AN0 to AN2) is completed, the ADF flag is set to 1 and the ADST bit cleared to 0.
- 6. If the ADIE bit is set to 1 at this time, an ADI interrupt is requested.

24.7.4 Processing of Analog Input Pins

To prevent damage from voltage surges at the analog input pins (AN0 to AN7), connect an input protection circuit like the one shown in figure 24.8. The circuit shown also includes a CR filter to suppress noise. This circuit is shown as an example; the circuit constants should be selected according to actual application conditions.

Figure 24.9 shows an equivalent circuit diagram of the analog input ports and table 24.7 lists the analog input pin specifications.

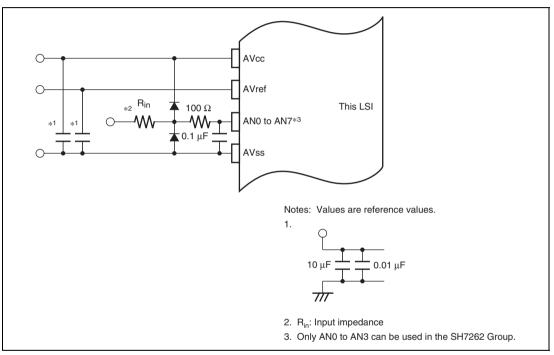


Figure 24.8 Example of Analog Input Protection Circuit

25.4 Operation

25.4.1 Access Sequence

This module performs accesses in several independent stages.

For example, NAND-type flash memory programming consists of the following five stages.

- First command issue stage (program setup command)
- Address issue stage (program address)
- Data stage (output)
- Second command issue stage (program start command)
- Status read stage

NAND-type flash memory programming access is achieved by executing these five stages sequentially. An access to flash memory is completed at the end of the final stage (status read stage).

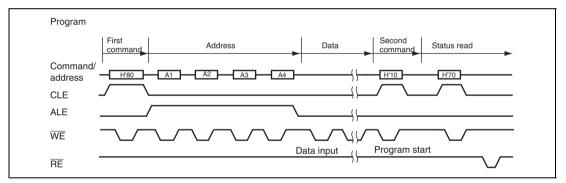


Figure 25.2 Programming Operation for NAND-Type Flash Memory and Stages

For details on NAND-type flash memory read operation, see section 25.4.4, Command Access Mode.

25.4.2 Operating Modes

Two operating modes are supported.

- Command access mode
- Sector access mode

The ECC generation and error check are performed in sector access mode.

26.3.22 µFrame Number Register (UFRMNUM)

UFRMNUM is a register that indicates the µframe number.

This register is initialized by a power-on reset.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	-	_	_	_	_	_	_	—	_	—	_	_	U	FRNM[2:	0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
15 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
2 to 0	UFRNM[2:0]	000	R	μFrame
				The μ frame number can be confirmed.
				This module sets these bits to indicate the μ frame number during high-speed operation.
				During operation other than high-speed operation, this module sets these bits to B'000.
				Read these bits twice to check that the same value is read.

Bit	Bit Name	Initial Value	R/W	Description
4	DIR	0	R/W	Transfer Direction
				Specifies the transfer direction for the selected pipe.
				0: Receiving direction
				1: Sending direction
				When this bit has been set to 0, this module uses the selected pipe in the receiving direction, and when this bit has been set to 1, this module uses the selected pipe in the transmitting direction.
				Modify these bits when the value of CSSTS is 0, the PID bits are set to NAK, and no pipe is specified by the CURPIPE bits.
				To modify these bits after completing USB communication using the selected pipe, write 1 and then 0 to ACLRM continuously to clear the FIFO buffer assigned to the selected pipe while the CSSTS, PID, and CURPIPE bits are in the above-described state.
				Before modifying these bits after modifying the PID bits for the selected pipe from BUF to NAK, check that CSSTS and PBUSY are 0. However, if the PID bits have been modified to NAK by this module, checking PBUSY is not necessary.
3 to 0	EPNUM[3:0]	0000	R/W	Endpoint Number
				These bits specify the endpoint number for the selected pipe.
				Setting 0000 means unused pipe.
				Modify these bits while CSSTS is 0 and PID is NAK.
				Before modifying these bits after modifying the PID bits for the selected pipe from BUF to NAK, check that CSSTS and PBUSY are 0. However, if the PID bits have been modified to NAK by this module, checking PBUSY is not necessary.
				Do not make the settings such that the combination of the set values in the DIR and EPNUM bits should be the same for two or more pipes (EPNUM = 0000 can be set for all the pipes).

Bit	Bit Name	Initial Value	R/W	Description
4	VIDEO_MODE	0	R/W	Specifies the operating mode for the video receiving block.
				0: Video recording mode (Be sure to set the EX_SYNC_MODE bit in the SGMODE register to 0)
				1: Video display mode (Be sure to set the EX_SYNC_MODE bit in the SGMODE register to 1)
3, 2		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
1	VIDEO_DISP_ EXE	0	R/W	Enables the video supplying block operation. Setting to 1 starts video supply to the graphics blocks. The register setting is updated with the VSYNC timing.
				0: Disabled
				1: Enabled
0	VIDEO_MAIN_ EXE	0	R/W	Enables the video receiving block operation. Setting to 1 starts video storing in the large- capacity on-chip RAM or SDRAM. 0: Disabled* ²
				1: Enabled
Notes: 1.				d supplying blocks proceeds after bit N_EXE, respectively, is set to 1, and detection of

VSYCN. Operation stops when the protocol for the internal bus is ended after the corresponding bit has been cleared to 0.2. To disable the video receiving block operation, please follow the procedure shown in

section 27.10.1, The Procedure of Disabling the Video Receiving Block Operation.

