E. Renesas Electronics America Inc - <u>R5S72640P144FP#UZ Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Last Time Buy
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	I ² C, SCI, SD, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	115
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1M x 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LFQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s72640p144fp-uz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.7 Oscillation Stabilizing Time

5.7.1 Oscillation Stabilizing Time of the On-chip Crystal Oscillator

In the case of using a crystal resonator, please wait longer than the oscillation stabilizing time at the following cases, to keep the oscillation stabilizing time of the on-chip crystal oscillator (In the case of inputting an external clock input, it is not necessary).

- Power on
- Releasing the software standby mode or deep standby mode by RES pin
- Changing from halting oscillation to running oscillation by power-on reset or register setting (AUDIO_X1, RTC_X1)
- Changing the gain of the on-chip crystal oscillator by $\overline{\text{RES}}$ pin (EXTAL)

5.7.2 Oscillation Stabilizing Time of the PLL circuit

The clock from EXTAL in the clock mode 0 and 2 or USB_X1 in the clock mode 1 and 3 is supplied to the PLL circuit. So, regardless of whether using a crystal resonator or inputting an external clock from EXTAL (clock mode 0 and 2) or USB_X1 (clock mode 1 and 3), please wait longer than the oscillation stabilizing time at the following cases, to keep the oscillation stabilizing time of the PLL circuit.

- Power on (in the case of using the crystal resonator)/start inputting external clock (in the case of inputting the external clock)
- Releasing the software standby mode or deep standby mode by $\overline{\text{RES}}$ pin

[Remarks]

The oscillation stabilizing time is kept by the counter running in the LSI at the following cases.

- Releasing the software standby mode or deep standby mode by the other than $\overline{\text{RES}}$ pin
- Changing the gain of the on-chip crystal oscillator by the register setting (EXTAL)

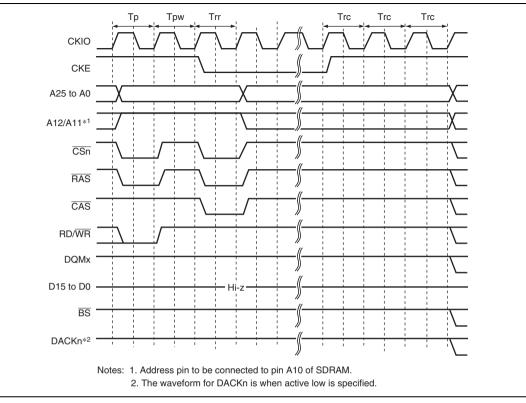


Figure 9.27 Self-Refresh Timing

Table 11.14 TIOR_2 (Channel 2)

				Description				
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_2 Function	TIOC2B Pin Function			
0	0	0	0	Output	Output retained*			
			1	compare	Initial output is 0			
				register	0 output at compare match			
		1	0	_	Initial output is 0			
					1 output at compare match			
			1		Initial output is 0			
					Toggle output at compare match			
	1	0	0	_	Output retained			
			1	_	Initial output is 1			
					0 output at compare match			
		1	0	_	Initial output is 1			
					1 output at compare match			
			1		Initial output is 1			
					Toggle output at compare match			
1	Х	0	0		Input capture at rising edge			
			1	register	Input capture at falling edge			
		1	Х	_	Input capture at both edges			
[Legen	d]							

Description

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

11.3.24 Timer Cycle Buffer Register (TCBR)

TCBR is a 16-bit register used only in complementary PWM mode. It functions as a buffer register for the TCDR register. The TCBR register values are transferred to the TCDR register with the transfer timing set in the TMDR register. The initial value of TCBR is H'FFFF.

