

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	27
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l052k8u6d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM32L052x6/8 block diagram	. 14
Figure 2.	Clock tree	. 26
Figure 3.	STM32L052x6/8 LQFP64 pinout - 10 x 10 mm	. 38
Figure 4.	STM32L052x6/8 TFBGA64 ballout - 5x 5 mm	
Figure 5.	STM32L052x6/8 LQFP48 pinout - 7 x 7 mm	
Figure 6.	STM32L052x6/8 WLCSP36 ballout	
Figure 7.	STM32L052x6/8 LQFP32 pinout	
Figure 8.	STM32L052x6/8 UFQFPN32 pinout	
Figure 9.	Memory map	. 52
Figure 10.	Pin loading conditions.	
Figure 11.	Pin input voltage	. 53
Figure 12.	Power supply scheme	. 54
Figure 13.	Current consumption measurement scheme	. 54
Figure 14.	IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from	
	Flash memory, Range 2, HSE, 1WS	. 63
Figure 15.	IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from	
	Flash memory, Range 2, HSI16, 1WS	. 63
Figure 16.	IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running	
	from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS	. 67
Figure 17.	IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled	
	and running on LSE Low drive	. 68
Figure 18.	IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,	
	all clocks OFF	. 68
Figure 19.	High-speed external clock source AC timing diagram	. 74
Figure 20.	Low-speed external clock source AC timing diagram	. 75
Figure 21.	HSE oscillator circuit diagram	. 76
Figure 22.	Typical application with a 32.768 kHz crystal	. 77
Figure 23.	HSI16 minimum and maximum value versus temperature	. 78
Figure 24.	VIH/VIL versus VDD (CMOS I/Os)	. 88
Figure 25.	VIH/VIL versus VDD (TTL I/Os)	
Figure 26.	I/O AC characteristics definition	. 91
Figure 27.	Recommended NRST pin protection	. 92
Figure 28.	ADC accuracy characteristics	. 95
Figure 29.	Typical connection diagram using the ADC	
Figure 30.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	. 96
Figure 31.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	
Figure 32.	12-bit buffered/non-buffered DAC	
Figure 33.	SPI timing diagram - slave mode and CPHA = 0	108
Figure 34.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	108
Figure 35.	SPI timing diagram - master mode ⁽¹⁾	109
Figure 36.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	111
Figure 37.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	111
Figure 38.	USB timings: definition of data signal rise and fall time	112
Figure 39.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline	114
Figure 40.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint	116
Figure 41.	LQFP64 marking example (package top view)	117
Figure 42.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball	
	grid array package outline	118

1 Introduction

The ultra-low-power STM32L052x6/8 are offered in 7 different package types: from 32 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L052x6/8 microcontrollers suitable for a wide range of applications:

- Gas/water meters and industrial sensors
- Healthcare and fitness equipment
- Remote control and user interface
- PC peripherals, gaming, GPS equipment
- Alarm system, wired and wireless sensors, video intercom

This STM32L052x6/8 datasheet should be read in conjunction with the STM32L0x2xx reference manual (RM0376).

For information on the ARM[®] Cortex[®]-M0+ core please refer to the Cortex[®]-M0+ Technical Reference Manual, available from the www.arm.com website.

Figure 1 shows the general block diagram of the device family.

3.3 ARM[®] Cortex[®]-M0+ core with MPU

The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- a simple architecture that is easy to learn and program
- ultra-low power, energy-efficient operation
- excellent code density
- deterministic, high-performance interrupt handling
- upward compatibility with Cortex-M processor family
- platform security robustness, with integrated Memory Protection Unit (MPU).

The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.

The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

Owing to its embedded ARM core, the STM32L052x6/8 are compatible with all ARM tools and software.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L052x6/8 embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels.

The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

- includes a Non-Maskable Interrupt (NMI)
- provides zero jitter interrupt option
- provides four interrupt priority levels

The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode.

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.4 Reset and supply management

3.4.1 Power supply schemes

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, DAC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{DD_USB} = 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11) and USB_DP (PA12). To guarantee a correct voltage level for USB communication V_{DD_USB} must be above 3.0V. If USB is not used this pin must be tied to V_{DD}.

