

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l052r8t7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The ultra-low-power STM32L052x6/8 microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (64 Kbytes of Flash program memory, 2 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L052x6/8 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L052x6/8 devices offer several analog features, one 12-bit ADC with hardware oversampling, one DAC, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers and one basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L052x6/8 devices embed standard and advanced communication interfaces: up to two I2C, two SPIs, one I2S, two USARTs, a low-power UART (LPUART), and a crystal-less USB. The devices offer up to 24 capacitive sensing channels to simply add touch sensing functionality to any application.

The STM32L052x6/8 also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L052x6/8 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

2.1 Device overview

Table 2 Illtra-low-	power STM32L052x6/x	8 dovico fosturos and	norinhoral counts
	DOMEL OLIMISTEDSTVOLV	o device realures and	periprierar counts

Peripheral		STM32L0 52T6	STM32 L052K6	STM32 L052C6	STM32 L052R6	STM32L 052T8	STM32 L052K8	STM32 L052C8	STM32 L052R8	
Flash (Kbyte	es)		32	2		64				
Data EEPRC	M (Kbytes)		2					2		
RAM (Kbyte	s)		8				8	3		
	General- purpose		3				3	3		
Timers	Basic		1					1		
	LPTIMER		1				ŕ	1		
	ICK/IWDG/ VDG		1/1/	1/1			1/1/	/1/1		
	SPI/I2S	3(2) ⁽¹⁾ /0	3(2) ⁽¹⁾ /0	4(2) ⁽¹⁾ /1	3(2) ⁽¹⁾ /0	3(2)	⁽¹⁾ /0	4(2)	⁽¹⁾ /1	
	l ² C	2	1		2	2	1	:	2	
Communic ation	USART		2			2				
interfaces	LPUART	1	0		1	1 0		1		
	USB/ (VDD_USB)	1/	(0) 1/(1)		(1)	1/	(0)	1/(1)		
GPIOs		29	27 ⁽²⁾	37	51 ⁽³⁾	29	27 ⁽²⁾	37	51 ⁽³⁾	
Clocks: HSE/LSE/HS	SI/MSI/LSI	0/1/1/1/1	0/1/1/1/1	1/1/1/1/1	1/1/1/1/1	0/1/1/1/1	0/1/1/1/1	1/1/1/1/1	1/1/1/1/1	
12-bit synch ADC Number of c		1 10	1 10	1 10	1 16 ⁽³⁾	1 10	1 10	1 10	1 16 ⁽³⁾	
12-bit DAC Number of channels			1			1 1				
Comparators					2	2				
Capacitive sensing channels		1	4	17	24 ⁽³⁾	1	4	17	24 ⁽³⁾	
Max. CPU fr	equency	32 MHz								
Operating v	oltage		1.8 V to 3.		to 1.65 V a to 3.6 V wi		wn) with BC option	OR option		

3.2 Interconnect matrix

Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes.

		A32LUXX peripherals in		incot in		-	1
Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low- power run	Low- power sleep	Stop
COMPx	TIM2,TIM21, TIM22	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	-
COMPX	LPTIM	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	Y
TIMx	TIMx	Timer triggered by other timer	Y	Y	Y	Y	-
RTC	TIM21	Timer triggered by Auto wake-up	Y	Y	Y	Y	-
RIC	LPTIM	Timer triggered by RTC event	Y	Y	Y	Y	Y
All clock source	TIMx	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	-
USB	CRS/HSI48	the clock recovery system trims the HSI48 based on USB SOF	Y	Y	-	-	-
	TIMx	Timer input channel and trigger	Y	Y	Y	Y	-
GPIO	LPTIM	Timer input channel and trigger	Y	Y	Y	Y	Y
	ADC,DAC	Conversion trigger	Y	Y	Y	Y	-

Table 6. STM32L0xx peripherals interconnect matrix

3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

Clock prescaler

To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.

• Safe clock switching

Clock sources can be changed safely on the fly in Run mode through a configuration register.

