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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18F2585/2680/4585/4680
PORTC is a bidirectional I/O port.

RC0/T1OSO/T13CKI
RC0
T1OSO
T13CKI

11
I/O
O
I

ST
—
ST

Digital I/O.
Timer1 oscillator output. 
Timer1/Timer3 external clock input.

RC1/T1OSI
RC1
T1OSI

12
I/O
I

ST
CMOS

Digital I/O.
Timer1 oscillator input.

RC2/CCP1
RC2
CCP1

13
I/O
I/O

ST
ST

Digital I/O.
Capture1 input/Compare1 output/PWM1 output.

RC3/SCK/SCL
RC3
SCK
SCL

14
I/O
I/O
I/O

ST
ST
ST

Digital I/O.
Synchronous serial clock input/output for SPI mode.
Synchronous serial clock input/output for I2C™ mode.

RC4/SDI/SDA
RC4
SDI
SDA

15
I/O
I

I/O

ST
ST
ST

Digital I/O.
SPI data in.
I2C data I/O.

RC5/SDO
RC5
SDO

16
I/O
O

ST
—

Digital I/O.
SPI data out.

RC6/TX/CK
RC6
TX
CK

17
I/O
O
I/O

ST
—
ST

Digital I/O.
EUSART asynchronous transmit. 
EUSART synchronous clock (see related RX/DT).

RC7/RX/DT
RC7
RX
DT

18
I/O
I

I/O

ST
ST
ST

Digital I/O.
EUSART asynchronous receive.
EUSART synchronous data (see related TX/CK).

RE3 — — — See MCLR/VPP/RE3 pin.

VSS 8, 19 P — Ground reference for logic and I/O pins.

VDD 20 P — Positive supply for logic and I/O pins.

TABLE 1-2: PIC18F2585/2680 PINOUT I/O DESCRIPTIONS (CONTINUED) 

Pin Name

Pin 
Number Pin

Type
Buffer
Type

Description
PDIP, 
SOIC

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output 
ST = Schmitt Trigger input with CMOS levels I = Input 
O = Output P = Power    
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 15
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5.5 Program Memory and the 
Extended Instruction Set

The operation of program memory is unaffected by the
use of the extended instruction set. 

Enabling the extended instruction set adds eight
additional two-word commands to the existing
PIC18 instruction set: ADDFSR, ADDULNK, CALLW,
MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK. These
instructions are executed as described in
Section 5.2.4 “Two-Word Instructions”.

5.6 Data Memory and the Extended 
Instruction Set

Enabling the PIC18 extended instruction set (XINST
Configuration bit = 1) significantly changes certain
aspects of data memory and its addressing. Specifi-
cally, the use of the Access Bank for many of the core
PIC18 instructions is different; this is due to the intro-
duction of a new addressing mode for the data memory
space. This mode also alters the behavior of indirect
addressing using FSR2 and its associated operands.

What does not change is just as important. The size of
the data memory space is unchanged, as well as its
linear addressing. The SFR map remains the same.
Core PIC18 instructions can still operate in both Direct
and Indirect Addressing mode; inherent and literal
instructions do not change at all. Indirect addressing
with FSR0 and FSR1 also remains unchanged.

5.6.1 INDEXED ADDRESSING WITH 
LITERAL OFFSET 

Enabling the PIC18 extended instruction set changes
the behavior of indirect addressing using the FSR2
register pair and its associated file operands. Under the
proper conditions, instructions that use the Access
Bank – that is, most bit-oriented and byte-oriented –
instructions – can invoke a form of indexed addressing
using an offset specified in the instruction. This special
addressing mode is known as Indexed Addressing with
Literal Offset or Indexed Literal Offset mode.

When using the extended instruction set, this
addressing mode requires the following:

• The use of the Access Bank is forced (‘a’ = 0); 
and

• The file address argument is less than or equal to 
5Fh.

Under these conditions, the file address of the instruc-
tion is not interpreted as the lower byte of an address
(used with the BSR in direct addressing), or as an 8-bit
address in the Access Bank. Instead, the value is
interpreted as an offset value to an address pointer,
specified by FSR2. The offset and the contents of
FSR2 are added to obtain the target address of the
operation. 

5.6.2 INSTRUCTIONS AFFECTED BY 
INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct
addressing are potentially affected by the Indexed
Literal Offset Addressing mode. This includes all
byte-oriented and bit-oriented instructions, or almost
one-half of the standard PIC18 instruction set. Instruc-
tions that only use Inherent or Literal Addressing
modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions
are not affected if they use the Access Bank (Access
RAM bit is ‘1’), or include a file address of 60h or above.
Instructions meeting these criteria will continue to
execute as before. A comparison of the different possi-
ble addressing modes when the extended instruction
set is enabled in shown in Figure 5-8.

Those who desire to use byte-oriented or bit-oriented
instructions in the Indexed Literal Offset mode should
note the changes to assembler syntax for this mode.
This is described in more detail in Section 25.2.1
“Extended Instruction Syntax”.
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 91
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7.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in
Configuration Words. External read and write
operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the
internal Data EEPROM, regardless of the state of the
code-protect Configuration bit. Refer to Section 24.0
“Special Features of the CPU” for additional
information.