3.4.2 Power supply supervisor

The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

Two versions are available:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The devices feature an embedded programmable voltage detector (PVD) that monitors the $V_{DD/VDDA}$ power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when $V_{DD/VDDA}$ drops below the V_{PVD} threshold and/or when $V_{DD/VDDA}$ is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1 PA4 ⁽¹	PA4 ⁽¹⁾		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PC0
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PC1
5	TSC_G3_IO3	PB1	'	TSC_G7_IO3	PC2
	TSC_G3_IO4	PB2		TSC_G7_IO4	PC3
	TSC_G4_IO1	PA9		TSC_G8_IO1	PC6
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PC7
4	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PC8
	TSC_G4_IO4	PA12		TSC_G8_IO4	PC9

 Table 9. Capacitive sensing GPIOs available on STM32L052x6/8 devices

This GPIO offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O.

3.17 Timers and watchdogs

The ultra-low-power STM32L052x6/8 devices include three general-purpose timers, one low- power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.

Table 10 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs				
TIM2	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No				
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No				
TIM6	16-bit	Up	Any integer between 1 and 65536	Yes	0	No				

 Table 10. Timer feature comparison

3.17.4 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches '0'.

3.17.5 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.17.6 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.18 Communication interfaces

3.18.1 I²C bus

two I²C interface (I2C1, I2C2) can operate in multimaster or slave modes.

Each I²C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.

7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) are also supported as well as programmable analog and digital noise filters.

	Analog filter	Digital filter	
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks	
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length 	
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.	

In addition, I2C1 provides hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
I2S mode	-	Х
TI mode	Х	Х

Table 14. SPI/I2S implementation

1. X = supported.

3.18.5 Universal serial bus (USB)

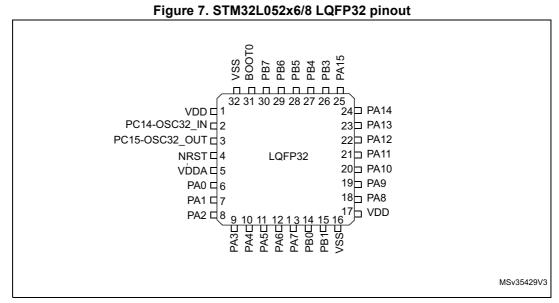
The STM32L052x6/8 embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation.

3.19 Clock recovery system (CRS)

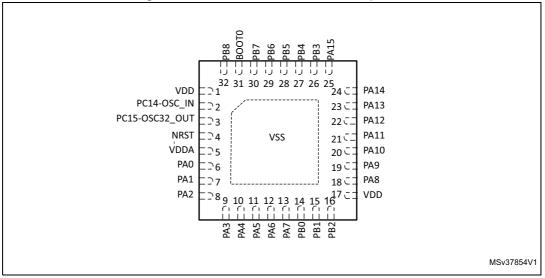
The STM32L052x6/8 embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.20 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.


Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.21 Serial wire debug port (SW-DP)


An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

DocID025936 Rev 7

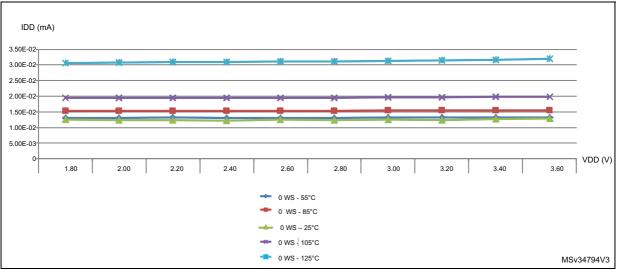
1. The above figure shows the package top view.