Bit: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value: 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

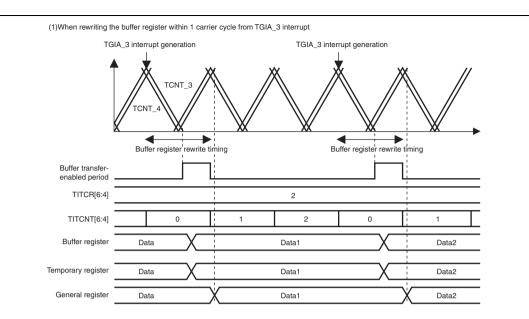
Note: Accessing the TCBR in 8-bit units is prohibited. Always access in 16-bit units.

11.3.25 Timer Interrupt Skipping Set Register (TITCR)

TITCR is an 8-bit readable/writable register that enables or disables interrupt skipping and specifies the interrupt skipping count. This module has one TITCR.

Bit:	7	6	5	4	3	2	1	0
	T3AEN	3/	ACOR[2:	0]	T4VEN	4	VCOR[2:	0]
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial value	R/W	Description
7	T3AEN	0	R/W	T3AEN
				Enables or disables TGIA_3 interrupt skipping.
				0: TGIA_3 interrupt skipping disabled
				1: TGIA_3 interrupt skipping enabled
6 to 4	3ACOR[2:0]	000	R/W	These bits specify the TGIA_3 interrupt skipping count within the range from 0 to 7.*
				For details, see table 11.38.
3	T4VEN	0	R/W	T4VEN
				Enables or disables TCIV_4 interrupt skipping.
				0: TCIV_4 interrupt skipping disabled
				1: TCIV_4 interrupt skipping enabled


Bit	Bit Name	Initial Value	R/W	Description
0	WRE	0	R/(W)	Initial Output Suppression Enable
			,	Selects the waveform output when synchronous counter clearing occurs in complementary PWM mode. The initial output is suppressed only when synchronous clearing occurs within the Tb interval at the trough in complementary PWM mode. When synchronous clearing occurs outside this interval, the initial value specified in TOCR is output regardless of the WRE bit setting. The initial value is also output when synchronous clearing occurs in the Tb interval at the trough immediately after TCNT_3 and TCNT_4 start operation.
				For the Tb interval at the trough in complementary PWM mode, see figure 11.40.
				0: Outputs the initial value specified in TOCR
				1: Suppresses initial output
				[Setting condition]
				• When 1 is written to WRE after reading WRE = 0

Note: * Do not set to 1 when complementary PWM mode is not selected.

11.3.30 Bus Master Interface

The timer counters (TCNT), general registers (TGR), timer subcounter (TCNTS), timer cycle buffer register (TCBR), timer dead time data register (TDDR), timer cycle data register (TCDR), timer A/D converter start request control register (TADCR), timer A/D converter start request cycle set registers (TADCOR), and timer A/D converter start request cycle set buffer registers (TADCOBR) are 16-bit registers. A 16-bit data bus to the bus master enables 16-bit read/writes. 8-bit read/write is not possible. Always access in 16-bit units.

All registers other than the above registers are 8-bit registers. These are connected to the CPU by a 16-bit data bus, so 16-bit read/writes and 8-bit read/writes are both possible.

(2)When rewriting the buffer register after passing 1 carrier cycle from TGIA_3 interrupt

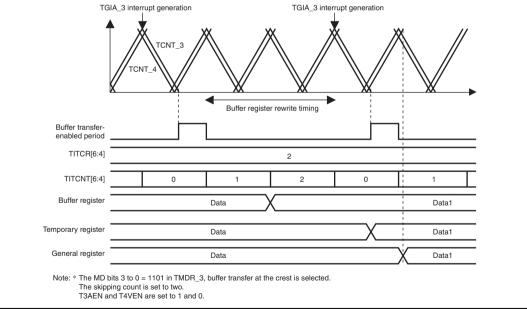
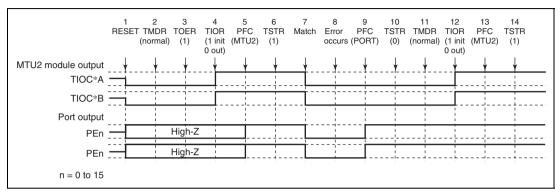