7.7 Protection Against Spurious Write

There are conditions when the device may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been implemented. On power-up, the WREN bit is
cleared. In addition, writes to the EEPROM are blocked
during the Power-up Timer period (TPWRT,
parameter 33).

The write initiate sequence and the WREN bit together
help prevent an accidental write during brown-out,
power glitch or software malfunction.

7.8 Using the Data EEPROM

The data EEPROM is a high endurance, byte address-
able array that has been optimized for the storage of
frequently changing information (e.g., program
variables or other data that are updated often).
Frequently changing values will typically be updated
more often than specification D124. If this is not the
case, an array refresh must be performed. For this
reason, variables that change infrequently (such as
constants, IDs, calibration, etc.) should be stored in
Flash program memory. 

A simple data EEPROM refresh routine is shown in
Example 7-3.

EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE

Note: If data EEPROM is only used to store
constants and/or data that changes rarely,
an array refresh is likely not required. See
specification D124.

CLRF EEADR ; Start at address 0
CLRF EEADRH ;
BCF EECON1, CFGS ; Set for memory
BCF EECON1, EEPGD ; Set for Data EEPROM
BCF INTCON, GIE ; Disable interrupts
BSF EECON1, WREN ; Enable writes

Loop ; Loop to refresh array
BSF EECON1, RD ; Read current address
MOVLW 55h ;
MOVWF EECON2 ; Write 55h
MOVLW 0AAh ;
MOVWF EECON2 ; Write 0AAh
BSF EECON1, WR ; Set WR bit to begin write
BTFSC EECON1, WR ; Wait for write to complete
BRA $-2
INCFSZ EEADR, F ; Increment address
BRA LOOP ; Not zero, do it again
INCFSZ EEADRH, F ; Increment the high address
BRA LOOP ; Not zero, do it again

BCF EECON1, WREN ; Disable writes
BSF INTCON, GIE ; Enable interrupts
DS39625C-page 108 Preliminary © 2007 Microchip Technology Inc.
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9.6 INTn Pin Interrupts

External interrupts on the RB0/INT0, RB1/INT1 and
RB2/INT2 pins are edge-triggered. If the corresponding
INTEDGx bit in the INTCON2 register is set (= 1), the
interrupt is triggered by a rising edge; if the bit is clear,
the trigger is on the falling edge. When a valid edge
appears on the RBx/INTx pin, the corresponding flag
bit INTxF is set. This interrupt can be disabled by clear-
ing the corresponding enable bit INTxE. Flag bit INTxF
must be cleared in software in the Interrupt Service
Routine before re-enabling the interrupt. 

All external interrupts (INT0, INT1 and INT2) can
wake-up the processor from the power managed
modes, if bit INTxE was set prior to going into power
managed modes. If the Global Interrupt Enable bit,
GIE, is set, the processor will branch to the interrupt
vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the
value contained in the interrupt priority bits, INT1IP
(INTCON3<6>) and INT2IP (INTCON3<7>). There is
no priority bit associated with INT0. It is always a high
priority interrupt source.

9.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the
TMR0 register (FFh → 00h) will set flag bit TMR0IF. In
16-bit mode, an overflow in the TMR0H:TMR0L regis-
ter pair (FFFFh → 0000h) will set TMR0IF. The interrupt
can be enabled/disabled by setting/clearing enable bit
TMR0IE (INTCON<5>). Interrupt priority for Timer0 is
determined by the value contained in the interrupt
priority bit, TMR0IP (INTCON2<2>). See Section 11.0
“Timer0 Module” for further details on the Timer0
module.

9.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF
(INTCON<0>). The interrupt can be enabled/disabled
by setting/clearing enable bit, RBIE (INTCON<3>).
Interrupt priority for PORTB interrupt-on-change is
determined by the value contained in the interrupt
priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on
the stack. Additionally, the WREG, STATUS and BSR
registers are saved on the fast return stack. If a fast
return from interrupt is not used (See Section 5.3
“Data Memory Organization”), the user may need to
save the WREG, STATUS and BSR registers on entry
to the Interrupt Service Routine. Depending on the
user’s application, other registers may also need to be
saved. Example 9-1 saves and restores the WREG,
STATUS and BSR registers during an Interrupt Service
Routine.

EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM 
MOVWF W_TEMP ; W_TEMP is in virtual bank
MOVFF STATUS, STATUS_TEMP ; STATUS_TEMP located anywhere
MOVFF BSR, BSR_TEMP ; BSR_TMEP located anywhere
;
; USER ISR CODE
;
MOVFF BSR_TEMP, BSR ; Restore BSR
MOVF W_TEMP, W ; Restore WREG
MOVFF STATUS_TEMP, STATUS ; Restore STATUS
DS39625C-page 128 Preliminary © 2007 Microchip Technology Inc.
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11.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the
mode is selected by clearing the T0CS bit
(T0CON<5>). In Timer mode, the module increments
on every clock by default unless a different prescaler
value is selected (see Section 11.3 “Prescaler”). If
the TMR0 register is written to, the increment is inhib-
ited for the following two instruction cycles. The user
can work around this by writing an adjusted value to the
TMR0 register.