Figure 8. STM32L052x6/8 UFQFPN32 pinout

1. The above figure shows the package top view.

		Pin Nu	ımber								
LQFP32	UFQFN32	WLCSP36 ⁽¹⁾	LQFP48	LQFP64	TFBGA64	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
9	9	F5	13	17	G3	PA3	I/O	FT	-	TIM21_CH2, TIM2_CH4, TSC_G1_IO4, USART2_RX	COMP2_INP, ADC_IN3
-	-	-	-	18	C2	VSS	S	-	-	-	-
-	-	-	-	19	D2	VDD	S	-	-	-	-
10	10	E4	14	20	H3	PA4	I/O	тс	(2)	SPI1_NSS, TSC_G2_IO1, USART2_CK, TIM22_ETR	COMP1_INM4 , COMP2_INM4 , ADC_IN4, DAC_OUT
11	11	F4	15	21	F4	PA5	I/O	тс	-	SPI1_SCK, TIM2_ETR, TSC_G2_IO2, TIM2_CH1	COMP1_INM5 , COMP2_INM5 , ADC_IN5
12	12	E3	16	22	G4	PA6	I/O	FT	-	SPI1_MISO, TSC_G2_IO3, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT	ADC_IN6
13	13	F3	17	23	H4	PA7	I/O	FT	-	SPI1_MOSI, TSC_G2_IO4, TIM22_CH2, EVENTOUT, COMP2_OUT	ADC_IN7
-	-	-	-	24	H5	PC4	I/O	FT	-	EVENTOUT, LPUART1_TX	ADC_IN14
-	-	-	-	25	H6	PC5	I/O	FT	-	LPUART1_RX, TSC_G3_IO1	ADC_IN15
14	14	D3	18	26	F5	PB0	I/O	FT	-	EVENTOUT, TSC_G3_IO2	ADC_IN8, VREF_OUT
15	15	C3	19	27	G5	PB1	I/O	FT	-	TSC_G3_IO3, LPUART1_RTS_DE	ADC_IN9, VREF_OUT
-	16	F2	20	28	G6	PB2	I/O	FT	-	LPTIM1_OUT, TSC_G3_IO4	-

Table 16. STM32L052x6/8 pin definitions (continued)


		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SPI1/TIM21/SYS_A F/EVENTOUT/	-	USB/TIM2/ EVENTOUT/	TSC/ EVENTOUT	USART1/2/3	TIM2/21/22	EVENTOUT	COMP1/2
	PA0	-	-	TIM2_CH1	TSC_G1_IO1	USART2_CTS	TIM2_ETR	-	COMP1_OUT
	PA1	EVENTOUT	-	TIM2_CH2	TSC_G1_IO2	USART2_RTS_ DE	TIM21_ETR	-	-
	PA2	TIM21_CH1	-	TIM2_CH3	TSC_G1_IO3	USART2_TX	-	-	COMP2_OU
	PA3	TIM21_CH2	-	TIM2_CH4	TSC_G1_IO4	USART2_RX	-	-	-
	PA4	SPI1_NSS	-	-	TSC_G2_IO1	USART2_CK	TIM22_ETR	-	-
	PA5	SPI1_SCK	-	TIM2_ETR	TSC_G2_IO2		TIM2_CH1	-	-
	PA6	SPI1_MISO	-	-	TSC_G2_IO3	LPUART1_CTS	TIM22_CH1	EVENTOUT	COMP1_OU
Port A	PA7	SPI1_MOSI	-	-	TSC_G2_IO4		TIM22_CH2	EVENTOUT	COMP2_OU
Port A	PA8	МСО	-	USB_CRS_SYNC	EVENTOUT	USART1_CK	-	-	-
	PA9	МСО	-	-	TSC_G4_IO1	USART1_TX	-	-	-
	PA10	-	-	-	TSC_G4_IO2	USART1_RX	-	-	-
	PA11	SPI1_MISO	-	EVENTOUT	TSC_G4_IO3	USART1_CTS	-	-	COMP1_OU
	PA12	SPI1_MOSI	-	EVENTOUT	TSC_G4_IO4	USART1_RTS_ DE	-	-	COMP2_OU
	PA13	SWDIO	-	USB_NOE	-	-	-	-	-
	PA14	SWCLK	-	-	-	USART2_TX	-	-	-
	PA15	SPI1_NSS	-	TIM2_ETR	EVENTOUT	USART2_RX	TIM2_CH1	-	-

5

Pin descriptions

STM32L052x6 STM32L052x8

Figure 16. I_{DD} vs V_{DD}, at T_A= 25/55/ 85/105/125 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