Figure 11.71 Example of Operation when Buffer Transfer is Linked with Interrupt Skipping (BTE1 = 1 and BTE0 = 0)

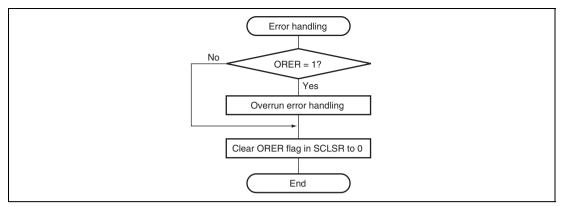

(1) Operation when Error Occurs during Normal Mode Operation, and Operation is Restarted in Normal Mode

Figure 11.115 shows an explanatory diagram of the case where an error occurs in normal mode and operation is restarted in normal mode after re-setting.

Figure 11.115 Error Occurrence in Normal Mode, Recovery in Normal Mode

- 1. After a reset, the module output is low and ports are in the high-impedance state.
- 2. After a reset, the TMDR setting is for normal mode.
- 3. For channels 3 and 4, enable output with TOER before initializing the pins with TIOR.
- 4. Initialize the pins with TIOR. (The example shows initial high output, with low output on compare-match occurrence.)
- 5. Set the multi-function timer pulse unit 2 output with the general I/O port.
- 6. The count operation is started by TSTR.
- 7. Output goes low on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the general I/O port and output the inverse of the active level.
- 10. The count operation is stopped by TSTR.
- 11. Not necessary when restarting in normal mode.
- 12. Initialize the pins with TIOR.
- 13. Set the multi-function timer pulse unit 2 output with the general I/O port.
- 14. Operation is restarted by TSTR.

In serial reception, this module operates as described below.

- 1. Reception is started in synchronization with serial clock input or output.
- Receive data is shifted into SCRSR in order from the LSB to the MSB. After the data reception, whether the receive data can be loaded from SCRSR into SCFRDR or not is checked. If this check is passed, the RDF flag is set to 1 and the received data is stored in SCFRDR. If the check is not passed (overrun error is detected), further reception is prevented.
- 3. After setting RDF to 1, if the receive FIFO data full interrupt enable bit (RIE) is set to 1 in SCSCR, a receive-data-full interrupt (RXI) request is generated. If the ORER bit is set to 1 and the receive-data-full interrupt enable bit (RIE) or the receive error interrupt enable bit (REIE) in SCSCR is also set to 1, a break interrupt (BRI) request is generated.

15.6.3 Restriction on Direct Memory Controller Usage

When the direct memory access controller writes data to SCFTDR due to a TXI interrupt request, the state of the TEND flag becomes undefined. Therefore, the TEND flag should not be used as the transfer end flag in such a case.

15.6.4 Break Detection and Processing

Break signals can be detected by reading the RxD pin directly when a framing error (FER) is detected. In the break state the input from the RxD pin consists of all 0s, so the FER flag is set and the parity error flag (PER) may also be set.

Note that, although transfer of receive data to SCFRDR is halted in the break state, the receive operation is continued.

15.6.5 Sending a Break Signal

The I/O condition and level of the TxD pin are determined by the SPB2IO and SPB2DT bits in the serial port register (SCSPTR). This feature can be used to send a break signal.

Until TE bit is set to 1 (enabling transmission) after initializing, the TxD pin does not work. During the period, mark status is performed by the SPB2DT bit. Therefore, the SPB2IO and SPB2DT bits should be set to 1 (high level output).

To send a break signal during serial transmission, clear the SPB2DT bit to 0 (designating low level), then clear the TE bit to 0 (halting transmission). When the TE bit is cleared to 0, the transmitter is initialized regardless of the current transmission state, and 0 is output from the TxD pin.