The Counter mode is selected by setting the T0CS bit
(= 1). In Counter mode, Timer0 increments either on
every rising or falling edge of pin RA4/T0CKI. The
incrementing edge is determined by the Timer0 Source
Edge Select bit, T0SE (T0CON<4>). Clearing this bit
selects the rising edge. Restrictions on the external
clock input are discussed below.

An external clock source can be used to drive Timer0;
however, it must meet certain requirements to ensure
that the external clock can be synchronized with the

internal phase clock (TOSC). There is a delay between
synchronization and the onset of incrementing the
timer/counter.

11.2 Timer0 Reads and Writes in 
16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit
mode; it is actually a buffered version of the real high
byte of Timer0, which is not directly readable nor writ-
able (refer to Figure 11-2). TMR0H is updated with the
contents of the high byte of Timer0 during a read of
TMR0L. This provides the ability to read all 16 bits of
Timer0 without having to verify that the read of the high
and low byte were valid, due to a rollover between
successive reads of the high and low byte. 

Similarly, a write to the high byte of Timer0 must also
take place through the TMR0H Buffer register. The high
byte is updated with the contents of TMR0H when a
write occurs to TMR0L. This allows all 16 bits of Timer0
to be updated at once.

FIGURE 11-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)    

FIGURE 11-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)    

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.

T0CKI pin

T0SE

0

1

1

0

T0CS

FOSC/4

Programmable
Prescaler

Sync with
Internal
Clocks

TMR0L

(2 TCY Delay)

Internal Data BusPSA

T0PS2:T0PS0

Set 
TMR0IF

on Overflow

3 8

8

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.
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16.4 Enhanced PWM Mode

The Enhanced PWM mode provides additional PWM
output options for a broader range of control applica-
tions. The module is a backward compatible version of
the standard CCP1 module and offers up to four out-
puts, designated P1A through P1D. Users are also able
to select the polarity of the signal (either active-high or
active-low). The module’s output mode and polarity are
configured by setting the EPWM1M1:EPWM1M0 and
CCP1M3:CCP1M0 bits of the ECCP1CON register.

Figure 16-1 shows a simplified block diagram of PWM
operation. All control registers are double-buffered and
are loaded at the beginning of a new PWM cycle (the
period boundary when Timer2 resets) in order to
prevent glitches on any of the outputs. The exception is
the PWM Delay register, ECCP1DEL, which is loaded
at either the duty cycle boundary or the boundary
period (whichever comes first). Because of the buffer-
ing, the module waits until the assigned timer resets
instead of starting immediately. This means that
Enhanced PWM waveforms do not exactly match the
standard PWM waveforms but are instead offset by
one full instruction cycle (4 TOSC).

As before, the user must manually configure the
appropriate TRIS bits for output.

16.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2
register. The PWM period can be calculated using the
following equation.

EQUATION 16-1:

PWM frequency is defined as 1/[PWM period]. When
TMR2 is equal to PR2, the following three events occur
on the next increment cycle:

• TMR2 is cleared
• The ECCP1 pin is set (if PWM duty cycle = 0%, 

the ECCP1 pin will not be set)
• The PWM duty cycle is copied from ECCPR1L 

into ECCPR1H 

FIGURE 16-1: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE     

Note: The Timer2 postscaler (see Section 13.0
“Timer2 Module”) is not used in the
determination of the PWM frequency. The
postscaler could be used to have a servo
update rate at a different frequency than
the PWM output.

PWM Period   = [(PR2) + 1] • 4 • TOSC •
(TMR2 Prescale Value) 

ECCPR1L

ECCPR1H (Slave)

Comparator

TMR2

Comparator

PR2

(Note 1)

R Q

S

Duty Cycle Registers
CCP1CON<5:4>

Clear Timer,
set ECCP1 pin and 
latch D.C.

Note: The 8-bit TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler, to create the 10-bit time base.

TRISD<4>

ECCP1/P1A

TRISD<5>

P1B

TRISD<6>

TRISD<7>

P1D

Output
Controller

EPWM1M1<1:0>
2

CCP1M<3:0>
4

ECCP1DEL

ECCP1/P1A

P1B

P1C

P1D

P1C
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17.3.8 OPERATION IN POWER MANAGED 
MODES

In SPI Master mode, module clocks may be operating
at a different speed than when in full power mode; in
the case of the Sleep mode, all clocks are halted.

In most power managed modes, a clock is provided to
the peripherals. That clock should be from the primary
clock source, the secondary clock (Timer1 oscillator at
32.768 kHz) or the INTOSC source. See Section 2.7
“Clock Sources and Oscillator Switching” for
additional information.

In most cases, the speed that the master clocks SPI
data is not important; however, this should be
evaluated for each system.