Symbol	Parameter		Conditions				
			MSI clock = 65 kHz, f _{HCLK} = 32 kHz, Flash OFF	$T_{A} = -40$ to 25°C	4.7 ⁽²⁾	-	
				$T_{A} = -40$ to 25°C	17	23	
			MSI clock = 65 kHz,	T _A = 85 °C	19.5	63	
Supply I _{DD} current in (LP Sleep) Low-power			f _{HCLK} = 32 kHz, Flash ON	T _A = 105 °C	23	69	-
				T _A = 125 °C	32.5	90	
		All peripherals	MSI clock =65 kHz, f _{HCLK} = 65 kHz, Flash ON	$T_{A} = -40$ to 25°C	17	23	
	Low-power	OFF, V _{DD} from		T _A = 85 °C	20	63	μA
	sleep mode	1.65 to 3.6 V		T _A = 105 °C	23.5	69	
				T _A = 125 °C	32.5	90	
				$T_A = -40$ to 25°C	19.5	36	
			MSI clock = 131 kHz,	T _A = 55 °C	20.5	64	
			f _{HCLK} = 131 kHz,	T _A = 85 °C	22.5	66	
			Flash ON	T _A = 105 °C	26	72	
				T _A = 125 °C	35	95	

Table 35. Current consumption in Low-power sleep mod
--

1. Guaranteed by characterization results at 125 $^\circ\text{C},$ unless otherwise specified.

2. As the CPU is in Sleep mode, the difference between the current consumption with Flash ON and OFF (nearly 12 μ A) is the same whatever the clock frequency.

		Typical	consumption, V	/ _{DD} = 3.0 V, T _A =	25 °C	
Per	ipheral		Range 2, V _{CORE} =1.5 V VOS[1:0] = 10		Low-power sleep and run	Unit
	GPIOA	3.5	3	2.5	2.5	
Cortex-	GPIOB	3.5	2.5	2	2.5	
M0+ core	GPIOC	8.5	6.5	5.5	7	µA/MHz (f _{HCLK})
I/O port	GPIOD	1	0.5	0.5	0.5	
	GPIOH	1.5	1	1	0.5	
	CRC	1.5	1	1	1	µА/МНz (f _{HCLK})
	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	
AHB	DMA1	10	8	6.5	8.5	
	RNG	5.5	1	0.5	0.5	(HCLK)
	TSC	3	2.5	2	3	
All enabled		283	225	222.5	212.5	µA/MHz (f _{HCLK})
PWR		2.5	2	2	1	µA/MHz (f _{HCLK})

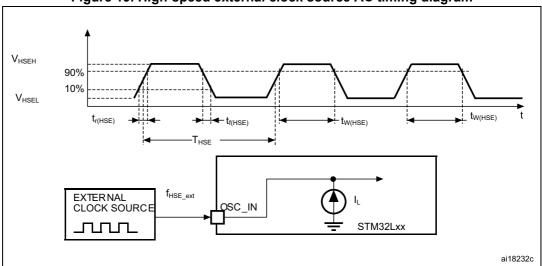
Table 39. Peripheral	current consump	tion in Run or	Sleep mode ⁽¹⁾	(continued)

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is OFF for this measure.

3. Current consumption is negligible and close to 0 μ A.

6.3.6 External clock source characteristics

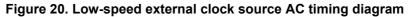

High-speed external user clock generated from an external source

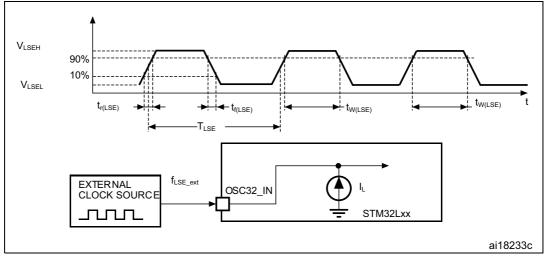
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in *Section 6.3.12*. However, the recommended clock input waveform is shown in *Figure 19*.

Parameter	Conditions	Min	Тур	Мах	Unit
User external clock source	CSS is ON or PLL is used	1	8	32	MHz
frequency	CSS is OFF, PLL not used	0	8	32	MHz
OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
OSC_IN input pin low level voltage		V _{SS}	-	$0.3V_{DD}$	v
OSC_IN high or low time		12	-	-	ns
OSC_IN rise or fall time	-	-	-	20	115
OSC_IN input capacitance		-	2.6	-	pF
Duty cycle		45	-	55	%
OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA
	User external clock source frequency OSC_IN input pin high level voltage OSC_IN input pin low level voltage OSC_IN high or low time OSC_IN rise or fall time OSC_IN input capacitance Duty cycle	User external clock source frequency CSS is ON or PLL is used CSS is OFF, PLL not used OSC_IN input pin high level voltage OSC_IN input pin low level voltage OSC_IN high or low time OSC_IN rise or fall time OSC_IN input capacitance Duty cycle	User external clock source frequencyCSS is ON or PLL is used1CSS is OFF, PLL not used0OSC_IN input pin high level voltage0.7V_DDOSC_IN input pin low level voltageVSSOSC_IN high or low time12OSC_IN rise or fall time-OSC_IN input capacitance-Duty cycle45	User external clock source frequencyCSS is ON or PLL is used18CSS is OFF, PLL not used08OSC_IN input pin high level voltage OSC_IN niput pin low level voltage0.7V_DD-OSC_IN high or low time-12-OSC_IN rise or fall timeOSC_IN input capacitance-2.6Duty cycle-45-	User external clock source frequencyCSS is ON or PLL is used1832CSS is OFF, PLL not used0832OSC_IN input pin high level voltage OSC_IN input pin low level voltage0.7V_DD-V_DDOSC_IN high or low time-12-0.3V_DDOSC_IN rise or fall time20-OSC_IN input capacitance-45-55