15.6.6 Receive Data Sampling Timing and Receive Margin (Asynchronous Mode)

This module operates on a base clock with a frequency 16 or 8 times the bit rate. In reception, the falling edge of the start bit is sampled at the base clock to perform synchronization internally. Receive data is latched at the rising edge of the eighth or fourth base clock pulse. When this module operates on a base clock with a frequency 16 times the bit rate, the receive data is sampled at the timing shown in figure 15.19.

16.4 Operation

In this section, the serial transfer period means a period from the beginning of driving valid data to the fetching of the final valid data.

16.4.1 Overview of Operations

This module is capable of serial transfers in slave mode and master mode. A particular mode of this module can be selected by using the MSTR bit in the control register (SPCR). Table 16.4 gives the relationship between the modes and SPCR settings, and a description of each mode.

Mode	Slave (SPI Operation)	Master (SPI Operation)
MSTR bit setting	0	1
MODFEN bit setting	0 or 1	0
RSPCK signal	Input	Output
MOSI signal	Input	Output
MISO signal	Output/Hi-Z	Input
SSL signal	Input	Output
SSL polarity modification function	Supported	Supported
Transfer rate	Up to B _{\$\phi} /8	Up to B∳/2
Clock source	RSPCK input	On-chip baud rate generator
Clock polarity	Тwo	Two
Clock phase	Тwo	Two
First transfer bit	MSB/LSB	MSB/LSB
Transfer data length	8 to 32 bits	8 to 32 bits
Burst transfer	Possible (CPHA = 1)	Possible (CPHA = 0,1)
RSPCK delay control	Not supported	Supported
SSL negation delay control	Not supported	Supported
Next-access delay control	Not supported	Supported
Transfer activation method	SSL input active or RSPCK oscillation	Transmit buffer is written when SPE = 1
Sequence control	Not supported	Supported

 Table 16.4
 Relationship between Modes and SPCR and Description of Each Mode

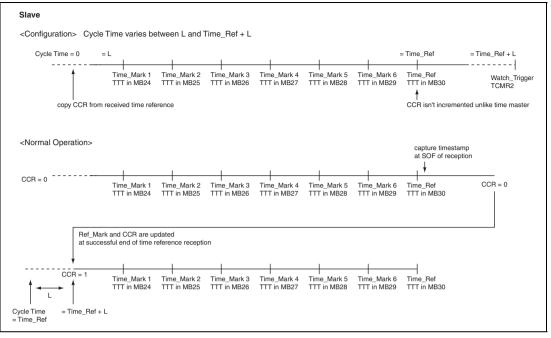

19.3 Register Descriptions

Table 19.2 shows the register configuration.

Table 19.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Access Size
Mode register	SIMDR	R/W	H'8000	H'FFFF4800	16
Clock select register	SISCR	R/W	H'8000	H'FFFF4802	16
Transmit data assign register	SITDAR	R/W	H'0000	H'FFFF4804	16
Receive data assign register	SIRDAR	R/W	H'0000	H'FFFF4806	16
Control register	SICTR	R/W	H'0000	H'FFFF480C	16
FIFO control register	SIFCTR	R/W*	H'1000	H'FFFF4810	16
Status register	SISTR	R/W*	H'0000	H'FFFF4814	16
Interrupt enable register	SIIER	R/W	H'0000	H'FFFF4816	16
Transmit data register	SITDR	W	Undefined	H'FFFF4820	8, 16, 32
Receive data register	SIRDR	R	Undefined	H'FFFF4824	8, 16, 32

Note: * This register has readable/writable bits and read-only bits. For details, see descriptions for each register.

Figure 20.20 Time Slave

• Function to be implemented by software

Some of the TTCAN functions need to be implemented in software. The main details are reported hereafter. Please refer to ISO-11898-4 for more details.