If MSSP interrupts are enabled, they can wake the
controller from Sleep mode, or one of the Idle modes,
when the master completes sending data. If an exit
from Sleep or Idle mode is not desired, MSSP
interrupts should be disabled.

If the Sleep mode is selected, all module clocks are
halted and the transmission/reception will remain in
that state until the devices wakes. After the device
returns to Run mode, the module will resume
transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift
register operates asynchronously to the device. This
allows the device to be placed in any power managed
mode and data to be shifted into the SPI Transmit/
Receive Shift register. When all 8 bits have been
received, the MSSP interrupt flag bit will be set and if
enabled, will wake the device.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the
current transfer.

17.3.10 BUS MODE COMPATIBILITY

Table 17-1 shows the compatibility between the
standard SPI modes and the states of the CKP and
CKE control bits. 

TABLE 17-1: SPI BUS MODES          

There is also a SMP bit which controls when the data is
sampled.

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION       

Standard SPI Mode 
Terminology

Control Bits State

CKP CKE

0, 0 0 1

0, 1 0 0

1, 0 1 1

1, 1 1 0

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset 
Values 

on page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 49

PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 52

PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 52

IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 52

TRISA PORTA Data Direction Register 52

TRISC PORTC Data Direction Register 52

SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register 50

SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 50

SSPSTAT SMP CKE D/A P S R/W UA BF 50

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI mode.
Note 1: These bits are unimplemented in PIC18F2X8X devices; always maintain these bits clear.
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 195
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FIGURE 17-10: I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS) 
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17.4.4 CLOCK STRETCHING

Both 7 and 10-bit Slave modes implement automatic
clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to
be enabled during receives. Setting SEN will cause
the SCL pin to be held low at the end of each data
receive sequence.

17.4.4.1 Clock Stretching for 7-bit Slave 
Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the
ninth clock at the end of the ACK sequence if the BF
bit is set, the CKP bit in the SSPCON1 register is
automatically cleared, forcing the SCL output to be
held low. The CKP being cleared to ‘0’ will assert the
SCL line low. The CKP bit must be set in the user’s
ISR before reception is allowed to continue. By holding
the SCL line low, the user has time to service the ISR
and read the contents of the SSPBUF before the
master device can initiate another receive sequence.
This will prevent buffer overruns from occurring (see
Figure 17-13).

17.4.4.2 Clock Stretching for 10-bit Slave 
Receive Mode (SEN = 1)

In 10-bit Slave Receive mode during the address
sequence, clock stretching automatically takes place
but CKP is not cleared. During this time, if the UA bit is
set after the ninth clock, clock stretching is initiated.
The UA bit is set after receiving the upper byte of the
10-bit address and following the receive of the second
byte of the 10-bit address with the R/W bit cleared to
‘0’. The release of the clock line occurs upon updating
SSPADD. Clock stretching will occur on each data
receive sequence as described in 7-bit mode.

17.4.4.3 Clock Stretching for 7-bit Slave 
Transmit Mode 

7-bit Slave Transmit mode implements clock stretching
by clearing the CKP bit after the falling edge of the
ninth clock if the BF bit is clear. This occurs regardless
of the state of the SEN bit.

The user’s ISR must set the CKP bit before transmis-
sion is allowed to continue. By holding the SCL line
low, the user has time to service the ISR and load the
contents of the SSPBUF before the master device can
initiate another transmit sequence (see Figure 17-9).

17.4.4.4 Clock Stretching for 10-bit Slave 
Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is
controlled during the first two address sequences by
the state of the UA bit, just as it is in 10-bit Slave
Receive mode. The first two addresses are followed
by a third address sequence which contains the high-
order bits of the 10-bit address and the R/W bit set to
‘1’. After the third address sequence is performed, the
UA bit is not set, the module is now configured in
Transmit mode and clock stretching is controlled by
the BF flag as in 7-bit Slave Transmit mode (see
Figure 17-11).

Note 1: If the user reads the contents of the
SSPBUF before the falling edge of the
ninth clock, thus clearing the BF bit, the
CKP bit will not be cleared and clock
stretching will not occur.

2: The CKP bit can be set in software
regardless of the state of the BF bit. The
user should be careful to clear the BF bit
in the ISR before the next receive
sequence in order to prevent an overflow
condition.

Note: If the user polls the UA bit and clears it by
updating the SSPADD register before the
falling edge of the ninth clock occurs and if
the user hasn’t cleared the BF bit by read-
ing the SSPBUF register before that time,
then the CKP bit will still NOT be asserted
low. Clock stretching on the basis of the
state of the BF bit only occurs during a
data sequence, not an address sequence.

Note 1: If the user loads the contents of SSPBUF,
setting the BF bit before the falling edge of
the ninth clock, the CKP bit will not be
cleared and clock stretching will not occur.

2: The CKP bit can be set in software
regardless of the state of the BF bit.
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FIGURE 17-13: I2C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)   
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17.4.17.3 Bus Collision During a Stop 
Condition

Bus collision occurs during a Stop condition if:

a) After the SDA pin has been deasserted and
allowed to float high, SDA is sampled low after
the BRG has timed out.

b) After the SCL pin is deasserted, SCL is sampled
low before SDA goes high.

