E·XF Renesas Electronics America Inc - <u>R5S72644W144FP#U0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

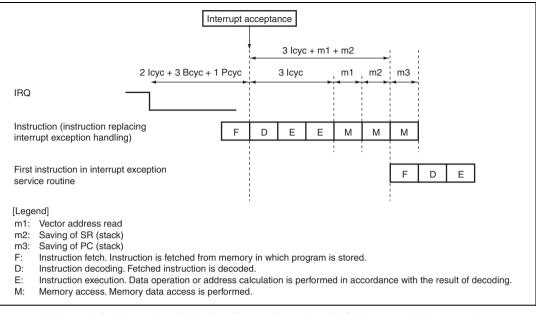
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Last Time Buy
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	I ² C, SCI, SD, SIO, SPI, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	115
Program Memory Size	
Program Memory Type	ROMIess
EEPROM Size	
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LFQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s72644w144fp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Exception	Source	Timing of Source Detection and Start of Handling
Instructions	Trap instruction	Starts from the execution of a TRAPA instruction.
	General illegal instructions	Starts from the decoding of undefined code anytime except immediately after a delayed branch instruction (delay slot) (including FPU instructions and FPU-related CPU instructions in FPU module standby state).
	Slot illegal instructions	Starts from the decoding of undefined code placed directly after a delayed branch instruction (delay slot) (including FPU instructions and FPU-related CPU instructions in FPU module standby state), of instructions that rewrite the PC, of 32-bit instructions, of the RESBANK instruction, of the DIVS instruction, or of the DIVU instruction.
	Integer division exceptions	Starts when detecting division-by-zero exception or overflow exception caused by division of the negative maximum value (H'80000000) by -1 .
Instructions	FPU exceptions	Starts when detecting invalid floating point operation exception defined by IEEE standard 754, division-by-zero exception, overflow, underflow, or inexact exception.
		Also starts when qNaN or $\pm\infty$ is input to the source for a floating point operation instruction when the QIS bit in FPSCR is set.

When exception handling starts, the CPU operates as follows:

(1) Exception Handling Triggered by Reset

The initial values of the program counter (PC) and stack pointer (SP) are fetched from the exception handling vector table (PC and SP are respectively the H'00000000 and H'00000004 addresses for power-on resets and the H'00000008 and H'0000000C addresses for manual resets). See section 6.1.3, Exception Handling Vector Table, for more information. The vector base register (VBR) is then initialized to H'00000000, the interrupt mask level bits (I3 to I0) of the status register (SR) are initialized to H'F (B'1111), and the BO and CS bits are initialized to 0. The BN bit in IBNR of the interrupt controller is also initialized to 0. The floating point status/control register (FPSCR) is initialized to H'00040001 by a power-on reset. The program begins running from the PC address fetched from the exception handling vector table.

Figure 7.4 Example of Pipeline Operation when IRQ Interrupt is Accepted (No Register Banking)

8.4 Memory-Mapped Cache

To allow software management of the cache, cache contents can be read and written by means of MOV instructions. The instruction cache address array is mapped onto addresses H'F0000000 to H'F07FFFFF, and the data array onto addresses H'F1000000 to H'F17FFFFF. The operand cache address array is mapped onto addresses H'F0800000 to H'F0FFFFFF, and the data array onto addresses H'F1800000 to H'F17FFFFFF, and the data array onto addresses H'F1800000 to H'F17FFFFFF, and the data array onto addresses H'F1800000 to H'F17FFFFFF, and the data array onto addresses H'F1800000 to H'F17FFFFFF, and the data array onto addresses H'F1800000 to H'F17FFFFFF, and the data array onto addresses H'F1800000 to H'F17FFFFFF, and the data array onto addresses H'F1800000 to H'F17FFFFFF, and the data array onto addresses H'F1800000 to H'F17FFFFFF, and the data array onto addresses array and data array, and instruction fetches cannot be performed.

8.4.1 Address Array

To access an address array, the 32-bit address field (for read/write accesses) and 32-bit data field (for write accesses) must be specified.

In the address field, specify the entry address for selecting the entry, the W bit for selecting the way, and the A bit for specifying the existence of associative operation. In the W bit, B'00 is way 0, B'01 is way 1, B'10 is way 2, and B'11 is way 3. Since the access size of the address array is fixed at longword, specify B'00 for bits 1 and 0 of the address.