- Change from Init_Watch_Trigger to Watch_Trigger

This module offers the two registers TCMR0 and TCMR2 as H/W support for Init_Watch_Trigger and Watch_Trigger respectively. The SW is requested to enable TCMR0 and disable TCMR2 up to the first reference message is detected on the CAN Bus and then disable TCMR0 and enable TCMR2.- Schedule Synchronization state machine.

Only reception of Next_is_Gap interrupt is supported. The application needs to take care of stopping all transmission at the end of the current basic cycle by setting the related TXCR flags.Master-Slave Mode control.

Only automatic cycle time synchronization and CCR increment is supported.

— Message status count

Software has to count scheduling errors for periodic messages in exclusive windows.

		Initial		
Bit	Bit Name	Value	R/W	Description
23 to 20	CHNO[3:0]	All 0	W	Channel Number
				0000: Don't care
				0001: A (left channel)
				0010: B (right channel)
				0011: C
19 to 16	SRCNO[3:0]	All 0	W	Source Number
				0000: Don't care
				0001: 1
				0010: 2
				0011: 3
15 to 8	CATCD[7:0]	All 0	W	Category Code (Example)
				00000000: 2-channel general format
				00000001: 2-channel compact disc (IEC 908)
				00000010: 2-channel PCM encoder/decoder
				00000011: 2-channel digital audio tape recorder
7, 6		All 0	W	Reserved
				The write value should always be 0.
5 to 1	CTL[4:0]	All 0	W	Control
				The control bits are copied from the source (see IEC60958 standard).
0		0	W	Reserved
				The write value should always be 0.
-				•

Notes: 1. Channel status data requests do not support DMA.

2. When receiver user buffer overrun occurs, the current data in the buffer data of SPDIF is overwritten by the next incoming data from SPDIF interface.

22.9.2 Receiver Module Initialization

The device defaults to an idle state when it comes out of reset, or can be put into an idle state by writing 0 to bit RME in the CTRL register. Whilst idle the module has the following settings:

- The receiver idle status bit is set to 1, all other status bits are cleared to 0.
- Synchronization between channels 1 and 2 is set to 0 (0 for channel 1, 1 for channel 2).
- Both Word_count and frame_count are set to 0.

Channel status registers, user data registers and audio data registers will retain its value prior to putting the module into idle. To exit the idle state the user must write 1 to the bit RME in the CTRL register.

22.9.3 Receiver Module Data Transfer

Once the module has left the idle state it is ready for data transfer. Data transfer timing can be achieved in three ways. The transfer can be done by interrupts, or by polling the status register, or by DMA. There is a shared interrupt line (transmit and receive) and a single receiver DMA request line. Data transfer for the receiver can be interrupted by error signals caused by:

- 1. Clock recovery failure.
- 2. Transmission loss or interference indicated by a preamble error.
- 3. Parity check failure.

Transmission loss or interference can cause the start of subframe or start of block preamble to be misplaced or not present.

Parity check failure occurs when the parity bit is incorrect, this can be caused by any of the above.

RENESAS

Clock Recovery Deviation

The receive margin for clock recovery is based on the following equation:

$$M = \left| \left(0.5 - \frac{1}{2N} \right) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$

24.3.2 A/D Control/Status Register (ADCSR)

ADCSR is a 16-bit readable/writable register that selects the mode, controls the A/D converter, and enables or disables starting of A/D conversion by external trigger input.

Initial value: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ADF	ADIE	ADST		TR	GS[3:0]			CKS[2:0]		MDS[2:0]		CH[2:0]	
R/W:R/(W)*1 R/W		-	0	0 R/W	0 B/W	0 R/W	0 B/W	0 B/W									

Note: *1 Only 0 can be written to clear the flag after 1 is read.

