

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2585t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TXB1SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	54, 283
TXB1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	54, 283
TXB1CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	-	TXPRI1	TXPRI0	0000 0-00	54, 282
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	XXXX XXXX	54, 284
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	XXXX XXXX	54, 284
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	XXXX XXXX	54, 284
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	XXXX XXXX	54, 284
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	xxxx xxxx	54, 284
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	XXXX XXXX	54, 284
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	XXXX XXXX	55, 284
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	XXXX XXXX	55, 284
TXB2DLC	_	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	55, 285
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 284
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 283
TXB2SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx x-xx	55, 283
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxx- x-xx	55, 283
TXB2CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0-00	55, 282
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 304
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 304
RXM1SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 304
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 304
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 304
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 304
RXM0SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 304
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 303
RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF5SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 302
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302
RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF4SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	55, 302
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302
RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF3SIDL	SID2	SID1	SID0	—	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 302
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302
RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF2SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	55, 302
RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302

TABLE 5-2: REGISTER FILE SUMMARY (PIC18F2585/2680/4585/4680) (CONTINUED	TABLE 5-2:	REGISTER FILE SUMMARY	(PIC18F2585/2680/4585/4680)	(CONTINUED)
---	------------	-----------------------	-----------------------------	-------------

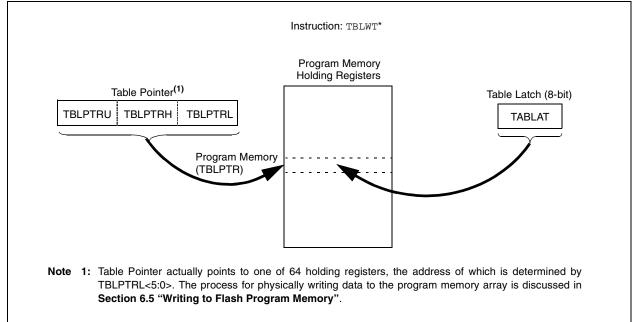
Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition **Note 1:** Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X8X devices and are read as '0'. Reset values are shown for PIC18F4X8X devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.


6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X8X devices only.

FIGURE 6-2: TABLE WRITE OPERATION

6.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 6-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

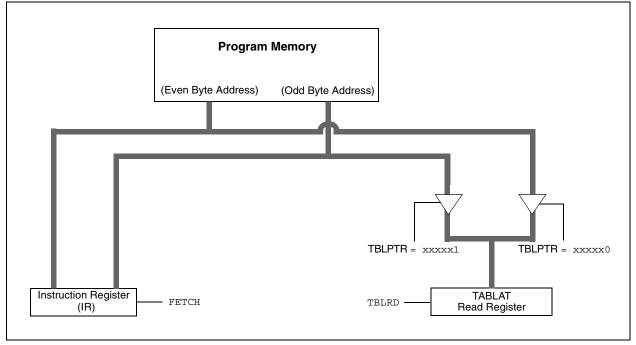
The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see **Section 24.0 "Special Features of the CPU"**). When clear, memory selection access is determined by EEPGD. The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WREN bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is									
	read as '1'. This can indicate that a write									
	operation was prematurely terminated by									
	a Reset, or a write operation was									
	attempted improperly.									

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note: The EEIF Interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.


6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
_	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVF	WORD ODD		
		_		

EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW MOVWF	D'64	; number of bytes in erase block
	MOVWF	COINTED	
		COUNTER	
	MOVLW	BUFFER ADDR HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER ADDR LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
READ_BLOCK			
	TBLRD*+		; read into TABLAT, and inc
	MOVF	TABLAT, W	; get data
	MOVWF	POSTINCO	; store data
	DECFSZ	COUNTER	; done?
	BRA	READ_BLOCK	; repeat
MODIFY_WORD			
	MOVLW	DATA_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	DATA_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	NEW_DATA_LOW	; update buffer word
	MOVWF	POSTINCO	
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK			
	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
Pomired	MOVLW	55h	, write EEb
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh FECONO	write Ollah
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-	ייסדיי סררג משפעונס	; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
איי ההההוום החדמא	MOVWF	FSROL	
WRITE_BUFFER_BAG		D' 64	; number of bytes in holding register
	MOVLW MOVWF	D'64 COUNTER	, number of bytes in notating register
שפדידה פעידה יי∩ טו		COUNTER	
WRITE_BYTE_TO_H	MOVF	POSTINCO, W	; get low byte of buffer data
	MOVF	TABLAT	; present data to table latch
	TBLWT+*	1111111111	; write data, perform a short write
	IDUMIT.		; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until buffers are full
	BRA	WRITE BYTE TO HREGS	, roop ander parterb are rain
	2141		

RCON Register 9.5

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

REGISTER 9-13:	RCON: RESET CONTROL REGISTER											
	R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0				
	IPEN	SBOREN	_	RI	TO	PD	POR	BOR				
	bit 7 bit											
bit 7	IPEN: Interrupt Priority Enable bit											
		e priority level										
	0 = Disabl	e priority leve	ls on interru	pts (PIC16C)	XX Compa	tibility moc	le)					
bit 6	SBOREN:	BOR Softwar	e Enable bit									
	For details	of bit operation	on, see Regi	ster 4-1.								
bit 5	Unimplem	ented: Read	as '0'									
bit 4	RI: RESET	Instruction FI	ag bit									
	For details	of bit operation	on, see Regi	ster 4-1.								
bit 3	TO: Watch	dog Time-out	Flag bit									
	For details	of bit operation	on, see Regi	ster 4-1.								
bit 2	PD: Power	-down Detect	ion Flag bit									
	For details	of bit operation	on, see Regi	ster 4-1.								
bit 1	POR: Pow	er-on Reset S	Status bit									
	For details	of bit operation	on, see Regi	ster 4-1.								
bit 0	BOR: Brow	vn-out Reset	Status bit									
	For details	For details of bit operation, see Register 4-1.										
	Legend:											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.0 CAPTURE/COMPARE/PWM (CCP1) MODULES

PIC18F2585/2680 devices have one CCP1 module. PIC18F4585/4680 devices have two CCP1 (Capture/Compare/PWM) modules. CCP1, discussed in this chapter, implements standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

ECCP1 implements an Enhanced PWM mode. The ECCP1 implementation is discussed in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP1) Module". The CCP1 module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP1 module operation in the following sections is described with respect to CCP1, but is equally applicable to ECCP1.

Capture and Compare operations described in this chapter apply to all standard and Enhanced CCP1 modules. The operations of PWM mode, described in **Section 15.4 "PWM Mode**", apply to ECCP1 only.

REGISTER 15-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 DC1B1:DC1B0: PWM Duty Cycle bit 1 and bit 0 for CCP1 Module

Capture mode: Unused. Compare mode: Unused. <u>PWM mode:</u>

These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs (DC19:DC12) of the duty cycle are found in ECCPR1L.

bit 3-0 CCP1M3:CCP1M0: CCP1 Module Mode Select bits

- 0000 = Capture/Compare/PWM disabled (resets CCP1 module)
- 0001 = Reserved
- 0010 = Compare mode, toggle output on match (CCP1IF bit is set)
- 0011 = Reserved
- 0100 = Capture mode, every falling edge or CAN message received (time-stamp)⁽¹⁾
- 0101 = Capture mode, every rising edge or CAN message received (time-stamp)⁽¹⁾
- 0110 = Capture mode, every 4th rising edge or every 4th CAN message received (time-stamp)⁽¹⁾
- 0111 = Capture mode, every 16th rising edge or every 16th CAN message received (time-stamp)⁽¹⁾
- 1000 = Compare mode: initialize CCP1 pin low; on compare match, force CCP1 pin high (CCPIF bit is set)
- 1001 = Compare mode: initialize CCP pin high; on compare match, force CCP1 pin low (CCPIF bit is set)
- 1010 = Compare mode: generate software interrupt on compare match (CCPIF bit is set, CCP1 pin reflects I/O state)
- 1011 = Compare mode: trigger special event, reset timer (TMR1 or TMR3, CCP1IF bit is set) 11xx = PWM mode
 - Note 1: Selected by CANCAP (CIOCON<4>) bit; overrides the CCP1 input pin source.