The tag address, LRU bits, U bit (only for operand cache), and V bit are specified as data. Always specify 0 for the upper three bits (bits 31 to 29) of the tag address.

For the address and data formats, see figure 8.4.

The following three operations are possible for the address array.

(1) Address Array Read

The tag address, LRU bits, U bit (only for operand cache), and V bit are read from the entry address specified by the address and the entry corresponding to the way. For the read operation, associative operation is not performed regardless of whether the associative bit (A bit) specified by the address is 1 or 0.

(2) Address-Array Write (Non-Associative Operation)

When the associative bit (A bit) in the address field is cleared to 0, write the tag address, LRU bits, U bit (only for operand cache), and V bit, specified by the data field, to the entry address specified by the address and the entry corresponding to the way. When writing to a cache line for which the U bit = 1 and the V bit =1 in the operand cache address array, write the contents of the cache line back to memory, then write the tag address, LRU bits, U bit, and V bit specified by the data field. When 0 is written to the V bit, 0 must also be written to the U bit of that entry. Write-

9.5.3 Access Wait Control

Wait cycle insertion on a normal space access can be controlled by the settings of bits WR3 to WR0 in CSnWCR. It is possible for areas 1, 4, and 5 to insert wait cycles independently in read access and in write access. Areas 0, 2, 3, and 6 have common access wait for read cycle and write cycle. The specified number of Tw cycles are inserted as wait cycles in a normal space access shown in figure 9.8.

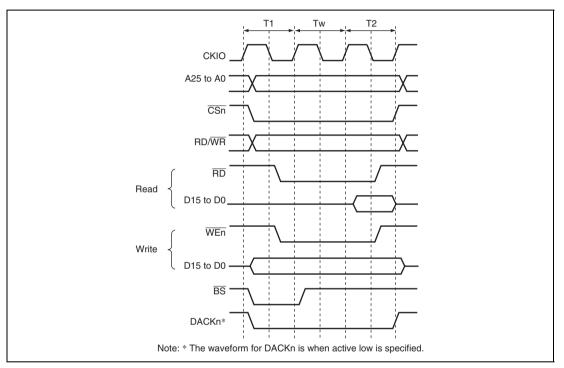


Figure 9.8 Wait Timing for Normal Space Access (Software Wait Only)

• When TGR is an input capture register

When input capture occurs, the value in TCNT is transferred to TGR and the value previously held in the timer general register is transferred to the buffer register.

This operation is illustrated in figure 11.15.

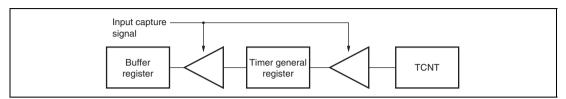


Figure 11.15 Input Capture Buffer Operation

(1) Example of Buffer Operation Setting Procedure

Figure 11.16 shows an example of the buffer operation setting procedure.

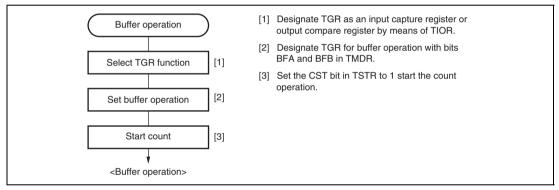
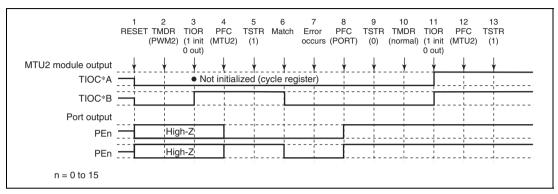



Figure 11.16 Example of Buffer Operation Setting Procedure

(13) Operation when Error Occurs during PWM Mode 2 Operation, and Operation is Restarted in Normal Mode

Figure 11.127 shows an explanatory diagram of the case where an error occurs in PWM mode 2 and operation is restarted in normal mode after re-setting.

Figure 11.127 Error Occurrence in PWM Mode 2, Recovery in Normal Mode

- 1. After a reset, the module output is low and ports are in the high-impedance state.
- 2. Set PWM mode 2.
- 3. Initialize the pins with TIOR. (The example shows initial high output, with low output on compare-match occurrence. In PWM mode 2, the cycle register pins are not initialized. In the example, TIOC *A is the cycle register.)
- 4. Set the multi-function timer pulse unit 2 output with the general I/O port.
- 5. The count operation is started by TSTR.
- 6. Output goes low on compare-match occurrence.
- 7. An error occurs.
- 8. Set port output with the general I/O port and output the inverse of the active level.
- 9. The count operation is stopped by TSTR.
- 10. Set normal mode.
- 11. Initialize the pins with TIOR.
- 12. Set the multi-function timer pulse unit 2 output with the general I/O port.
- 13. Operation is restarted by TSTR.