Bit	Bit Name	Initial Value	R/W	Description
15	ADF	0	R/(W)* ¹	 A/D End Flag Status flag indicating the end of A/D conversion. [Clearing conditions] Cleared by reading ADF while ADF = 1, then writing 0 to ADF Cleared when the direct memory access controller is activated by ADI interrupt and ADDR is read [Setting conditions] A/D conversion ends in single mode A/D conversion ends for the selected channels in multi mode A/D conversion ends for the selected channels in scan mode
14	ADIE	0	R/W	 A/D Interrupt Enable Enables or disables the interrupt (ADI) requested at the end of A/D conversion. Set the ADIE bit while A/D conversion is not being made. 0: A/D end interrupt request (ADI) is disabled 1: A/D end interrupt request (ADI) is enabled

condition as when BVAL = 1). Whether to sample the DMA transfer end signal can be specified through the TENDE bit in DnFBCFG.

Note that this function cannot be used when the DMA transfer size is set to 16 bytes.

(c) DnFIFO Auto Clear Mode (D0FIFO/D1FIFO Port Reading Direction)

If 1 is set for the DCLRM bit in DnFIFOSEL, the module automatically clears the buffer memory of the selected pipe when reading of the data from the buffer memory has been completed.

Table 26.25 shows the packet reception and buffer memory clearing processing for each of the various settings. As shown, the buffer clear conditions depend on the value set to the BFRE bit. Using the DCLRM bit eliminates the need for the buffer to be cleared even if a situation occurs that necessitates clearing of the buffer. This makes it possible to carry out DMA transfers without involving software.

This function can be set only in the buffer memory reading direction.

	Register Setting								
Buffer Status	DCL	RM = 0	DCL	RM = 1					
When Packet is Received	BFRE = 0	BFRE = 1	BFRE = 0	BFRE = 1					
Buffer full	Doesn't need to be cleared	Doesn't need to be cleared	Doesn't need to be cleared	Doesn't need to be cleared					
Zero-length packet reception	Needs to be cleared	Needs to be cleared	Doesn't need to be cleared	Doesn't need to be cleared					
Normal short packet reception	Doesn't need to be cleared	Needs to be cleared	Doesn't need to be cleared	Doesn't need to be cleared					
Transaction count ended	Doesn't need to be cleared	Needs to be cleared	Doesn't need to be cleared	Doesn't need to be cleared					

Table 26.25 Packet Reception and Buffer Memory Clearing Processing

Table 32.9 Multiplexed Pins (Port H)

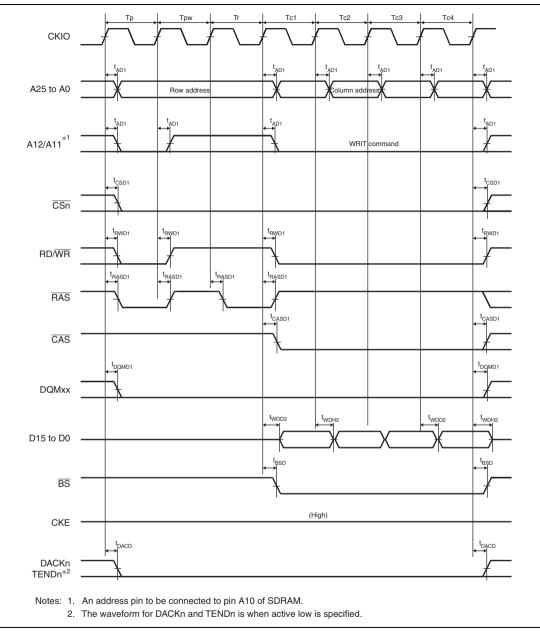
	0	1			
Setting Register	Function 1	Function 2			
PHCR1	PH7	AN7			
	PH6	AN6			
	PH5	AN5			
	PH4	AN4			
PHCR0	PH3	AN3			
	PH2	AN2			
	PH1	AN1			
	PH0	ANO			

Setting Mode Bit (PHnMD)

Table 32.10 Multiplexed Pins (Port J)