Table 42. High-speed external user clock characteristics ⁽¹⁾	Table 42	. Hiah-speed	external use	r clock charac	teristics ⁽¹⁾
---	----------	--------------	--------------	----------------	--------------------------

1. Guaranteed by design.


Low-speed external user clock generated from an external source


The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 25*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz	
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v	
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v	
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time		465	-	-	ns	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115	
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF	
DuCy _(LSE)	Duty cycle	-	45	-	55	%	
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA	

Table 43. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design, not tested in production

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 °C,$ conforming to ANSI/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 °C,$ conforming to ANSI/ESD STM5.3.1.	C4	500	V

Table 56. ESD absolute maximum	ratings
--------------------------------	---------

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

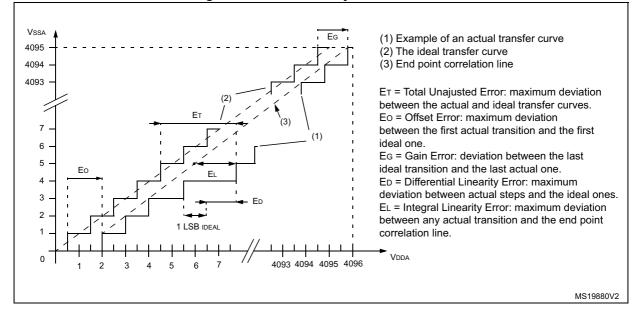
Table 57. Electrical sensitivities

Symbol	Parameter	Conditions	Class	
LU	Static latch-up class	$T_A = +125$ °C conforming to JESD78A	II level A	

STM32L052x6 STM32L052x8

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ET	Total unadjusted error		-	2	5	
EO	Offset error		-	1	2.5	
EG	Gain error		-	1	2	LSB
EL	Integral linearity error	1.65 V < V _{REF+} < V _{DDA} < 3.6 V, range 1/2/3	-	1.5	3	
ED	Differential linearity error		-	1	2	
ENOB	Effective number of bits		10.0	11.0	-	bits
SINAD	Signal-to-noise distortion		62	69	-	
SNR	Signal-to-noise ratio		61	69	-	dB
THD	Total harmonic distortion		-	-85	-65	

Table 65. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾ (continued)


1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.12 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.

4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.

Figure 28. ADC accuracy characteristics

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 25*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

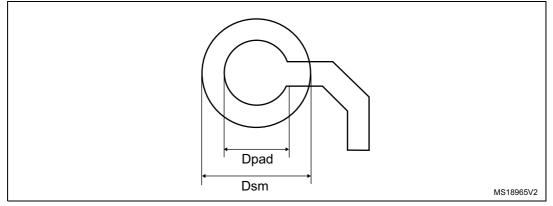
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			16	
		Slave mode receiver	-	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	MHz
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-			
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+ 2	
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}		Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	7	-	-	
t _{h(SI)}		Slave mode	3.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	15	-	36	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30	
t (5-5)		Slave mode 1.65 V <v<sub>DD<3.6 V</v<sub>	-	18	41	
t _{v(SO)}	Data output valid time	Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	- 18 25		
t _{v(MO)}		Master mode	-	4	7	
t _{h(SO)}	Data output hold time	Slave mode	10	-	-	
t _{h(MO)}		Master mode	0	-	-	

Table 74. SPI characteristics in	n voltage Range 1 ⁽¹⁾
----------------------------------	----------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while $Duty_{(SCK)} = 50\%$.

