

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l052r8h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.10 Direct memory access (DMA)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, LPUART, general-purpose timers, DAC, and ADC.

3.11 Analog-to-digital converter (ADC)

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L052x6/8 device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference). Three channels, PA0, PA4 and PA5, are fast channels, while the others are standard channels.

The ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 μ A at 10 kSPS, ~200 μ A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.

The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V.

The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668).

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers.

3.12 Temperature sensor

The temperature sensor (T_{SENSE}) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

DocID025936 Rev 7

USART modes/features ⁽¹⁾	USART1 and USART2				
Modbus communication	X				
Auto baud rate detection (4 modes)	X				
Driver Enable	Х				

Table 13. USART implementation (continued)

1. X = supported.

2. This mode allows using the USART as an SPI master.

3.18.3 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock. It can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection
- Or any received data frame
- Or a specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.18.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The USARTs with synchronous capability can also be used as SPI master.

One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The SPIs can be served by the DMA controller.

Refer to *Table 14* for the differences between SPI1 and SPI2.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
I2S mode	-	Х
TI mode	Х	Х

Table 14. SPI/I2S implementation

1. X = supported.

3.18.5 Universal serial bus (USB)

The STM32L052x6/8 embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation.

3.19 Clock recovery system (CRS)

The STM32L052x6/8 embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.20 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.21 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

DocID025936 Rev 7

Memory mapping 5

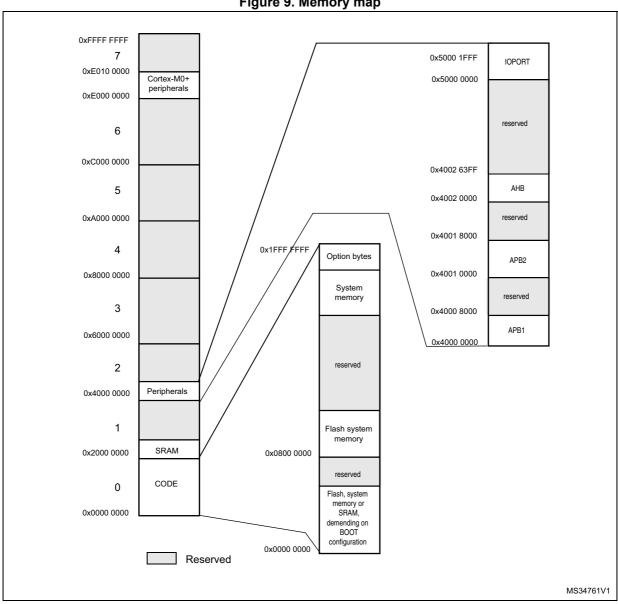


Figure 9. Memory map

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_Amax$ (given by the selected temperature range).

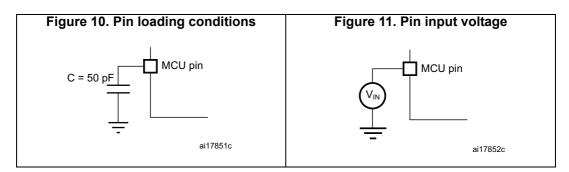
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.6 V (for the 1.65 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Symbol	Parameter	Condi	itions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3	1 MHz	43.5	90	
			V _{CORE} =1.2 V,	2 MHz	72	120	
			VOS[1:0]=11	4 MHz	130	180	
Symbol		f _{HSE} = f _{HCLK} up to	Range 2	4 MHz	160	210	
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	V _{CORE} =1.5 V,	8 MHz	305	370	
		16 MHz (PLL ON) ⁽²⁾	$\begin{array}{ c c c c c c c } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $				
			Range 1.	8 MHz	370	430	
	Supply current		V _{CORE} =1.8 V,	16 MHz	715	860	
	mode, Flash		VOS[1:0]=01	32 MHz	1650	1900	
	OFF		Range 3	65 kHz	18	65	
		MSI clock	V _{CORE} =1.2 V,	524 kHz	31.5	75	
			VOS[1:0]=11	4.2 MHz	140	210	
$I_{DD} (Sleep) = I_{DD} (Sleep) = I_{D$			V _{CORE} =1.5 V,	16 MHz	665	830	- - - Aų -
			V _{CORE} =1.8 V,	32 MHz	1750	2100	
			V _{CORE} =1.2 V,	1 MHz	57.5	130	
				2 MHz	84	170	
	4 MHz	150	280				
	$H_{DD} (Sleep) = H_{DD} (Sleep) + H_{Sl16} clock source (16 MHz) + H_{Sl16} clock source (16 MHz)$	310					
			_{CORE} =1.5 V,	32 MHz 1750 2100 1 MHz 57.5 130 2 MHz 84 170 4 MHz 150 280 4 MHz 170 310 8 MHz 315 420 16 MHz 605 770			
		$16 \text{ MHz} (\text{PLL ON})^{(2)}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
			Range 1	8 MHz	380	460	
			V _{CORE} =1.8 V,	16 MHz	730	950	1
				32 MHz	1650	2400	
	ON		Range 3	65 kHz	29.5	110	
		MSI clock	V _{CORE} =1.2 V,	524 kHz	44.5	130	
			VOS[1:0]=11	4.2 MHz	150	270	
		HSI16 clock source (16 MHz)	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	680	950	
				32 MHz	1750	2100	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

