

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l052k6u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The ultra-low-power STM32L052x6/8 microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (64 Kbytes of Flash program memory, 2 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L052x6/8 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L052x6/8 devices offer several analog features, one 12-bit ADC with hardware oversampling, one DAC, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers and one basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L052x6/8 devices embed standard and advanced communication interfaces: up to two I2C, two SPIs, one I2S, two USARTs, a low-power UART (LPUART), and a crystal-less USB. The devices offer up to 24 capacitive sensing channels to simply add touch sensing functionality to any application.

The STM32L052x6/8 also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L052x6/8 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

Peripheral	STM32L0 52T6	STM32 L052K6	STM32 L052C6	STM32 L052R6	STM32L 052T8	STM32 L052K8	STM32 L052C8	STM32 L052R8
Operating temperatures		Ambient temperature: –40 to +125 °C Junction temperature: –40 to +130 °C						
Packages	WLCSP 36	LQFP32, UFQFPN 32	LQFP48	LQFP64 TFBGA 64	WLCSP 36	LQFP32, UFQFPN 32	LQFP48	LQFP64 TFBGA 64

Table 2. Ultra-low-power STM32L052x6/x8 device features and peripheral counts (continued)

1. 2 SPI interfaces are USARTs operating in SPI master mode.

2. LQFP32 has two GPIOs, less than UFQFPN32 (27).

3. TFBGA64 has one GPIO, one ADC input and one capacitive sensing channel less than LQFP64.

3.4 Reset and supply management

3.4.1 Power supply schemes

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, DAC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{DD_USB} = 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11) and USB_DP (PA12). To guarantee a correct voltage level for USB communication V_{DD_USB} must be above 3.0V. If USB is not used this pin must be tied to V_{DD}.

3.4.2 Power supply supervisor

The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

Two versions are available:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The devices feature an embedded programmable voltage detector (PVD) that monitors the $V_{DD/VDDA}$ power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when $V_{DD/VDDA}$ drops below the V_{PVD} threshold and/or when $V_{DD/VDDA}$ is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.8 Memories

The STM32L052x6/8 devices have the following features:

- 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 32 or 64 Kbytes of embedded Flash program memory
 - 2 Kbytes of data EEPROM
 - Information block containing 32 user and factory options bytes plus 4 Kbytes of system memory

The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no protection
- Level 1: memory readout protected.

The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected

• Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse)

The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the non-volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the volatile data segment (RAM).

The whole non-volatile memory embeds the error correction code (ECC) feature.

3.9 Boot modes

At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by using SPI1(PA4, PA5, PA6, PA7) or SPI2 (PB12, PB13, PB14, PB15), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32[™] microcontroller system memory boot mode AN2606 for details.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4 ⁽¹⁾		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PC0
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PC1
5	TSC_G3_IO3	PB1	'	TSC_G7_IO3	PC2
	TSC_G3_IO4	PB2		TSC_G7_IO4	PC3
	TSC_G4_IO1	PA9		TSC_G8_IO1	PC6
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PC7
4	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PC8
	TSC_G4_IO4	PA12		TSC_G8_IO4	PC9

 Table 9. Capacitive sensing GPIOs available on STM32L052x6/8 devices

This GPIO offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O.

3.17 Timers and watchdogs

The ultra-low-power STM32L052x6/8 devices include three general-purpose timers, one low- power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.

Table 10 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM6	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

 Table 10. Timer feature comparison

Each I2C interface can be served by the DMA controller.

Refer to Table 12 for an overview of I2C interface features.

I2C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	X	Х
Standard mode (up to 100 kbit/s)	X	Х
Fast mode (up to 400 kbit/s)	X	Х
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Х	X ⁽²⁾
Independent clock	Х	-
SMBus	X	-
Wakeup from STOP	Х	-

Table 12. STM32L052x6/8 I ²	C implementation
--	------------------

1. X = supported.

2. See for the list of I/Os that feature Fast Mode Plus capability

3.18.2 Universal synchronous/asynchronous receiver transmitter (USART)

The two USART interfaces (USART1, USART2) are able to communicate at speeds of up to 4 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. They also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode using baudrates up to 42 Kbaud.

All USART interfaces can be served by the DMA controller.

Table 13 for the supported modes and features of USART interfaces.