14.4.4 Alarm Function

Figure 14.4 shows how to use the alarm function.

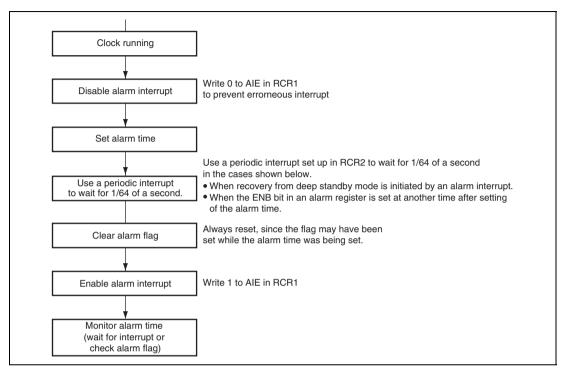


Figure 14.4 Using Alarm Function

Alarms can be generated using seconds, minutes, hours, day of the week, date, month, year, or any combination of these. Set the ENB bit in the register on which the alarm is placed to 1, and then set the alarm time in the lower bits. Clear the ENB bit in the register on which the alarm is not placed to 0.

When the clock and alarm times match, 1 is set in the AF bit in RCR1. Alarm detection can be checked by reading this bit, but normally it is done by interrupt. If 1 is set in the AIE bit in RCR1, an interrupt is generated when an alarm occurs.

The alarm flag is set when the clock and alarm times match. However, the alarm flag can be cleared by writing 0.

15.3.10 FIFO Data Count Set Register (SCFDR)

SCFDR is a 16-bit register which indicates the quantity of data stored in the transmit FIFO data register (SCFTDR) and the receive FIFO data register (SCFRDR).

It indicates the quantity of transmit data in SCFTDR with the upper 8 bits, and the quantity of receive data in SCFRDR with the lower 8 bits. SCFDR can always be read by the CPU.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-			T[4:0]			-	-	-			R[4:0]		
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
15 to 13		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
12 to 8	T[4:0]	00000	R	T4 to T0 bits indicate the quantity of non-transmitted data stored in SCFTDR. H'00 means no transmit data, and H'10 means that SCFTDR is full of transmit data.
7 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
4 to 0	R[4:0]	00000	R	R4 to R0 bits indicate the quantity of receive data stored in SCFRDR. H'00 means no receive data, and H'10 means that SCFRDR full of receive data.

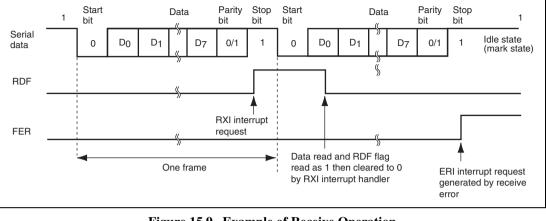
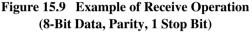



Figure 15.9 shows an example of the operation for reception.

5. When modem control is enabled in channel 3, the $\overline{\text{RTS}}$ signal is output when SCFRDR is empty. When $\overline{\text{RTS}}$ is 0, reception is possible. When $\overline{\text{RTS}}$ is 1, this indicates that SCFRDR exceeds the number set for the RTS output active trigger.

Figure 15.10 shows an example of the operation when modem control is used.

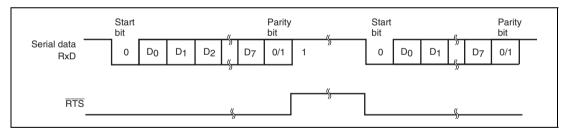


Figure 15.10 Example of Operation Using Modem Control (RTS)

The above limitation is not applied to mailboxes which are not set as time-triggered transmission.

Important: Because of limitation on setting Tx-Trigger Time, only one Mailbox can be assigned to one time window.