		Typical	Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C				
Per	ipheral		Range 2, V _{CORE} =1.5 V VOS[1:0] = 10		Low-power sleep and run	Unit	
	GPIOA	3.5	3	2.5	2.5		
Cortex-	GPIOB	3.5	2.5	2	2.5	µA/MHz	
M0+ core I/O port	GPIOC	8.5	6.5	5.5	7	µA/MHz (f _{HCLK})	
	GPIOD	1	0.5	0.5	0.5	('HCLK)	
	GPIOH	1.5	1	1	0.5		
	CRC	1.5	1	1	1		
	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾		
AHB	DMA1	10	8	6.5	8.5	µA/MHz (f _{HCLK})	
	RNG	5.5	1	0.5	0.5	(HCLK)	
	TSC	3	2.5	2	3		
All enabled		283	225	222.5	212.5	µA/MHz (f _{HCLK})	
F	PWR	2.5	2	2	1	µA/MHz (f _{HCLK})	

Table 39. Peripheral	current consump	tion in Run or	Sleep mode ⁽¹⁾	(continued)

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is OFF for this measure.

3. Current consumption is negligible and close to 0 μ A.

Symbol	Parameter	Conditions	Тур	Max	Unit
		f _{HCLK} = f _{MSI} = 4.2 MHz	5.0	8	
	Wakeup from Stop mode, regulator in Run mode	f _{HCLK} = f _{HSI} = 16 MHz	4.9	7	
		f _{HCLK} = f _{HSI} /4 = 4 MHz	8.0	11	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 1	5.0	8	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 2	5.0	8	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 3	5.0	8 7 11 8	
		f _{HCLK} = f _{MSI} = 2.1 MHz	7.3	13	
t _{WUSTOP}	Wakeup from Stop mode, regulator in low- power mode	f _{HCLK} = f _{MSI} = 1.05 MHz	13	8 7 11 8 8 8 8 13 23 38 65 120 260 7 11 7 10 8 130	μs
		f _{HCLK} = f _{MSI} = 524 kHz	28	38	
		f _{HCLK} = f _{MSI} = 262 kHz	51	65	
		f _{HCLK} = f _{MSI} = 131 kHz	100	120	
		f _{HCLK} = MSI = 65 kHz	190	260	
		f _{HCLK} = f _{HSI} = 16 MHz	4.9	7	
		f _{HCLK} = f _{HSI} /4 = 4 MHz	8.0	11	
		f _{HCLK} = f _{HSI} = 16 MHz	4.9	7	
	Wakeup from Stop mode, regulator in low- power mode, code running from RAM	f _{HCLK} = f _{HSI} /4 = 4 MHz	7.9	8 7 11 8 8 8 13 23 38 65 120 260 7 11 7 10 8 130	
		f _{HCLK} = f _{MSI} = 4.2 MHz	4.7		
+	Wakeup from Standby mode, FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	65	130	μs
twustdby	Wakeup from Standby mode, FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.2	3	ms

Table 41. Low-power mode wakeup timings (continued)

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	1		25	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
G _m	Maximum critical crystal transconductance	Startup	-	-	700	μΑ /V
t _{SU(HSE)}	Startup time	V_{DD} is stabilized	-	2	_	ms

Table 44. HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

 Guaranteed by characterization results. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 21*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

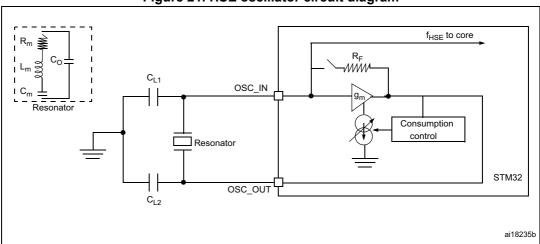
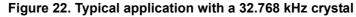