The Stop condition begins with SDA asserted low.
When SDA is sampled low, the SCL pin is allowed to
float. When the pin is sampled high (clock arbitration),
the Baud Rate Generator is loaded with SSPADD<6:0>
and counts down to 0. After the BRG times out, SDA is
sampled. If SDA is sampled low, a bus collision has
occurred. This is due to another master attempting to
drive a data ‘0’ (Figure 17-31). If the SCL pin is
sampled low before SDA is allowed to float high, a bus
collision occurs. This is another case of another master
attempting to drive a data ‘0’ (Figure 17-32). 

FIGURE 17-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)      

FIGURE 17-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)      
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23.9 Baud Rate Setting

All nodes on a given CAN bus must have the same
nominal bit rate. The CAN protocol uses Non-Return-
to-Zero (NRZ) coding which does not encode a clock
within the data stream. Therefore, the receive clock
must be recovered by the receiving nodes and
synchronized to the transmitter’s clock.

As oscillators and transmission time may vary from
node to node, the receiver must have some type of
Phase Lock Loop (PLL) synchronized to data transmis-
sion edges to synchronize and maintain the receiver
clock. Since the data is NRZ coded, it is necessary to
include bit stuffing to ensure that an edge occurs at
least every six bit times to maintain the Digital Phase
Lock Loop (DPLL) synchronization.

The bit timing of the PIC18F2585/2680/4585/4680 is
implemented using a DPLL that is configured to syn-
chronize to the incoming data and provides the nominal
timing for the transmitted data. The DPLL breaks each
bit time into multiple segments made up of minimal
periods of time called the Time Quanta (TQ).

Bus timing functions executed within the bit time frame,
such as synchronization to the local oscillator, network
transmission delay compensation and sample point
positioning, are defined by the programmable bit timing
logic of the DPLL.

All devices on the CAN bus must use the same bit rate.
However, all devices are not required to have the same
master oscillator clock frequency. For the different clock
frequencies of the individual devices, the bit rate has to
be adjusted by appropriately setting the baud rate
prescaler and number of Time Quanta in each segment.

The Nominal Bit Rate is the number of bits transmitted
per second, assuming an ideal transmitter with an ideal
oscillator, in the absence of resynchronization. The
nominal bit rate is defined to be a maximum of 1 Mb/s.

The Nominal Bit Time is defined as: 

EQUATION 23-1:

The Nominal Bit Time can be thought of as being
divided into separate, non-overlapping time segments.
These segments (Figure 23-4) include:

• Synchronization Segment (Sync_Seg)
• Propagation Time Segment (Prop_Seg)

• Phase Buffer Segment 1 (Phase_Seg1)
• Phase Buffer Segment 2 (Phase_Seg2)

The time segments (and thus the Nominal Bit Time) are
in turn made up of integer units of time called Time
Quanta or TQ (see Figure 23-4). By definition, the
Nominal Bit Time is programmable from a minimum of
8 TQ to a maximum of 25 TQ. Also by definition, the
minimum Nominal Bit Time is 1 μs, corresponding to a
maximum 1 Mb/s rate. The actual duration is given by
the following relationship.

EQUATION 23-2:

The Time Quantum is a fixed unit derived from the
oscillator period. It is also defined by the programmable
baud rate prescaler, with integer values from 1 to 64, in
addition to a fixed divide-by-two for clock generation.
Mathematically, this is:

EQUATION 23-3:

where FOSC is the clock frequency, TOSC is the
corresponding oscillator period and BRP is an integer
(0 through 63) represented by the binary values of
BRGCON1<5:0>. The equation above refers to the
effective clock frequency used by the microcontroller. If,
for example, a 10 MHz crystal in HS mode is used, then
the FOSC = 10 MHz and TOSC = 100 ns. If the same
10 MHz crystal is used in HS-PLL mode, then the
effective frequency is FOSC = 40 MHz and TOSC = 25 ns.

FIGURE 23-4: BIT TIME PARTITIONING 

TBIT = 1/Nominal Bit Rate

Nominal Bit Time= TQ * (Sync_Seg + Prop_Seg +
Phase_Seg1 + Phase_Seg2)

TQ (μs) = (2 * (BRP + 1))/FOSC (MHz)
or 

TQ (μs) = (2 * (BRP + 1)) * TOSC (μs)

Input 

Sync Propagation
Segment

Phase
Segment 1

Phase
Segment 2

Sample Point

TQ

Nominal Bit Time

Bit
Time
Intervals

Signal

Segment
Sync
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23.9.2 TIME QUANTA

As already mentioned, the Time Quanta is a fixed unit
derived from the oscillator period and baud rate
prescaler. Its relationship to TBIT and the Nominal Bit
Rate is shown in Example 23-6.