USART modes/features ⁽¹⁾	USART1 and USART2
Hardware flow control for modem	Х
Continuous communication using DMA	X
Multiprocessor communication	Х
Synchronous mode ⁽²⁾	Х
Smartcard mode	X
Single-wire half-duplex communication	Х
IrDA SIR ENDEC block	Х
LIN mode	Х
Dual clock domain and wakeup from Stop mode	X
Receiver timeout interrupt	X

Table 13	. USART	implementation
----------	---------	----------------

Symbol	Parameter	Conditions	Min	Max	Unit
		Maximum power dissipation (range 6)	-40	85	
TA Temperature range	Maximum power dissipation (range 7)		105		
		Maximum power dissipation (range 3)	-40	125	°C
	Junction temperature range (range 6)	-40 °C ≤T _A ≤85 °	-40	105	
TJ	Junction temperature range (range 7)	-40 °C ≤T _A ≤105 °C	-40	125	
	Junction temperature range (range 3)	-40 °C ≤T _A ≤125 °C	-40	130	

Table 25. General operating conditions (continued)

1. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and normal operation.

2. V_{DD_USB} must respect the following conditions:

- When V_{DD} is powered-on (V_{DD} < V_{DD_min}), V_{DD_USB} should be always lower than V_{DD.}

- When V_{DD} is powered-down (V_{DD} < V_{DD_min}), V_{DD_USB} should be always lower than V_{DD}.

- In operating mode, V_{DD_USB} could be lower or higher $V_{DD.}$

- If the USB is not used, V_{DD_USB} must range from V_{DD_min} to V_{DD_max} to be able to use PA11 and PA12 as standard I/Os.

3. To sustain a voltage higher than V_{DD} +0.3V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 24: Thermal characteristics on page 56).

Symbol	Parameter	Co	f _{HCLK}	Тур	Max ⁽¹⁾	Unit	
				1 MHz	165	230	
			Range 3, V _{CORE} =1.2 V VOS[1:0]=11	2 MHz	290	360	μA
				4 MHz	555	630	
		f _{HSE} = f _{HCLK} up to		4 MHz	0.665	0.74	
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10,	8 MHz	1.3	1.4	
Supply I _{DD} current in (Run Run mode, from code Flash) executed	16 MHz (PLL ON) ⁽²⁾		16 MHz	2.6	2.8	mA	
		Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	8 MHz	1.55	1.7		
			16 MHz	3.1	3.4		
			32 MHz	6.3	6.8		
	from Flash		Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	65 kHz	36.5	110	
		MSI clock		524 kHz	99.5	190	μA
			4.2 MHz	620	700		
	HSI clock		Range 2, V _{CORE} =1.5 V, VOS[1:0]=10,	16 MHz	2.6	2.9	mA
		Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	6.25	7	mA	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 30. Current consumption in Run mode vs code type,
code with data processing running from Flash

Symbol	Parameter	Conditions			f _{HCLK}	Тур	Unit
			Dhrystone		555		
			CoreMark		585		
			Range 3, V _{CORE} =1.2 V,	Fibonacci	4 MHz	440	μA
		VOS[1:0]=11	while(1)		355	μ. τ	
	f _{HSE} = f _{HCLK} up to 16 MHz included,		while(1), prefetch OFF		353		
from Flash)	code executed	$f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL ON) ⁽¹⁾		Dhrystone		6.3	mA
F18511)	from Flash	Flash		CoreMark	-	6.3	
			Range 1, V _{CORE} =1.8 V,	Fibonacci	32 MHz	6.55	
		VOS[1:0]=01	while(1)		5.4		
				while(1), prefetch OFF		5.2	

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence oscillator frequency deviation).