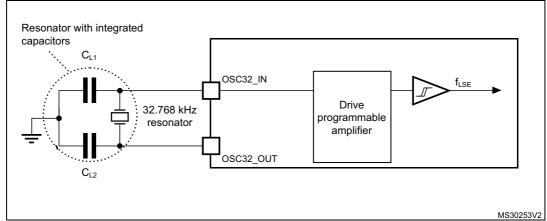
Figure 21. HSE oscillator circuit diagram

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 45*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min ⁽²⁾	Тур	Max	Unit
f _{LSE}	LSE oscillator frequency		-	32.768	-	kHz
		LSEDRV[1:0]=00 lower driving capability	-	-	0.5	
G Maximum critical cryst	Maximum critical crystal	LSEDRV[1:0]= 01 medium low driving capability	-	-	0.75	uA/V
Gm	G _m transconductance	LSEDRV[1:0] = 10 medium high driving capability	-	-	1.7	μΑνν
		LSEDRV[1:0]=11 higher driving capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S


Table 45. LSE oscillator characteristics ⁽)	5. LSE oscillator characteristics ⁽¹)
---	---	---


1. Guaranteed by design.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. Guaranteed by characterization results. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

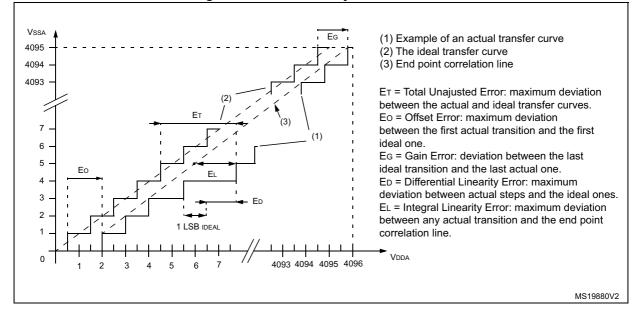
Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

STM32L052x6 STM32L052x8

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ET	Total unadjusted error		-	2	5	
EO	Offset error		-	1	2.5	
EG	Gain error		-	1	2	LSB
EL	Integral linearity error	1.65 V < V _{REF+} < V _{DDA} < 3.6 V, range 1/2/3	-	1.5	3	
ED	Differential linearity error		-	1	2	
ENOB	Effective number of bits		10.0	11.0	-	bits
SINAD	Signal-to-noise distortion		62	69	-	
SNR	Signal-to-noise ratio		61	69	-	dB
THD	Total harmonic distortion		-	-85	-65	

Table 65. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾ (continued)


1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.12 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.

4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.

Figure 28. ADC accuracy characteristics

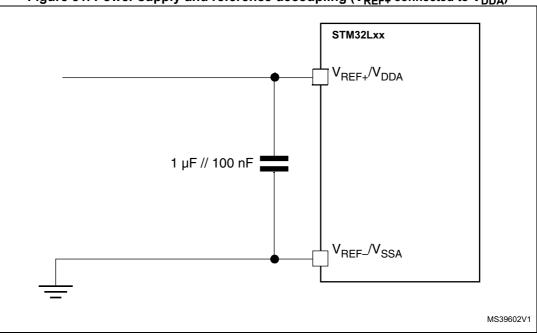


Figure 31. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

6.3.16 DAC electrical characteristics

Data guaranteed by design, not tested in production, unless otherwise specified.

Symbol	Parameter Conditions		Min	Тур	Max	Unit			
V _{DDA}	Analog supply voltage	-		-		1.8	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must always be below V _{DDA}				1.8	-	3.6	V
V _{REF-}	Lower reference voltage	-			V _{SSA}		V		
. (1)	Current consumption on V _{REF+}	No load, mid (0x800)	dle code	-	130	220	μA		
I _{DDVREF+} ⁽¹⁾	supply V _{REF+} = 3.3 V	No load, wor (0x000)	st code	-	220	350			
ı (2)	Current consumption on V _{DDA}	No load, middle code (0x800)		-	210	320	μA		
I _{DDA} ⁽²⁾	supply, V _{DDA} = 3.3 V	No load, worst code (0xF1C)		-	320	520			
D (3)	Resistive load	DAC output	R _L connected to V _{SSA}	5	-	-	kΩ		
R _L ⁽³⁾		ON	R _L connected to V _{DDA}	25	-	-			
C _L ⁽³⁾	Capacitive load	DAC output buffer ON		-	-	50	pF		
R _O	Output impedance	DAC output buffer OFF		12	16	20	kΩ		
		DAC output buffer ON		0.2	-	V _{DDA} – 0.2	V		
V _{DAC_OUT}	Voltage on DAC_OUT output	DAC output buffer OFF		0.5	-	V _{REF+} – 1LSB	mV		

Table 66. DAC characteristics

The analog spike filter is compliant with I^2C timings requirements only for the following voltage ranges:

- Fast mode Plus: 2.7 V \leq V_{DD} \leq 3.6 V and voltage scaling Range 1
- Fast mode:
 - 2 V \leq V_{DD} \leq 3.6 V and voltage scaling Range 1 or Range 2.
 - V_{DD} < 2 V, voltage scaling Range 1 or Range 2, C_{load} < 200 pF.