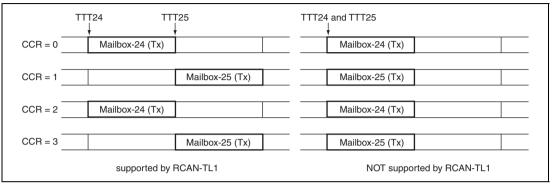


Figure 20.18 Limitation on Tx-Trigger Time

The value of TCMR2 as Watch_Trigger has to be larger than TTT(Mailbox-30), which shows the length of a basic cycle.

(3) Interpolated Sync Mode

In interpolated sync mode, synchronization is always driven by the internal counter after a sync code pattern has been detected at the start of decoding. Accordingly, this mode is effective when the sync patterns have been damaged.

However, decoding becomes incorrect after a change to the synchronization timing, since the change in timing is not followed.

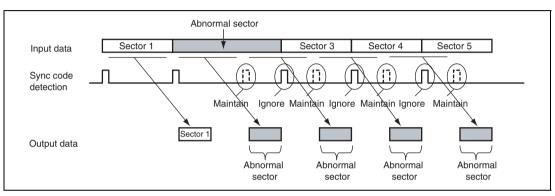


Figure 23.12 shows the operation in interpolated sync mode.

Figure 23.12 Operation in Interpolated Sync Mode

23.5.2 Timing of Status Registers Updates

The status information registers of the CD-ROM decoder are updated on each ISEC interrupt. The sector for which information is reflected in the status registers is selected by the ER0SEL bit of the CROMCTL4 register.

23.6 Usage Notes

23.6.1 Stopping and Resuming Buffering Alone during Decoding

When the data of the output stream are being not read out but operation of the CD-ROM decoder has continued until the buffers are full, the BUF_NG bit in the CBUFST2 register is set to 1; after that, the CD-ROM decoder becomes incapable of operation.

To stop buffering alone, clear the CBUF_EN bit in the CBUFCTL0 register to 0. If the automatic buffering function is in use, clear the CBUF_AUT in the CBUFCTL0 register to 0 at the same time. In this case, the sectors currently in the buffers must be read out.

To resume automatic buffering, set the CBUF_AUT and CBUF_EN bits in the CBUFCTL0 register at the same time.

23.6.2 When CROMST0 Status Register Bits are Set

- 1. When the ST_SECS bit in the CROMST0 register becomes set, stop decoding immediately and retry from one sector before the sector that was being decoded.
- 2. When the ST_SECL bit in the CROMST0 register becomes set, stop decoding immediately and retry from two sectors before the sector that was being decoded.

Bit	15	14	13	12	11		9									
[_	-	—	-	—	-	PIPE9 NRDYE	PIPE8 NRDYE	PIPE7 NRDYE	PIPE6 NRDYE	PIPE5 NRDYE	PIPE4 NRDYE	PIPE3 NRDYE	PIPE2 NRDYE	PIPE1 NRDYE	PIPE0 NRDYE
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R/W									

Bit	Bit Name	Initial Value	R/W	Description
15 to 10	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
9	PIPE9NRDYE	0	R/W	NRDY Interrupt Enable for PIPE9
				0: Interrupt output disabled
				1: Interrupt output enabled
8	PIPE8NRDYE	0	R/W	NRDY Interrupt Enable for PIPE8
				0: Interrupt output disabled
				1: Interrupt output enabled
7	PIPE7NRDYE	0	R/W	NRDY Interrupt Enable for PIPE7
				0: Interrupt output disabled
				1: Interrupt output enabled
6	PIPE6NRDYE	0	R/W	NRDY Interrupt Enable for PIPE6
				0: Interrupt output disabled
				1: Interrupt output enabled
5	PIPE5NRDYE	0	R/W	NRDY Interrupt Enable for PIPE5
				0: Interrupt output disabled
				1: Interrupt output enabled
4	PIPE4NRDYE	0	R/W	NRDY Interrupt Enable for PIPE4
				0: Interrupt output disabled
				1: Interrupt output enabled
3	PIPE3NRDYE	0	R/W	NRDY Interrupt Enable for PIPE3
				0: Interrupt output disabled
				1: Interrupt output enabled
2	PIPE2NRDYE	0	R/W	NRDY Interrupt Enable for PIPE2
				0: Interrupt output disabled
				1: Interrupt output enabled