The test results are given in the Table 58.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
I _{INJ}	Injected current on BOOT0	-0	NA	
	Injected current on PA0, PA4, PA5, PA11, PA12, PC15, PH0 and PH1	-5	0	mA
	Injected current on any other FT, FTf pins	-5 ⁽¹⁾	NA	
	Injected current on any other pins	-5 ⁽¹⁾	+5	

Table 58. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the conditions summarized in *Table 25*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL}	Input low level voltage	TC, FT, FTf, RST I/Os	-	-	0.3V _{DD}	
		BOOT0 pin	-	-	0.14V _{DD} ⁽¹⁾	
V_{IH}	Input high level voltage	All I/Os	0.7 V _{DD}	-	-	V
V	I/O Schmitt trigger voltage hysteresis	Standard I/Os	-	10% V _{DD} ⁽³⁾	-	
V _{hys}	(2)	BOOT0 pin	-	0.01	-	
		V _{SS} ≤V _{IN} ≤V _{DD} All I/Os except for PA11, PA12, BOOT0 and FTf I/Os	-	-	±50	
	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} , PA11 and PA12 I/Os	-	-	-50/+250	nA
		V _{SS} ≤V _{IN} ≤V _{DD} FTf I/Os	-	-	±100	
I _{lkg}		V _{DD} ≤V _{IN} ≤5 V All I/Os except for PA11, PA12, BOOT0 and FTf I/Os	-	-	200	nA
		V _{DD} ≤V _{IN} ≤5 V FTf I/Os	-	-	500	
		V _{DD} ⊴V _{IN} ⊴5 V PA11, PA12 and BOOT0	-	-	10	μΑ
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	45	60	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 59. I/O static characteristics	Table 59. I/O sta	atic characteristics
--------------------------------------	-------------------	----------------------

1. Guaranteed by characterization.

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

3. With a minimum of 200 mV. Guaranteed by characterization results.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
DNL ⁽²⁾	Differential non linearity ⁽⁴⁾	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	1.5	3	
		No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	1.5	3	
INL ⁽²⁾	Integral non linearity ⁽⁵⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	2	4	
	integral non intearity 2	No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	2	4	LSB
Offset ⁽²⁾	Offset error at code 0x800 ⁽⁶⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	±10	±25	
Oliset		No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	±5	±8	
Offset1 ⁽²⁾	Offset error at code 0x001 ⁽⁷⁾	No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	±1.5	±5	
dOffset/dT ⁽²⁾	Offset error temperature coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 ^{\circ}C$ DAC output buffer OFF	-20	-10	0	
		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 ^{\circ} C$ DAC output buffer ON	0	20	50	μV/°C
Gain ⁽²⁾	Cain arrar ⁽⁸⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / -0.5%	%
Gain	Gain error ⁽⁸⁾	No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	+0 / -0.2%	+0 / -0.4%	70
dCain/dT ⁽²⁾	Gain error temperature coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 \degree C$ DAC output buffer OFF	-10	-2	0	
dGain/dT ⁽²⁾		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 \degree C$ DAC output buffer ON	-40	-8	0	μV/°C
TUE ⁽²⁾	Tatal un adiusta d'arras	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	
	Total unadjusted error	No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	8	12	LSB

Table 66. DAC characteristics (continued)

6.3.17 Temperature sensor characteristics

Calibration value name	Description	Memory address				
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B				
TS_CAL2	TS ADC raw data acquired at temperature of 130 °C, V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F				

Table 67. Temperature sensor calibration values

Table 68. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₃₀	Voltage at 130°C ±5°C ⁽²⁾	640	670	700	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V \pm 10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.

3. Guaranteed by design.

4. Shortest sampling time can be determined in the application by multiple iterations.

6.3.18 Comparators

Symbol Parameter Conditions Min ⁽¹⁾ Typ Max						Unit
Gymbol	i arameter	Conditions		чур	Max	Onit
V_{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kΩ
R _{10K}	R _{10K} value	-	-	10	-	122
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	μs
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$\label{eq:VDDA} \begin{split} V_{DDA} &= 3.6 \text{ V}, V_{IN+} = 0 \text{ V}, \\ V_{IN-} &= V_{REFINT}, T_A \text{ = } 25 ^\circ\text{C} \end{split}$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