EXAMPLE 23-6: CALCULATING TQ, 
NOMINAL BIT RATE AND 
NOMINAL BIT TIME

The frequencies of the oscillators in the different nodes
must be coordinated in order to provide a system wide
specified nominal bit time. This means that all oscilla-
tors must have a TOSC that is an integral divisor of TQ.
It should also be noted that although the number of TQ

is programmable from 4 to 25, the usable minimum is
8 TQ. There is no assurance that a bit time of less than
8 TQ in length will operate correctly.

23.9.3 SYNCHRONIZATION SEGMENT

This part of the bit time is used to synchronize the
various CAN nodes on the bus. The edge of the input
signal is expected to occur during the sync segment.
The duration is 1 TQ.

23.9.4 PROPAGATION SEGMENT 

This part of the bit time is used to compensate for phys-
ical delay times within the network. These delay times
consist of the signal propagation time on the bus line
and the internal delay time of the nodes. The length of
the Propagation Segment can be programmed from
1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.

23.9.5 PHASE BUFFER SEGMENTS

The phase buffer segments are used to optimally
locate the sampling point of the received bit within the
nominal bit time. The sampling point occurs between
Phase Segment 1 and Phase Segment 2. These
segments can be lengthened or shortened by the
resynchronization process. The end of Phase Segment
1 determines the sampling point within a bit time.
Phase Segment 1 is programmable from 1 TQ to 8 TQ

in duration. Phase Segment 2 provides delay before
the next transmitted data transition and is also
programmable from 1 TQ to 8 TQ in duration. However,
due to IPT requirements, the actual minimum length of
Phase Segment 2 is 2 TQ, or it may be defined to be
equal to the greater of Phase Segment 1 or the
Information Processing Time (IPT). The sampling point
should be as late as possible or approximately 80% of
the bit time.

23.9.6 SAMPLE POINT

The sample point is the point of time at which the bus
level is read and the value of the received bit is
determined. The sampling point occurs at the end of
Phase Segment 1. If the bit timing is slow and contains
many TQ, it is possible to specify multiple sampling of
the bus line at the sample point. The value of the
received bit is determined to be the value of the major-
ity decision of three values. The three samples are
taken at the sample point and twice before, with a time
of TQ/2 between each sample.

23.9.7 INFORMATION PROCESSING TIME

The Information Processing Time (IPT) is the time
segment starting at the sample point that is reserved
for calculation of the subsequent bit level. The CAN
specification defines this time to be less than or equal
to 2 TQ. The PIC18F2585/2680/4585/4680 devices
define this time to be 2 TQ. Thus, Phase Segment 2
must be at least 2 TQ long.

TQ (μs) = (2 * (BRP + 1))/FOSC (MHz) 

TBIT (μs) = TQ (μs) * number of TQ per bit interval

Nominal Bit Rate (bits/s) = 1/TBIT

This frequency (FOSC) refers to the effective
frequency used. If, for example, a 10 MHz external
signal is used along with a PLL, then the effective
frequency will be 4 x 10 MHz which equals 40 MHz.

CASE 1:

For FOSC = 16 MHz, BRP<5:0> = 00h and 
Nominal Bit Time = 8 TQ:

TQ = (2 * 1)/16 = 0.125 μs (125 ns)

TBIT = 8 * 0.125 = 1 μs (10-6s)

Nominal Bit Rate = 1/10-6 = 106 bits/s (1 Mb/s)

CASE 2:

For FOSC = 20 MHz, BRP<5:0> = 01h and 
Nominal Bit Time = 8 TQ:

TQ = (2 * 2)/20 = 0.2 μs (200 ns) 

TBIT = 8 * 0.2 = 1.6 μs (1.6 * 10-6s)

Nominal Bit Rate = 1/1.6 * 10-6s = 625,000 bits/s
(625 Kb/s)

CASE 3:

For FOSC = 25 MHz, BRP<5:0> = 3Fh and 
Nominal Bit Time = 25 TQ:

TQ = (2 * 64)/25 = 5.12 μs

TBIT = 25 * 5.12 = 128 μs (1.28 * 10-4s)

Nominal Bit Rate = 1/1.28 * 10-4 = 7813 bits/s
(7.8 Kb/s)
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REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)                
R/P-0 R/P-0 U-0 U-0 R/P-0 R/P-1 R/P-1 R/P-1

IESO FCMEN — — FOSC3 FOSC2 FOSC1 FOSC0

bit 7 bit 0

bit 7 IESO: Internal/External Oscillator Switchover bit

1 = Oscillator Switchover mode enabled
0 = Oscillator Switchover mode disabled

bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit
1 = Fail-Safe Clock Monitor enabled
0 = Fail-Safe Clock Monitor disabled

bit 5-4 Unimplemented: Read as ‘0’

bit 3-0 FOSC3:FOSC0: Oscillator Selection bits

11xx = External RC oscillator, CLKO function on RA6
101x = External RC oscillator, CLKO function on RA6
1001 = Internal oscillator block, CLKO function on RA6, port function on RA7
1000 = Internal oscillator block, port function on RA6 and RA7
0111 = External RC oscillator, port function on RA6
0110 = HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1)
0101 = EC oscillator, port function on RA6
0100 = EC oscillator, CLKO function on RA6
0011 = External RC oscillator, CLKO function on RA6
0010 = HS oscillator
0001 = XT oscillator
0000 = LP oscillator