	Register								
Module Name	Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
I [°] C bus interface 3	ICCR1_2	ICE	RCVD	MST	TRS	CKS[3]	CKS[2]	CKS[1]	CKS[0]
	ICCR2_2	BBSY	SCP	SDAO	SDAOP	SCLO	_	IICRST	_
	ICMR_2	MLS	_	_	_	BCWP	BC[2]	BC[1]	BC[0]
	ICIER_2	TIE	TEIE	RIE	NAKIE	STIE	ACKE	ACKBR	ACKBT
	ICSR_2	TDRE	TEND	RDRF	NACKF	STOP	AL/OVE	AAS	ADZ
	SAR_2	SVA[6]	SVA[5]	SVA[4]	SVA[3]	SVA[2]	SVA[1]	SVA[0]	FS
	ICDRT_2								
	ICDRR_2								
	NF2CYC_2	_	_	_	CKS4	_	_	PRS	NF2CYC
Serial sound interface	SSICR_0	_	СКЅ	TUIEN	TOIEN	RUIEN	ROIEN	IIEN	_
		CHNL[1]	CHNL[0]	DWL[2]	DWL[1]	DWL[0]	SWL[2]	SWL[1]	SWL[0]
		SCKD	SWSD	SCKP	SWSP	SPDP	SDTA	PDTA	DEL
		CKDV[3]	CKDV[2]	CKDV[1]	CKDV[0]	MUEN	_	TEN	REN
	SSISR_0	_	_	TUIRQ	TOIRQ	RUIRQ	ROIRQ	IIRQ	_
		_	_	_	_	_	_	_	_
		_	_	_	_	_	_	_	_
		_	TCHNO[1]	TCHNO[0]	TSWNO	RCHNO[1]	RCHNO[0]	RSWNO	IDST
	SSIFCR_0	_	_	_	_	_	_	_	_
		_	_	_	_	_	_	_	_
		_	_	_	_	_	_	_	_
		TTRG[1]	TTRG[0]	RTRG[1]	RTRG[0]	TIE	RIE	TFRST	RFRST
	SSIFSR_0	_	_	_	_	TDC[3]	TDC[2]	TDC[1]	TDC[0]
		_	_	_		_	_	_	TDE
		_	_	_		RDC[3]	RDC[2]	RDC[1]	RDC[0]
		_	—	_	_	_	—	_	RDF
	SSIFTDR_0								

	Register								
Module Name	Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
Renesas	TDAD	_	_	_	_	_	_	_	_
SPDIF									
	RDAD	_					_	_	_
CD-ROM decoder	CROMEN	SUBC_EN	CROM_EN	CROM_STP		_	_	_	_
	CROMSY0	SY_AUT	SY_IEN	SY_DEN			_	_	_
	CROMCTL0	MD_DESC	_	MD_AUTO	MD_AUTOS1	MD_AUTOS2	MD_SEC[2]	MD_SEC[1]	MD_SEC[0]
	CROMCTL1	M2F2EDC	MD_DEC[2]	MD_DEC[1]	MD_DEC[0]			MD_ PQREP[1]	MD_ PQREP[0]
	CROMCTL3	STP_ECC	STP_EDC	_	STP_MD	STP_MIN	_	_	_
	CROMCTL4	_	LINK2	—	EROSEL	NO_ECC	_	_	_
	CROMCTL5	_							MSF_LBA_ SEL
	CROMST0	_	_	ST_SYIL	ST_SYNO	ST_BLKS	ST_BLKL	ST_SECS	ST_SECL
	CROMST1	_	_	_	_	ER2_HEAD0	ER2_HEAD1	ER2_HEAD2	ER2_HEAD3
	CROMST3	ER2_SHEAD0	ER2_SHEAD1	ER2_SHEAD2	ER2_SHEAD3	ER2_SHEAD4	ER2_SHEAD5	ER2_SHEAD6	ER2_SHEAD7
	CROMST4	NG_MD	NG_MDCMP1	NG_MDCMP2	NG_MDCMP3	NG_MDCMP4	NG_MDDEF	NG_MDTIM1	NG_MDTIM2
	CROMST5	ST_AMD[2]	ST_AMD[1]	ST_AMD[0]	ST_MDX	LINK_ON	LINK_DET	LINK_SDET	LINK_OUT1
	CROMST6	ST_ERR	_	ST_ECCABT	ST_ECCNG	ST_ECCP	ST_ECCQ	ST_EDC1	ST_EDC2
	CBUFST0	BUF_REF	BUF_ACT	_	_	_		_	_
	CBUFST1	BUF_ECC	BUF_EDC		BUF_MD	BUF_MIN		_	_
	CBUFST2	BUF_NG					_	_	_
	HEAD00	HEAD00[7]	HEAD00[6]	HEAD00[5]	HEAD00[4]	HEAD00[3]	HEAD00[2]	HEAD00[1]	HEAD00[0]
	HEAD01	HEAD01[7]	HEAD01[6]	HEAD01[5]	HEAD01[4]	HEAD01[3]	HEAD01[2]	HEAD01[1]	HEAD01[0]
	HEAD02	HEAD02[7]	HEAD02[6]	HEAD02[5]	HEAD02[4]	HEAD02[3]	HEAD02[2]	HEAD02[1]	HEAD02[0]
	HEAD03	HEAD03[7]	HEAD03[6]	HEAD03[5]	HEAD03[4]	HEAD03[3]	HEAD03[2]	HEAD03[1]	HEAD03[0]