Table 69. Comparator 1 characteristics

1. Guaranteed by characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V
+	Comparator startup time	Fast mode	-	15	20	
t _{START}		Slow mode	-	20	25	
+	Propagation delay ⁽²⁾ in slow mode	1.65 V ≤V _{DDA} ≤2.7 V	-	1.8	3.5	
t _{d slow}	Propagation delay/ In slow mode	2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs
+	Propagation delay ⁽²⁾ in fast mode	1.65 V ≤V _{DDA} ≤2.7 V	-	0.8	2	
t _{d fast}	riopagation delay fin last mode	2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4	
V _{offset}	Comparator offset error		-	±4	<u>+</u> 20	mV
dThreshold/ dt	Threshold voltage temperature coefficient	$\label{eq:VDDA} \begin{split} &V_{DDA} = 3.3 \text{V}, \text{T}_{\text{A}} = 0 \text{ to } 50 \ ^{\circ}\text{C}, \\ &V- = V_{\text{REFINT}}, \\ &3/4 \ &V_{\text{REFINT}}, \\ &1/2 \ &V_{\text{REFINT}}, \\ &1/4 \ &V_{\text{REFINT}}. \end{split}$	-	15	30	ppm /°C
	Current consumption ⁽³⁾	Fast mode	-	3.5	5	
I _{COMP2}		Slow mode	-	0.5	2	μA

Table 70. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

The analog spike filter is compliant with I^2C timings requirements only for the following voltage ranges:

- Fast mode Plus: 2.7 V \leq V_{DD} \leq 3.6 V and voltage scaling Range 1
- Fast mode:
 - 2 V \leq V_{DD} \leq 3.6 V and voltage scaling Range 1 or Range 2.
 - V_{DD} < 2 V, voltage scaling Range 1 or Range 2, C_{load} < 200 pF.

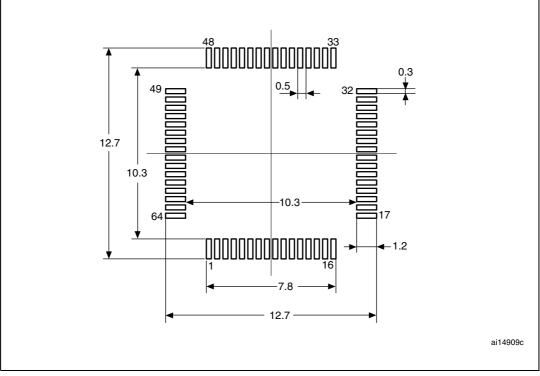
In other ranges, the analog filter should be disabled. The digital filter can be used instead.

Note: In Standard mode, no spike filter is required.

Table 72. I	2C analog	filter chara	cteristics ⁽¹⁾
-------------	-----------	--------------	---------------------------

Symbol	Parameter	Conditions	Min	Мах	Unit
		Range 1		260 ⁽³⁾	
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	Range 2	50 ⁽²⁾	-	ns
	are suppressed by the analog inter	Range 3		-	

- 1. Guaranteed by characterization results.
- 2. Spikes with widths below $t_{\mbox{\scriptsize AF}(\mbox{min})}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered


USART/LPUART characteristics

The parameters given in the following table are guaranteed by design.

Symbol	Parameter	Conditions	Тур	Max	Unit
^t wuusart	Wakeup time needed to calculate the maximum USART/LPUART baudrate allowing to wake up from Stop mode when the USART/LPUART is clocked by HSI	Stop mode with main regulator in Run mode, Range 2 or 3	-	8.7	
		Stop mode with main regulator in Run mode, Range 1	- 81		μs
		Stop mode with main regulator in low-power mode, Range 2 or 3	-	12	
		Stop mode with main regulator in low-power mode, Range 1	-	11.4	

Table 73. USART/LPUART characteristics

Figure 40. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

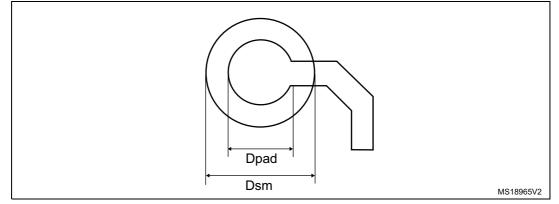


Table 82. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data (continued)

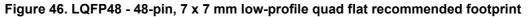
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

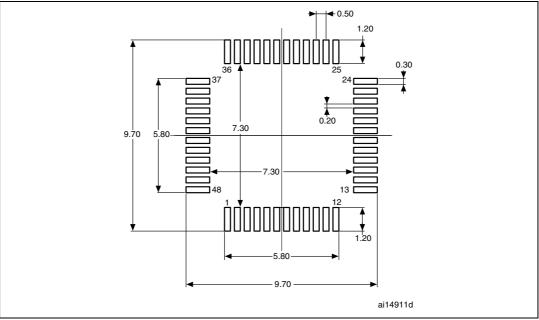
1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 83. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.27 mm		
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)		
Solder paste	0.27 mm aperture diameter.		