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed u = Unchanged from programmed state
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REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)              

REGISTER 24-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)                

R/P-1 U-0 U-0 U-0 U-0 R/P-0 R/P-1 U-0

MCLRE — — — — LPT1OSC PBADEN —

bit 7 bit 0

bit 7 MCLRE: MCLR Pin Enable bit 
1 = MCLR pin enabled; RE3 input pin disabled
0 = RE3 input pin enabled; MCLR disabled

bit 6-3 Unimplemented: Read as ‘0’

bit 2 LPT1OSC: Low-Power Timer 1 Oscillator Enable bit

1 = Timer1 configured for low-power operation
0 = Timer1 configured for higher power operation

bit 1 PBADEN: PORTB A/D Enable bit 
(Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.)
1 = PORTB<4:0> pins are configured as analog input channels on Reset
0 = PORTB<4:0> pins are configured as digital I/O on Reset

bit 0 Unimplemented: Read as ‘0’

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed u = Unchanged from programmed state

R/P-1 R/P-0 R/P-0 R/P-0 U-0 R/P-1 U-0 R/P-1

DEBUG XINST BBSIZ1 BBSIZ2 — LVP — STVREN

bit 7 bit 0

bit 7 DEBUG: Background Debugger Enable bit
1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 
0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug

bit 6 XINST: Extended Instruction Set Enable bit
1 = Instruction set extension and Indexed Addressing mode enabled 
0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)

bit 5 BBSIZ1: Boot Block Size Select Bit 1

11 = 4K words (8 Kbytes) boot block
10 = 4K words (8 Kbytes) boot block

bit 4 BBSIZ2: Boot Block Size Select Bit 0
01 = 2K words (4 Kbytes) boot block
00 = 1K words (2 Kbytes) boot block

bit 3 Unimplemented: Read as ‘0’ 

bit 2 LVP: Single-Supply ICSP Enable bit

1 = Single-Supply ICSP enabled 
0 = Single-Supply ICSP disabled 

bit 1 Unimplemented: Read as ‘0’ 

bit 0 STVREN: Stack Full/Underflow Reset Enable bit
1 = Stack full/underflow will cause Reset 
0 = Stack full/underflow will not cause Reset 

Legend:

R = Readable bit C = Clearable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed u = Unchanged from programmed state
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BNC Branch if Not Carry 

Syntax: BNC    n

Operands: -128 ≤ n ≤ 127

Operation: if Carry bit is ‘0’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0011 nnnn nnnn

Description: If the Carry bit is ‘0’, then the program 
will branch.

The 2’s complement number ‘2n’ is 
added to the PC. Since the PC will 
have incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is then a 
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:

If Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

No 
operation

Example: HERE BNC Jump

Before Instruction
PC = address (HERE)

After Instruction
If Carry = 0;

PC = address (Jump)
If Carry = 1;

PC = address (HERE + 2)

BNN Branch if Not Negative 

Syntax: BNN    n

Operands: -128 ≤ n ≤ 127

Operation: if Negative bit is ‘0’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0111 nnnn nnnn

Description: If the Negative bit is ‘0’, then the 
program will branch.

The 2’s complement number ‘2n’ is 
added to the PC. Since the PC will have 
incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is then a 
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:

If Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

No 
operation

Example: HERE BNN Jump

Before Instruction
PC = address (HERE)

After Instruction
If Negative = 0;

PC = address (Jump)
If Negative = 1;

PC = address (HERE + 2)
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BTG Bit Toggle f

Syntax: BTG  f, b {,a}

Operands: 0 ≤ f ≤ 255
0 ≤ b < 7
a ∈ [0,1]

Operation: (f<b>) → f<b>

Status Affected: None

Encoding: 0111 bbba ffff ffff

Description: Bit ‘b’ in data memory location ‘f’ is 
inverted.

If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank (default). 

If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset addressing 
mode whenever f ≤ 95 (5Fh). See 
Section 25.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write
register ‘f’

Example: BTG PORTC, 4, 0

Before Instruction:
PORTC = 0111 0101 [75h]

After Instruction:
PORTC = 0110 0101 [65h]

BOV Branch if Overflow

Syntax: BOV    n

Operands: -128 ≤ n ≤ 127

Operation: if Overflow bit is ‘1’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0100 nnnn nnnn

Description: If the Overflow bit is ‘1’, then the 
program will branch.