Clock management

To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.

System clock source

Three different clock sources can be used to drive the master clock SYSCLK:

- 1-25 MHz high-speed external crystal (HSE), that can supply a PLL
- 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

• Auxiliary clock source

Two ultra-low-power clock sources that can be used to drive the real-time clock:

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

• RTC clock source

The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system clock.

USB clock source

A 48 MHz clock trimmed through the USB SOF supplies the USB interface.

3.10 Direct memory access (DMA)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, LPUART, general-purpose timers, DAC, and ADC.

3.11 Analog-to-digital converter (ADC)

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L052x6/8 device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference). Three channels, PA0, PA4 and PA5, are fast channels, while the others are standard channels.

The ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 μ A at 10 kSPS, ~200 μ A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.

The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V.

The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668).

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers.

3.12 Temperature sensor

The temperature sensor (T_{SENSE}) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

DocID025936 Rev 7

		Pin Nı	umber								
LQFP32	UFQFN32	WLCSP36 ⁽¹⁾	LQFP48	LQFP64	TFBGA64	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	E2	21	29	G7	PB10	I/O	FT	-	TIM2_CH3, TSC_SYNC, LPUART1_TX, SPI2_SCK, I2C2_SCL	-
-	-	D2	22	30	H7	PB11	I/O	FT	-	EVENTOUT, TIM2_CH4, TSC_G6_IO1, LPUART1_RX, I2C2_SDA	-
16	-	-	23	31	D6	VSS	S	-	-	-	-
17	17	F1	24	32	E5	VDD	S	-	-	-	-
-	-	-	25	33	H8	PB12	I/O	FT	-	SPI2_NSS/I2S2_WS, LPUART1_RTS_DE, TSC_G6_IO2, I2C2_SMBA, EVENTOUT	-
-	-	-	26	34	G8	PB13	I/O	FTf	-	SPI2_SCK/I2S2_CK, TSC_G6_IO3, LPUART1_CTS, I2C2_SCL, TIM21_CH1	-
-	-	-	27	35	F8	PB14	I/O	FTf	-	SPI2_MISO/I 2S2_MCK, RTC_OUT, TSC_G6_IO4, LPUART1_RTS_DE, I2C2_SDA, TIM21_CH2	-
-	-	-	28	36	F7	PB15	I/O	FT	-	SPI2_MOSI/I2S2_SD, RTC_REFIN	-
-	-	-	-	37	F6	PC6	I/O	FT	-	TIM22_CH1, TSC_G8_IO1	-
-	-	-	-	38	E7	PC7	I/O	FT	-	TIM22_CH2, TSC_G8_IO2	-
-	-	-	-	39	E8	PC8	I/O	FT	-	TIM22_ETR, TSC_G8_IO3	-

Table 16. STM32L052x6/8 pin definitions (continued)

		Pin Nu	ımber				-					
LQFP32	UFQFN32	WLCSP36 ⁽¹⁾	LQFP48	LQFP64	TFBGA64	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
-	-	-	-	40	D8	PC9	I/O	FT	-	TIM21_ETR, USB_NOE, TSC_G8_IO4	-	
18	18	E1	29	41	D7	PA8	I/O	FT	-	MCO, USB_CRS_SYNC, EVENTOUT, USART1_CK	-	
19	19	D1	30	42	C7	PA9	I/O	FT	-	MCO, TSC_G4_IO1, USART1_TX	-	
20	20	C1	31	43	C6	PA10	I/O	FT	-	TSC_G4_IO2, USART1_RX	-	
21	21	C2	32	44	C8	PA11 ⁽³⁾	I/O	FT	-	SPI1_MISO, EVENTOUT, TSC_G4_IO3, USART1_CTS, COMP1_OUT	USB_DM	
22	22	B1	33	45	B8	PA12 ⁽³⁾	I/O	FT	-	SPI1_MOSI, EVENTOUT, TSC_G4_IO4, USART1_RTS_DE, COMP2_OUT	USB_DP	
23	23	A1	34	46	A8	PA13	I/O	FT	-	SWDIO, USB_NOE	-	
-	-	-	35	47	D5	VSS	S	-	-	-	-	
-	-	-	36	48	E6	VDD_USB	S	-	-	-	-	
24	24	B2	37	49	A7	PA14	I/O	FT	-	SWCLK, USART2_TX	-	
25	25	A2	38	50	A6	PA15	I/O	FT	-	SPI1_NSS, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1	-	
-	-	-	-	51	B7	PC10	I/O	FT	-	LPUART1_TX	-	
-	-	-	-	52	B6	PC11	I/O	FT	-	LPUART1_RX	-	
-	-	-	-	53	C5	PC12	I/O	FT	-	-	-	