Register Name	Setting
VIDEO_VSTART[24:16]	For BT.656 NTSC: H'010
	For BT.656 PAL: H'016
	For BT.601: Specify the vertical start position of the valid video in the TOP field.
VIDEO_VSTART[8:0]	For BT.656 NTSC: H'117
	For BT.656 PAL: H'14F
	For BT.601: Specify the vertical start position of the valid video in the BOTTOM field.
VIDEO_HSTART[8:0]	For BT.656 NTSC: H'114
	For BT.656 PAL: H'120
	For BT.601: Specify the horizontal start position of the valid video.
VIDEO_VSYNC_TIM1[25:16]	Refer to (1) Video Display Position and Register Settings described below.
VIDEO_VSYNC_TIM1[9:0]	Refer to (1) Video Display Position and Register Settings described below.
VIDEO_SAVE_NUM[9:0]	H'000
VIDEO_IMAGE_CNT[6:4]	Specify the vertical scaling ratio.
VIDEO_IMAGE_CNT[2:0]	Specify the horizontal scaling ratio.
VIDEO_BASEADR[31:0]	Specify the base address.
VIDEO_LINE_OFFSET[31:0]	Specify the line offset.
VIDEO_FIELD_OFFSET[31:0]	H'000
VIDEO_LINEBUFF_NUM[8:0]	Refer to (1) Video Display Position and Register Settings described below.
VIDEO_DISP_SIZE[24:16]	Specify the vertical size of the video to be displayed.
VIDEO_DISP_SIZE [9:0]	Specify the horizontal size of the video to be displayed.
VIDEO_DISP_HSTART	Specify the horizontal position of the video to be displayed.
SG_MODE [16]	H'1
VIDEO_VSYNC_TIM2	Refer to (1) Video Display Position and Register Settings described below.
VIDEO_MODE [1]	H'1
VIDEO_MODE [0]	H'1
GRCMEN2[0], [31]	H'1, H'1
GRCMEN1[0], [31]	H'1, H'1 (This setting starts display. Set this bit at the end of the procedure.)

32.2.8 Port C Control Registers 0 to 2 (PCCR0 to PCCR2)

PCCR0 to PCCR2 are 16-bit readable/writable registers that are used to select the functions of the multiplexed pins on port C.

(1) Port C Control Register 2 (PCCR2)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	PC10 MD0	-	-	-	PC9 MD0	-	-	PC8M	ID[1:0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R/W	R	R	R	R/W	R	R	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15 to 9	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
8	PC10MD0	0	R/W	PC10 Mode
				Select the function of the PC10.
				0: PC10
				1: TIOC2B
				Note: This bit is reserved in the SH7262 Group. It is always read as 0. The write value should always be 0.
7 to 5		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
4	PC9MD0	0	R/W	PC9 Mode
				Select the function of the PC9.
				0: PC9
				1: TIOC2A
				Note: This bit is reserved in the SH7262 Group. It is always read as 0. The write value should always be 0.
3, 2		All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

(2) Port K Control Register 1 (PKCR1)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	PK7M	ID[1:0]	-	-	PK6M	D[1:0]	-	-	PK5M	D[1:0]	-	-	PK4M	D[1:0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R/W	R/W	R	R	R/W	R/W	R	R	R/W	R/W	R	R	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description	
15, 14		All 0	R	Reserved	
				These bits are always value should always b	
13, 12	PK7MD[1:0]	00	R/W	PK7 Mode	
				Select the function of	the PK7.
				00: PK7	10: SD_CD
				01: PWM1H	11: Setting prohibited
11, 10		All 0	R	Reserved	
				These bits are always value should always b	
9, 8	PK6MD[1:0]	00	R/W	PK6 Mode	
				Select the function of	the PK6.
				00: PK6	10: SD_WP
				01: PWM1G	11: Setting prohibited
7, 6		All 0	R	Reserved	
				These bits are always value should always b	
5, 4	PK5MD[1:0]	00	R/W	PK5 Mode	
				Select the function of	the PK5.
				00: PK5	10: SD_D1
				01: PWM1F	11: Setting prohibited
3, 2		All 0	R	Reserved	
				These bits are always value should always b	
1, 0	PK4MD[1:0]	00	R/W	PK4 Mode	
				Select the function of	the PK4.
				00: PK4	10: SD_D0
				01: PWM1E	11: Setting prohibited

35.3.6 PWM Buffer Registers_nA, nC, nE, nG (PWBFR_nA, PWBFR_nC, PWBFR_nE, PWBFR nG) (n = 1, 2)

There are four PWBFR n registers (PWBFR nA, PWBFR nC, PWBFR nE, and PWBFR nG). When a PWCYR_n compare match occurs, data is transferred from the buffer register (PWBFR_n) to the duty register (PWDTR_n).