In other ranges, the analog filter should be disabled. The digital filter can be used instead.

Note: In Standard mode, no spike filter is required.

Table 72. I	2C analog	filter chara	cteristics ⁽¹⁾
-------------	-----------	--------------	---------------------------

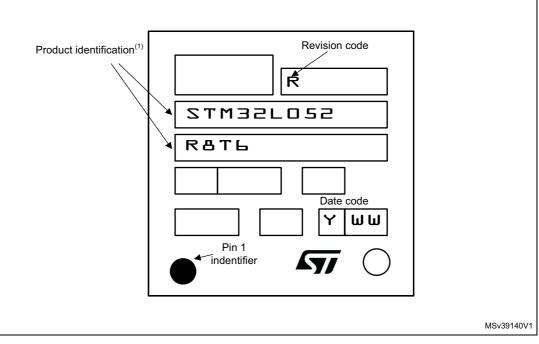
Symbol	Parameter	Conditions	Min	Мах	Unit
		Range 1		260 ⁽³⁾	
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	Range 2	50 ⁽²⁾	-	ns
	······································	Range 3		-	

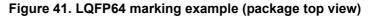
- 1. Guaranteed by characterization results.
- 2. Spikes with widths below $t_{\mbox{\scriptsize AF}(\mbox{min})}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered

USART/LPUART characteristics

The parameters given in the following table are guaranteed by design.

Symbol	Parameter Conditions		Тур	Max	Unit
		Stop mode with main regulator in Run mode, Range 2 or 3	-	8.7	
^t wuusart	t _{WUUSART} Wakeup time needed to calculate the maximum USART/LPUART baudrate allowing to wake up from Stop mode when the USART/LPUART is clocked by HSI	Stop mode with main regulator in Run mode, Range 1	-	8.1	μs
		Stop mode with main regulator in low-power mode, Range 2 or 3	-	12	
		Stop mode with main regulator in low-power mode, Range 1	-	11.4	


Table 73. USART/LPUART characteristics



Device marking for LQFP64

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.2 **TFBGA64** package information

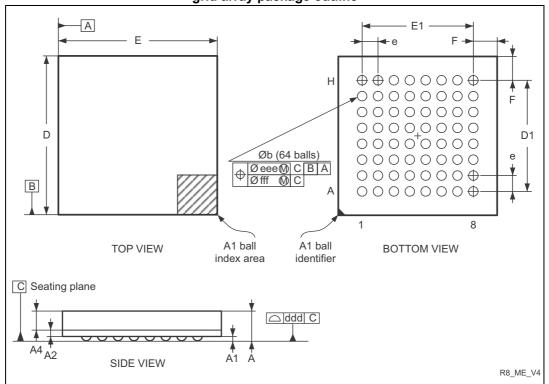
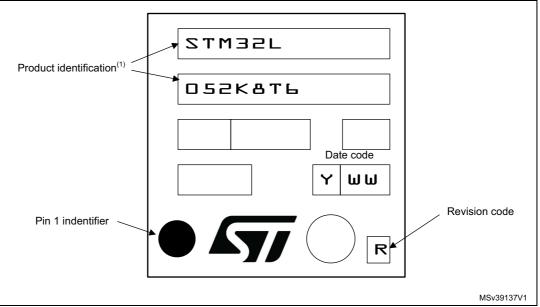
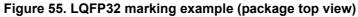


Figure 42. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 82. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
grid array package mechanical data

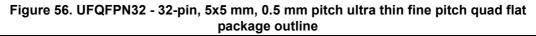

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.200	-	-	0.0472	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.200	-	-	0.0079	-	
A4	-	-	0.600	-	-	0.0236	
b	0.250	0.300	0.350	0.0098	0.0118	0.0138	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D1	-	3.500	-	-	0.1378	-	
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	
E1	-	3.500	-	-	0.1378	-	
е	-	0.500	-	-	0.0197	-	
F	-	0.750	-	-	0.0295	-	