Table 16. STM32L052x6/8 pin definitions (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6
Po	ort	SPI1/SPI2/I2S2/ USART1/ EVENTOUT/	USART1/ I2C1 /TIM2/SYS_AF/ I2C		I2C1/TSC	1/TSC EVENTOUT/ SPI2/I2S2/I2 LPUART1		
	PB0	EVENTOUT	-	-	TSC_G3_IO2	-	-	-
	PB1	-	-	-	TSC_G3_IO3	LPUART1_RTS_ DE	-	-
	PB2	-	-	LPTIM1_OUT	TSC_G3_IO4	-	-	-
	PB3	SPI1_SCK	-	TIM2_CH2	TSC_G5I_O1	EVENTOUT	-	-
	PB4	SPI1_MISO	-	EVENTOUT	TSC_G5_IO2	TIM22_CH1	-	-
	PB5	SPI1_MOSI	-	LPTIM1_IN1	I2C1_SMBA	TIM22_CH2	-	-
	PB6	USART1_TX	I2C1_SCL	LPTIM1_ETR	TSC_G5_IO3	-	-	-
	PB7	USART1_RX	I2C1_SDA	LPTIM1_IN2	TSC_G5_IO4	-	-	-
Port B	PB8	-	-	-	TSC_SYNC	I2C1_SCL	-	-
	PB9	-	-	EVENTOUT	-	I2C1_SDA	SPI2_NSS/I2S2_ WS	-
	PB10	-	-	TIM2_CH3	TSC_SYNC	LPUART1_TX	SPI2_SCK	12C2_S
	PB11	EVENTOUT	-	TIM2_CH4	TSC_G6_IO1	LPUART1_RX		12C2_SI
	PB12	SPI2_NSS/I2S2_WS	-	LPUART1_RTS_ DE	TSC_G6_IO2	-	I2C2_SMBA	EVENTC
	PB13	SPI2_SCK/I2S2_CK	-	-	TSC_G6_IO3	LPUART1_CTS	I2C2_SCL	TIM21_C
	PB14	SPI2_MISO/I2S2_MCK	-	RTC_OUT	TSC_G6_IO4	LPUART1_RTS_ DE	I2C2_SDA	TIM21_C
	PB15	SPI2_MOSI/I2S2_SD	-	RTC_REFIN	-	-	-	-

49/144

STM32L052x6 STM32L052x8

Pin descriptions

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 22: Voltage characteristics*, *Table 23: Current characteristics*, and *Table 24: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are available on demand.

Symbol	Definition	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including V _{DDA} , V _{DD_USB} , V _{DD}) ⁽¹⁾	-0.3	4.0	
	Input voltage on FT and FTf pins	V _{SS} –0.3	V _{DD} +4.0	
V _{IN} ⁽²⁾	Input voltage on TC pins	V _{SS} –0.3	4.0	V
VIN Y	Input voltage on BOOT0	V _{SS}	V _{DD} +4.0	
	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DD} $	Variations between different V_{DDx} power pins	-	50	
V _{DDA} -V _{DDx}	Variations between any V_{DDx} and V_{DDA} power $\mbox{pins}^{(3)}$	-	300	mV
$ \Delta V_{SS} $	Variations between all different ground pins	-	50	
V _{REF+} –V _{DDA}	Allowed voltage difference for $V_{REF^+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)} Electrostatic discharge voltage (human body model)		see Sect	ion 6.3.11	

1. All main power (V_{DD},V_{DD} USB, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table* 23 for maximum allowed injected current values.

3. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and device operation. V_{DD_USB} is independent from V_{DD} and V_{DDA}: its value does not need to respect this rule.

Symbol	Parameter	Conc	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	135	170	
			V _{CORE} =1.2 V,	2 MHz	240	270	μA
			VOS[1:0]=11	4 MHz	450	480	
		$f_{HSE} = f_{HCLK}$ up to 16	Range 2,	4 MHz	0.52	0.6	
		MHz included, f _{HSE} = f _{HCLK} /2 above	V _{CORE} =1.5 ,V,	8 MHz	1	1.2	
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16 MHz	2	2.3	
I _{DD} (Run	Supply current in Run mode, code executed from RAM, Flash switched off		Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	8 MHz	1.25	1.4	mA
				16 MHz	2.45	2.8	
from RAM)				32 MHz	5.1	5.4	
			Range 3, V _{CORE} =1.2 V,	65 kHz	34.5	75	
		MSI clock		524 kHz	83	120	μA
			VOS[1:0]=11	4.2 MHz	485	540	
		HSI16 clock source	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	2.1	2.3	
		(16 MHz)	Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	5.1	5.6	mA

Table 31. Current consumption in Run mode.	code with data processing running from RAM
	coue man auta proceeding running nom roam

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 32. Current consumption in Run mode vs code type,
code with data processing running from RAM ⁽¹⁾

Symbol	Parameter		f _{HCLK}	Тур	Unit		
				Dhrystone		450	
Supply current in I _{DD} (Run Run mode, code			Range 3, V _{CORE} =1.2 V,	CoreMark	4 MHz	575	
	6 6 A	V _{CORE} =1.2 V, VOS[1:0]=11	Fibonacci		370	μA	
	Run mode, code executed from RAM, Flash	f _{HSE} = f _{HCLK} up to 16 MHz included, f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL ON) ⁽²⁾		while(1)		340	
from RAM)				Dhrystone		5.1	
	switched off		Range 1,	CoreMark	32 MHz	6.25	
			V _{CORE} =1.8 V, VOS[1:0]=01	Fibonacci		4.4	mA
				while(1)	1	4.7	

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

High-speed internal 48 MHz (HSI48) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{HSI48}	Frequency		-	48	-	MHz	
TRIM	HSI48 user-trimming step		0.09 ⁽²⁾	0.14	0.2 ⁽²⁾	%	
DuCy _(HSI48)	Duty cycle		45 ⁽²⁾	-	55 ⁽²⁾	%	
ACC _{HSI48}	Accuracy of the HSI48 oscillator (factory calibrated before CRS calibration)	T _A = 25 °C	-4 ⁽³⁾	-	4 ⁽³⁾	%	
t _{su(HSI48)}	HSI48 oscillator startup time		-	-	6 ⁽²⁾	μs	
I _{DDA(HSI48)}	HSI48 oscillator power consumption		-	330	380 ⁽²⁾	μA	

1. V_{DDA} = 3.3 V, T_A = -40 to 125 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 48. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Multi-speed internal (MSI) RC oscillator

Table 49. MSI oscillator characteristics

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	65.5	-	
		MSI range 1	131	-	kHz
	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 2	262	-	КПИ
f _{MSI}		MSI range 3	524	-	
		MSI range 4	1.05	-	
		MSI range 5	2.1	-	MHz
		MSI range 6	4.2	-	