	Setting Mode Bit (PJnMD[2:0])						
	000	001	010	011	100	101	
Setting Register	Function 1	Function 2	Function 3	Function 4	Function 5	Function 6	
PJCR2	PJ11	PWM2H	DACK1	_	_		
	PJ10	PWM2G	DREQ1		_	—	
	PJ9	PWM2F	TEND1	AUDIO_XOUT*	_	—	
	PJ8	PWM2E	RTS3	_	_	—	
PJCR1	PJ7	TIOC1B	CTS3		_	—	
	PJ6	TIOC1A	SCK3		_	—	
	PJ5	IERxD	TxD3	_	_		
	PJ4	IETxD	RxD3		_	—	
PJCR0	PJ3	CRx1	CRx0/CRx1	IRQ1	_	_	
	PJ2	CTx1	CTx0&CTx1	CS2	SCK0	LCD_M_DISP	
	PJ1	CRx0	IERxD	IRQ0	RxD0		
	PJ0	CTx0	IETxD	CS1	TxD0	A0	

Bit	Bit Name	Initial Value	R/W	Description				
13, 12	PB7MD[1:0]	00/01	R/W	PB7 Mode				
				Select the function of the PB7.				
				Boot mode 0	Boot mode 1 to 3			
				00: Setting prohibited	00: PB7 (initial mode)			
				01: A7 (initial value)	01: A7 (initial value)			
				10: Setting prohibited	10: TIOC0D			
				11: Setting prohibited	11: Setting prohibited			
11, 10	_	All 0	R	Reserved				
				These bits are always i value should always be				
9, 8	PB6MD[1:0]	00/01	R/W	PB6 Mode				
				Select the function of the	ne PB6.			
				Boot mode 0	Boot mode 1 to 3			
				00: Setting prohibited	00: PB6 (initial value)			
				01: A6 (initial value)	01: A6 (initial value)			
				10: Setting prohibited	10: TIOC0C			
				11: Setting prohibited	11: Setting prohibited			
7, 6		All 0	R	Reserved				
				These bits are always read as 0. The write value should always be 0.				
5, 4	PB5MD[1:0]	00/01	R/W	PB5 Mode				
				Select the function of the	ne PB5.			
				Boot mode 0	Boot mode 1 to 3			
				00: Setting prohibited	00: PB5 (initial value)			
				01: A5 (initial value)	01: A5 (initial value)			
				10: Setting prohibited	10: TIOC0B			
				11: Setting prohibited	11: Setting prohibited			
3, 2		All 0	R	Reserved				
				These bits are always read as 0. The write value should always be 0.				


Table 37.2 DC Characteristics (8) [USB 2.0 Host/Function Module-Related Pins* (High-Speed)]

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Squelch detection threshold voltage (differential voltage)	VHSSQ	100		150	mV	
Common mode voltage range	VHSCM	-50		500	mV	
Idle state	VHSOI	-10.0		10.0	mV	
Output high voltage	Vнsoн	360	—	440	mV	
Output low voltage	VHSOL	-10.0		10.0	mV	
Chirp J output voltage (difference)	VCHIRPJ	700		1100	mV	
Chirp K output voltage (difference)	Vсніврк	-900	_	-500	mV	
Note: * DP and DM pins						

 Table 37.3
 Permissible Output Currents

Item		Symbol	Min.	Тур.	Max.	Unit
Permissible output low	PE5 to PE0	I _{ol}	_	_	10	mA
current (per pin)	Output pins other than above				2	mA
Permissible output low current (total)		ΣI_{OL}		_	150	mA
Permissible output high current (per pin)		$-\mathbf{I}_{OH}$		_	2	mA
Permissible output high current (total)		$\Sigma - \mathbf{I}_{\text{OH}}$			150	mA

Caution: To protect the LSI's reliability, do not exceed the output current values in table 37.3.

Figure 37.30 Synchronous DRAM Burst Write Bus Cycle (Four Write Cycles) (Bank Active Mode: PRE + ACT + WRITE Commands, Different Row Addresses, WTRCD = 0 Cycle, TRWL = 0 Cycle)