Bit:	15	14	13	12	11	10	9	8
	—	_	—	OTS	—	—	DT9	DT8
Initial Value:	1	1	1	0	1	1	0	0
R/W:	R	R	R	R/W	R	R	R/W	R/W
Bit:	7	6	5	4	3	2	1	0
	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
Initial Value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
D !!	Distance	Initial	DAM	Description				
Bit	Bit Name	Value	R/W	Description				
15 to 13		All 1	R	Reserved				
				These bits ar	re always re	ead as 1 an	d cannot be	e modified.
12	OTS	0	R/W	Output Term	inal Select			
				Holds the da	ta to be ser	nt to bit 12 i	n PWDTR_	_n.
11, 10		All 1	R	Reserved				
				These bits ar	re always re	ead as 1 an	d cannot be	e modified.
9	DT9	0	R/W	Duty				
8	DT8	0	1 1/ • •	These bits he	old the data	to be sent	to bits 9 to	0 in
7	DT7	0	R/W	PWDTR_n.				
6	DT6	0	R/W					
5	DT5	0	R/W					
4	DT4	0	R/W					
3	DT3	0	R/W					
2	DT2	0	R/W					
1	DT1	0	R/W					
0	DT0	0	R/W					

37.4.10 Serial Sound Interface Timing

Table 37.14 Serial Sound Interface Timing

Item	Symbol	Min.	Max.	Unit	Remarks	Figure
Output clock cycle	to	80	64000	ns	Output	Figure 37.53 nal
Input clock cycle	tı	80	64000	ns	Input	
Clock high	tнc	32		ns	Bidirectional	
Clock low	tLC	32		ns		
Clock rise time	t _{RC}		25	ns	Output	
Delay	t dtr	-5	25	ns	Transmit	Figures 37.54, 37.55
Setup time	tsr	25		ns	Receive	
Hold time	tнтв	5		ns	Receive, transmit	

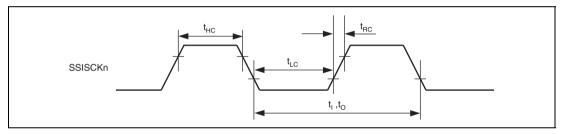


Figure 37.53 Clock Input/Output Timing

38.3 Handling of Pins in Deep Standby Mode

How pins are to be handled in deep standby mode is indicated below.

For the states of pins in deep standby mode, refer to the corresponding items under section, 38.1, Pin States. Handling of unused pins as described under section 38.2, Treatment of Unused Pins, also applies in deep standby mode.

Table 38.5	Handling of Pins in Deep Standby Mode
-------------------	---------------------------------------

Pin	Handling			
1.2-V power (Vcc, PLLVcc, USBDVcc, USBUVcc, USBAVcc)	Supply power at 1.2 V			
3.3-V power (PVcc, AVcc, USBDPVcc, USBAPVcc)	Supply power at 3.3 V			
Ground (Vss, PLLVss, USBDVss, USBUVss, USBAVss, AVss, USBDPVss, USBAPVss)	Connect to ground			
VBUS	Fix the level on this pin (pull it up or down, or connect it to the power-supply or ground level) or open circuit. However, note that current as indicated in table 37.2, DC Characteristics (2) [Current Consumption] will be drawn by the pin fixed to the high level.			
REFRIN	Connect this pin to USBAPVss via a 5.6 k $\Omega\pm$ 1 % resistor			
AVref	Fix the level on this pin (from 3.0 V to AVcc)			
EXTAL, RTC_X1, USB_X1	Connect the pins to the crystal oscillator or the clock-input signal, or to a fixed level (pull them up or down, or connect them to the power-supply or ground level)			
XTAL, RTC_X2, USB_X2	Connect the pins to the crystal oscillator or open circuit			
Dedicated input pins other than those listed above	Fix the level on the pins (pull them up or down, or connect them to the power-supply or ground level).			
Input/output pins (other than those listed above) in the input state	Fix the level on the pins (pull them up or down).			
Input/output pins (other than those listed above) in the high-impedance state	Fix the level on the pins (pull them up or down) or open circuit.			