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
DNL ⁽²⁾	Differential non linearity ⁽⁴⁾	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	1.5	3	
		No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	1.5	3	
INL ⁽²⁾	Integral non linearity ⁽⁵⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	2	4	
	integral non intearity ??	No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	2	4	LSB
Offset ⁽²⁾	Offset error at code 0x800 ⁽⁶⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	±10	±25	
Oliset		No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	±5	±8	
Offset1 ⁽²⁾	Offset error at code 0x001 ⁽⁷⁾	No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	±1.5	±5	
	Offset error temperature coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 ^{\circ}C$ DAC output buffer OFF	-20	-10	0	
dOffset/dT ⁽²⁾		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 ^{\circ} C$ DAC output buffer ON	0	20	50	µV/°C
Gain ⁽²⁾	Cain arrar ⁽⁸⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / -0.5%	%
Gain	Gain error ⁽⁸⁾	No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	+0 / -0.2%	+0 / -0.4%	70
dGain/dT ⁽²⁾	Gain error temperature coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 \degree C$ DAC output buffer OFF	-10	-2	0	
dGain/d i ^{v=}		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 \degree C$ DAC output buffer ON	-40	-8	0	μV/°C
TUE ⁽²⁾	Tatal un adiusta d'arras	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	
	Total unadjusted error	No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF	-	8	12	LSB

Table 66. DAC characteristics (continued)

6.3.17 Temperature sensor characteristics

Calibration value name	Description	Memory address					
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B					
TS_CAL2	TS ADC raw data acquired at temperature of 130 °C, V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F					

Table 67. Temperature sensor calibration values

Table 68. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₃₀	Voltage at 130°C ±5°C ⁽²⁾	640	670	700	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V \pm 10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.

3. Guaranteed by design.

4. Shortest sampling time can be determined in the application by multiple iterations.

6.3.18 Comparators

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
Gymbol	i arameter	Conditions		чур	Max	Onit
V_{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kΩ
R _{10K}	R _{10K} value	-	-	10	-	122
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	μs
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$\label{eq:VDDA} \begin{split} V_{DDA} &= 3.6 \text{ V}, V_{IN+} = 0 \text{ V}, \\ V_{IN-} &= V_{REFINT}, T_A \text{ = } 25 ^\circ\text{C} \end{split}$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

Table 69. Comparator 1 characteristics

1. Guaranteed by characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V
+	Comparator startup time	Fast mode	-	15	20	
t _{START}		Slow mode	-	20	25	
+	Propagation delay ⁽²⁾ in slow mode	1.65 V ≤V _{DDA} ≤2.7 V	-	1.8	3.5	
t _{d slow}	Propagation delay. ^{-,} in slow mode	2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs
+	Propagation delay ⁽²⁾ in fast mode	1.65 V ≤V _{DDA} ≤2.7 V	-	0.8	2	
t _{d fast}	riopagation delay fin last mode	2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4	
V _{offset}	Comparator offset error		-	±4	<u>+</u> 20	mV
dThreshold/ dt	Threshold voltage temperature coefficient	$\label{eq:VDDA} \begin{split} &V_{DDA} = 3.3 \text{V}, \text{T}_{\text{A}} = 0 \text{ to } 50 \ ^{\circ}\text{C}, \\ &V- = V_{\text{REFINT}}, \\ &3/4 \ &V_{\text{REFINT}}, \\ &1/2 \ &V_{\text{REFINT}}, \\ &1/4 \ &V_{\text{REFINT}}. \end{split}$	-	15	30	ppm /°C
	Current consumption ⁽³⁾	Fast mode	-	3.5	5	
I _{COMP2}		Slow mode	-	0.5	2	μA

Table 70. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

6.3.19 Timer characteristics

TIM timer characteristics

The parameters given in the Table 71 are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Max	Unit				
t ann	Timer resolution time		1	-	t _{TIMxCLK}				
^t res(TIM)		f _{TIMxCLK} = 32 MHz	31.25	-	ns				
f _{EXT}	Timer external clock frequency on CH1		0	f _{TIMxCLK} /2	MHz				
	to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz				
Res _{TIM}	Timer resolution	-		16	bit				
	16-bit counter clock period when	-	1	65536	t _{TIMxCLK}				
^t COUNTER	internal clock is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs				
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}				
		f _{TIMxCLK} = 32 MHz	-	134.2	S				

Table 71. TIMx characteristics⁽¹⁾

1. TIMx is used as a general term to refer to the TIM2, TIM6, TIM21, and TIM22 timers.

6.3.20 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm) : with a bit rate up to 100 kbit/s
- Fast-mode (Fm) : with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s.