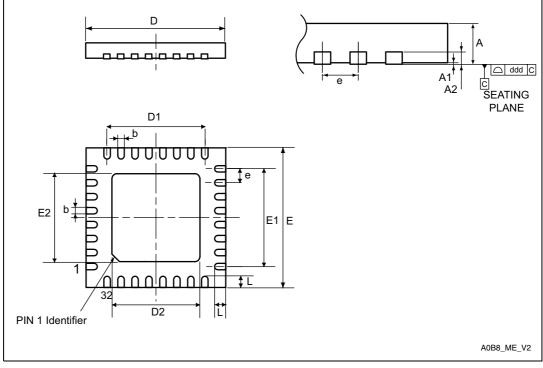


Device marking for LQFP32

The following figure gives an example of topside marking versus pin 1 position identifier location.

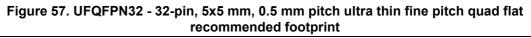
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

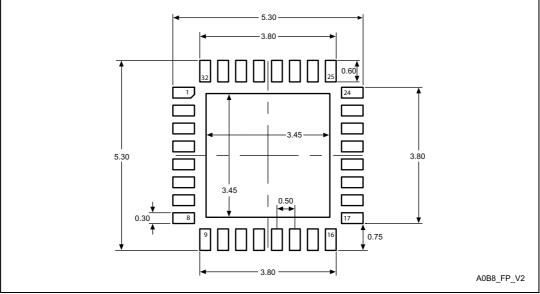




 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.7 UFQFPN32 package information


1. Drawing is not to scale.



Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.152	-	-	0.0060	-	
b	0.180	0.230	0.280	0.0071	0.0091	0.0110	
D	4.900	5.000	5.100	0.1929	0.1969	0.2008	
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E	4.900	5.000	5.100	0.1929	0.1969	0.2008	
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.080	-	-	0.0031	

Table 90. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Date	Revision	Changes
05-Sep-2014	4	Extended operating temperature range to 125 °C. Updated minimum ADC operating voltage to 1.65 V. Changed number of I2S interface from 1 to 0 in <i>Table 2: Ultra-low- power STM32L052x6/x8 device features and peripheral counts</i> . Replaced USART3 by LPUART1 in <i>Table 16: STM32L052x6/8 pin</i> <i>definitions</i> and LPUART by LPUART1 in <i>Table 17: Alternate function</i> <i>port A, Table 18: Alternate function port B, Table 19: Alternate function</i> <i>port C, Table 20: Alternate function port D</i> and <i>Table 21: Alternate</i> <i>function port H</i> . Updated PA6 in <i>Table 17: Alternate function port A</i> . Updated temperature range in <i>Section 1: Description</i> , <i>Table 2: Ultra- low-power STM32L052x6/x8 device features and peripheral counts</i> . Updated PD, <i>T_{A and} T_J</i> to add range 3 in <i>Table 25: General operating</i> <i>conditions</i> . Added range 3 in <i>Table 53: Flash memory</i> and data <i>EEPROM</i> endurance and retention, <i>Table 92: STM32L052x6/8</i> <i>ordering information scheme</i> . Update note 1 in <i>Table 29: Current</i> <i>consumption in Run mode, code with data processing running from</i> <i>Flash</i> , <i>Table 31: Current consumption in Rum mode, code with data</i> <i>processing running from RAM</i> , <i>Table 33: Current consumption in Sleep</i> <i>mode</i> , <i>Table 34: Current consumptions in Stop mode</i> , <i>Table 37:</i> <i>Typical and maximum current consumptions in Stop mode, Table 37:</i> <i>Typical and maximum current consumptions in Stop mode, rable 37:</i> <i>Typical and maximum current consumptions in Stop mode, code running</i> <i>from RAM</i> , <i>Range 3</i> , <i>MSI (Range 0) at 64 KHz, 0 WS</i> , <i>Figure 17: IDD</i> vs <i>VDD</i> , at <i>TA= 25/55/ 85/105/125 °C</i> , <i>Stop mode with RTC enabled</i> <i>and running on LSE Low drive, Figure 18: IDD</i> vs <i>VDD</i> , at <i>TA=</i> <i>25/55/85/105/125 °C</i> , <i>Stop mode with RTC disabled, all clocks OFF</i> . Updated <i>Table 43: Low-speed external user clock characteristics</i> . Updated <i>Table 43: Low-speed external user clock characteristics</i> . Updated <i>ACC</i> _{HSI16} temperature conditions in <i>Table 46: 16 MHz HSI16</i> <i>oscillator characteristics</i> . Changed ambient temperature range in notet

Table 93. Document revision history (continued)