The 2’s complement number ‘2n’ is 
added to the PC. Since the PC will 
have incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is then a 
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:

If Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

No 
operation

Example: HERE BOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If Overflow = 1;

PC = address (Jump)
If Overflow = 0;

PC = address (HERE + 2)
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TBLWT Table Write

Syntax: TBLWT ( *; *+; *-; +*)

Operands: None

Operation: if TBLWT*,
(TABLAT) → Holding Register;
TBLPTR – No Change;
if TBLWT*+,
(TABLAT) → Holding Register;
(TBLPTR) + 1 → TBLPTR;
if TBLWT*-,
(TABLAT) → Holding Register;
(TBLPTR) – 1 → TBLPTR;
if TBLWT+*,
(TBLPTR) + 1 → TBLPTR;

(TABLAT) → Holding Register;

Status Affected: None

Encoding: 0000 0000 0000 11nn
nn=0 * 
  =1 *+
  =2 *-
  =3 +*

Description: This instruction uses the 3 LSBs of the 
TBLPTR to determine which of the 
8 holding registers the TABLAT is written to. 
The holding registers are used to program 
the contents of Program Memory (P.M.). 
(Refer to Section 6.0 “Flash Program 
Memory” for additional details on 
programming Flash memory.)

The TBLPTR (a 21-bit pointer) points to 
each byte in the program memory. TBLPTR 
has a 2-MBtye address range. The LSb of 
the TBLPTR selects which byte of the 
program memory location to access. 

TBLPTR[0] = 0: Least Significant Byte 
of Program Memory 
Word

TBLPTR[0] = 1: Most Significant Byte of 
Program Memory Word

The TBLWT instruction can modify the 
value of TBLPTR as follows:

• no change
• post-increment
• post-decrement
• pre-increment

Words: 1

Cycles: 2 

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

(Read
TABLAT)

No 
operation

No 
operation
(Write to 
Holding 

Register )

TBLWT Table Write  (Continued)

Example 1: TBLWT *+;

Before Instruction
TABLAT = 55h
TBLPTR = 00A356h
HOLDING REGISTER 
(00A356h) = FFh

After Instructions (table write completion)
TABLAT = 55h
TBLPTR = 00A357h
HOLDING REGISTER 
(00A356h) = 55h

Example 2: TBLWT +*;

Before Instruction
TABLAT = 34h
TBLPTR = 01389Ah
HOLDING REGISTER 
(01389Ah) = FFh
HOLDING REGISTER 
(01389Bh) = FFh

After Instruction (table write completion)
TABLAT = 34h
TBLPTR = 01389Bh
HOLDING REGISTER 
(01389Ah) = FFh
HOLDING REGISTER 
(01389Bh) = 34h
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25.2.2 EXTENDED INSTRUCTION SET   

ADDFSR Add Literal to FSR 

Syntax: ADDFSR   f, k

Operands: 0 ≤ k ≤ 63
f ∈ [ 0, 1, 2 ]

Operation: FSR(f) + k → FSR(f)

Status Affected: None

Encoding: 1110 1000 ffkk kkkk

Description: The 6-bit literal ‘k’ is added to the 
contents of the FSR specified by ‘f’. 

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to 
FSR

Example: ADDFSR 2, 23h

Before Instruction
FSR2 = 03FFh

After Instruction
FSR2 = 0422h

ADDULNK Add Literal to FSR2 and Return

Syntax: ADDULNK   k

Operands: 0 ≤ k ≤ 63

Operation: FSR2 + k → FSR2,
PC = (TOS)

Status Affected: None

Encoding: 1110 1000 11kk kkkk

Description: The 6-bit literal ‘k’ is added to the 
contents of FSR2. A RETURN is then 
executed by loading the PC with the 
TOS. 

The instruction takes two cycles to 
execute; a NOP is performed during the 
second cycle.

This may be thought of as a special case 
of the ADDFSR instruction, where f = 3 
(binary ‘11’); it operates only on FSR2. 

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to 
FSR

No 
Operation

No 
Operation

No 
Operation

No 
Operation

Example: ADDULNK 23h

Before Instruction
FSR2 = 03FFh
PC = 0100h
TOS = 02AFh

After Instruction
FSR2 = 0422h
PC = 02AFh
TOS = TOS – 1

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).
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FIGURE 27-3: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

TABLE 27-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS   

VLVD

HLVDIF

VDD

(HLVDIF set by hardware)

(HLVDIF can be 
cleared in software)

Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for industrial 

Param 
No.

Symbol Characteristic Min Typ† Max Units Conditions

D420 HLVD Voltage on VDD 
Transition High to Low

LVV = 0000 2.12 2.17 2.22 V

LVV = 0001 2.18 2.23 2.28 V

LVV = 0010 2.31 2.36 2.42 V

LVV = 0011 2.38 2.44 2.49 V

LVV = 0100 2.54 2.60 2.66 V

LVV = 0101 2.72 2.79 2.85 V

LVV = 0110 2.82 2.89 2.95 V

LVV = 0111 3.05 3.12 3.19 V

LVV = 1000 3.31 3.39 3.47 V

LVV = 1001 3.46 3.55 3.63 V

LVV = 1010 3.63 3.71 3.80 V

LVV = 1011 3.81 3.90 3.99 V

LVV = 1100 4.01 4.11 4.20 V

LVV = 1101 4.23 4.33 4.43 V

LVV = 1110 4.48 4.59 4.69 V

LVV = 1111 1.14 1.20 1.26 V

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.
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