The I²C timing requirements are guaranteed by design when the I²C peripheral is properly configured (refer to the reference manual for details). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement (refer to *Section 6.3.13: I/O port characteristics* for the I2C I/Os characteristics).

All I²C SDA and SCL I/Os embed an analog filter (see *Table 72* for the analog filter characteristics).

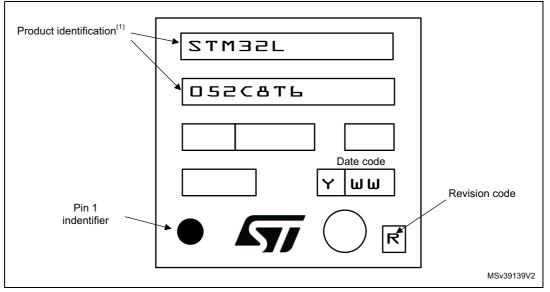
I2S characteristics

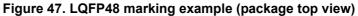
Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256 x 8K	256xFs ⁽²⁾	MHz
f	125 alook froguopov	Master data: 32 bits	-	64xFs	MHz
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	IVITZ
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	15	
t _{h(WS)}	WS hold time	Master mode	11	-	
t _{su(WS)}	WS setup time	Slave mode	6	-	
t _{h(WS)}	WS hold time	Slave mode	2	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	0	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	6.5	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	18	-	115
t _{h(SD_SR)}		Slave receiver	15.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	77	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	8	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	18	-	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	1.5	-	

Table 77. I2S characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. 256xFs maximum value is equal to the maximum clock frequency.

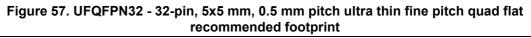

Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} and D_{CK} values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.

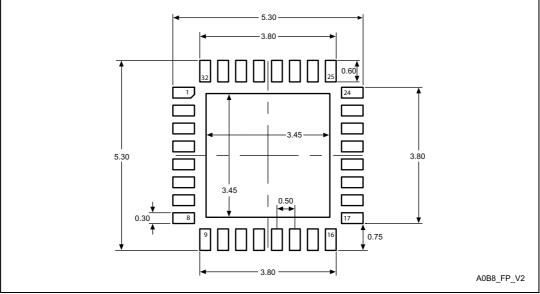


Device marking for LQFP48

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



Symbol	millimeters			inches ⁽¹⁾					
	Min	Тур	Max	Min	Тур	Мах			
А	0.500	0.550	0.600	0.0197	0.0217	0.0236			
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020			
A3	-	0.152	-	-	0.0060	-			
b	0.180	0.230	0.280	0.0071	0.0091	0.0110			
D	4.900	5.000	5.100	0.1929	0.1969	0.2008			
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417			
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417			
E	4.900	5.000	5.100	0.1929	0.1969	0.2008			
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417			
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417			
е	-	0.500	-	-	0.0197	-			
L	0.300	0.400	0.500	0.0118	0.0157	0.0197			
ddd	-	-	0.080	-	-	0.0031			

Table 90. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

7.8 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
ΘjA	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch	61	°C/W
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45	
	Thermal resistance junction-ambient Standard WLCSP36 - 0.4 mm pitch	63	
	Thermal resistance junction-ambient Thin WLCSP36 - 0.4 mm pitch	59	
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	57	
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	38	

Table 91. Thermal characteris	stics
-------------------------------	-------

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID025936 Rev 7