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	0.33	-	-	0.013
A1	-	0.10	-	-	0.004	-
A2	-	0.20	-	-	0.008	-
A3	-	0.025 ⁽²⁾	-	-	0.001	-
b	0.16	0.19	0.22	0.006	0.007	0.009
D	2.59	2.61	2.63	0.102	0.103	0.104
E	2.86	2.88	2.90	0.112	0.113	0.114
е	-	0.40	-	-	0.016	-
e1	-	2.00	-	-	0.079	-
e2	-	2.00	-	-	0.079	-
F	-	0.305 ⁽³⁾	-	-	0.012	-
G	-	0.440 ⁽³⁾	-	-	0.017	-
aaa	-	-	0.10	-	-	0.004
bbb	-	-	0.10	-	-	0.004
CCC	-	-	0.10	-	-	0.004
ddd	-	-	0.05	-	-	0.002
eee	-	-	0.05	-	-	0.002


Table 87. Thin WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale package mechanical data

1. Values in inches are converted from mm and rounded to the 3rd decimal place.

2. Back side coating. Nominal dimension rounded to the 3rd decimal place results from process capability.

3. Calculated dimensions are rounded to 3rd decimal place.

Figure 52. Thin WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

8 Part numbering

Table 92. STM32L052x6/8 or	dering info	rmation	sche	eme			
Example:	STM32 L	052	R	8	Т	6	D TR
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
L = Low power							
Device subfamily							
052 = USB							
Pin count							
K = 32 pins							
T = 36 pins							
C = 48/49 pins							
R = 64 pins							
Flash memory size							
6 = 32 Kbytes							
8 = 64 Kbytes							
Package							
T = LQFP							
H = TFBGA							
U = UFQFPN							
Y = Standard WLCSP pins							
F = Thin WLCSP pins							
Temperature range							
6 = Industrial temperature range, -40 to 85 °C							
7 = Industrial temperature range, -40 to 105 °C							
3 = Industrial temperature range, -40 to 125 °C							
Options							
No character = V_{DD} range: 1.8 to 3.6 V and BOR enabled							
D = V_{DD} range: 1.65 to 3.6 V and BOR disabled							
Packing							

TR = tape and reel No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID025936 Rev 7

in Table 2: Ultra-low-power STM32L052x6/x8 device features and peripheral counts.	Date	Revision	Changes			
Added mission profile compliance with JEDEC JESD47 in Section 6.3 Absolute maximum ratings. Added note 2. related to the position of the external capacitor below Figure 27: Recommended NRST pin protection. Updated R _L in Table 63: ADC characteristics. Updated Figure 32: 12-bit buffered/non-buffered DAC and added note below figure. 07-Mar-2017 7 Updated t _{AF} maximum value for range 1 in Table 72: I2C analog filter characteristics. Updated t _{WUUSART} description in Table 73: USART/LPUART characteristics. NSS timing waveforms updated in Figure 33: SPI timing diagram -	07-Mar-2017	7	Updated number of 12S interfaces and removed 12S for STM32L052T8 in Table 2: Ultra-low-power STM32L052x6/x8 device features and peripheral counts. In Section 4: Pin descriptions, renamed USB_OE into USB_NOE. Added mission profile compliance with JEDEC JESD47 in Section 6.2: Absolute maximum ratings. Added note 2. related to the position of the external capacitor below Figure 27: Recommended NRST pin protection. Updated R _L in Table 63: ADC characteristics. Updated Figure 32: 12-bit buffered/non-buffered DAC and added note below figure. Updated t _{AF} maximum value for range 1 in Table 72: I2C analog filter characteristics. Updated t _{WUUSART} description in Table 73: USART/LPUART characteristics. NSS timing waveforms updated in Figure 33: SPI timing diagram - slave mode and CPHA = 0 and Figure 34: SPI timing diagram - slave mode and CPHA = 1(1). Previous WLCSP36 package renamed "Standard" WLCSP36; added Note 2. below Figure 48: Standard WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale package outline and updated Table 85: Standard WLCSP36 - 2.61 x 2.88 mm, 0.4 mm pitch wafer level chip scale mechanical data. Added reference to optional marking or inset/upset marks in all			

Table 93.	Document	revision	history	(continued))
				(• • • • • • • • • • • • • •	