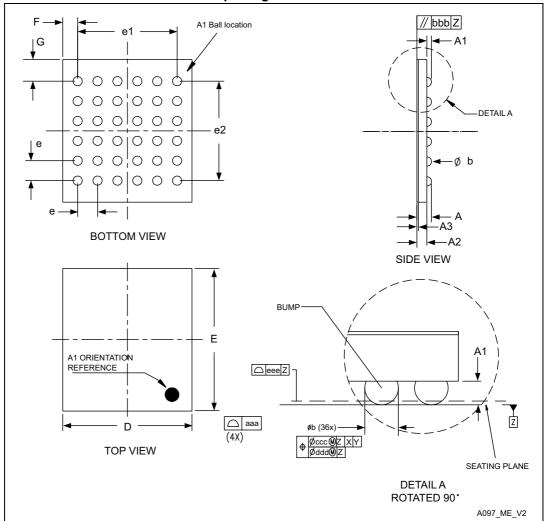

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.



Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 84. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.



1. Dimensions are expressed in millimeters.

DocID025936 Rev 7

7.5 Thin WLCSP36 package information

Figure 51. Thin WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale package outline

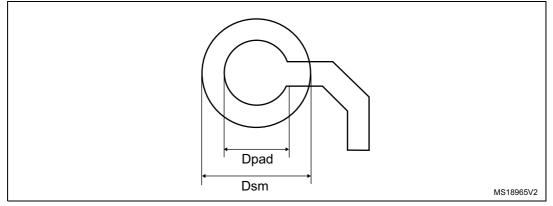
1. Drawing is not to scale.

2. b dimensions is measured at the maximum bump diameter parallel to primary datum Z.

3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.

4. Bump position designation per JESD 95-1, SPP-010.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	0.33	-	-	0.013
A1	-	0.10	-	-	0.004	-
A2	-	0.20	-	-	0.008	-
A3	-	0.025 ⁽²⁾	-	-	0.001	-
b	0.16	0.19	0.22	0.006	0.007	0.009
D	2.59	2.61	2.63	0.102	0.103	0.104
E	2.86	2.88	2.90	0.112	0.113	0.114
е	-	0.40	-	-	0.016	-
e1	-	2.00	-	-	0.079	-
e2	-	2.00	-	-	0.079	-
F	-	0.305 ⁽³⁾	-	-	0.012	-
G	-	0.440 ⁽³⁾	-	-	0.017	-
aaa	-	-	0.10	-	-	0.004
bbb	-	-	0.10	-	-	0.004
CCC	-	-	0.10	-	-	0.004
ddd	-	-	0.05	-	-	0.002
eee	-	-	0.05	-	-	0.002

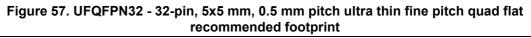

Table 87. Thin WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale package mechanical data

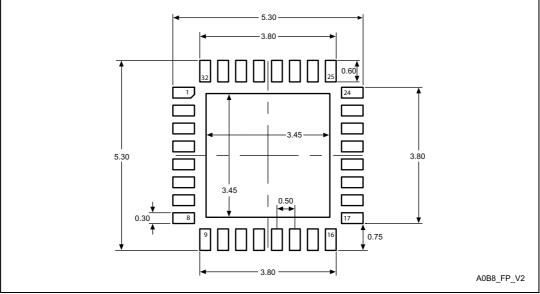
1. Values in inches are converted from mm and rounded to the 3rd decimal place.

2. Back side coating. Nominal dimension rounded to the 3rd decimal place results from process capability.

3. Calculated dimensions are rounded to 3rd decimal place.

Figure 52. Thin WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale package recommended footprint





package mechanical data							
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.152	-	-	0.0060	-	
b	0.180	0.230	0.280	0.0071	0.0091	0.0110	
D	4.900	5.000	5.100	0.1929	0.1969	0.2008	
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E	4.900	5.000	5.100	0.1929	0.1969	0.2008	
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.080	-	-	0.0031	

Table 90. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