Legend:				
R = Readabl	e bit W =	Writable bit U = Un	implemented bit, r	ead as '0'
-n = Value at	POR '1' =	Bit is set '0' = Bit	t is cleared x =	= Bit is unknown

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	49	
RCON	IPEN	SBOREN ⁽²⁾	-	RI	TO	PD	POR	BOR	50	
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52	
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52	
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52	
TRISB	PORTB Da	ta Direction R	egister						52	
TRISC	PORTC Da	PORTC Data Direction Register								
TMR2	Timer2 Mod	lule Register							50	
PR2	Timer2 Mod	ule Period Re	egister						50	
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	50	
CCPR1L ⁽¹⁾	Capture/Co	mpare/PWM	Register 1 (L	SB)					51	
CCPR1H ⁽¹⁾	Capture/Co	mpare/PWM	Register 1 (N	/ISB)					51	
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	51	
ECCPR1L ⁽¹⁾	Enhanced Capture/Compare/PWM Register 1 (LSB)									
ECCPR1H ⁽¹⁾	Enhanced (Capture/Comp	are/PWM R	egister 1 (MS	SB)				51	
ECCP1CON ⁽¹⁾	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	51	

TABLE 15-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

Note 1: These registers are unimplemented on PIC18F2X8X devices.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'.

In addition to the expanded range of modes available through the CCP1CON register, the ECCP1 module has two additional registers associated with Enhanced PWM operation and auto-shutdown features. They are:

- ECCP1DEL (Dead-band delay)
- ECCP1AS (Auto-shutdown configuration)

16.1 ECCP1 Outputs and Configuration

The Enhanced CCP1 module may have up to four PWM outputs, depending on the selected operating mode. These outputs, designated P1A through P1D, are multiplexed with I/O pins on PORTC and PORTD. The outputs that are active depend on the CCP1 operating mode selected. The pin assignments are summarized in Table 16-1.

To configure the I/O pins as PWM outputs, the proper PWM mode must be selected by setting the EPWM1M1:EPWM1M0 and CCP1M3:CCP1M0 bits. The appropriate TRISC and TRISD direction bits for the port pins must also be set as outputs.

16.1.1 ECCP1 MODULES AND TIMER RESOURCES

Like the standard CCP1 modules, the ECCP1 module can utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available for modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode. Interactions between the standard and Enhanced CCP1 modules are identical to those described for standard CCP1 modules. Additional details on timer resources are provided in Section 15.1.1 "CCP1 Modules and Timer Resources".

16.2 Capture and Compare Modes

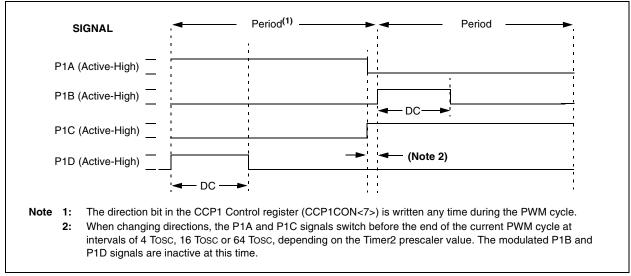
Except for the operation of the special event trigger discussed below, the Capture and Compare modes of the ECCP1 module are identical in operation to that of CCP1. These are discussed in detail in Section 15.2 "Capture Mode" and Section 15.3 "Compare Mode".

16.2.1 SPECIAL EVENT TRIGGER

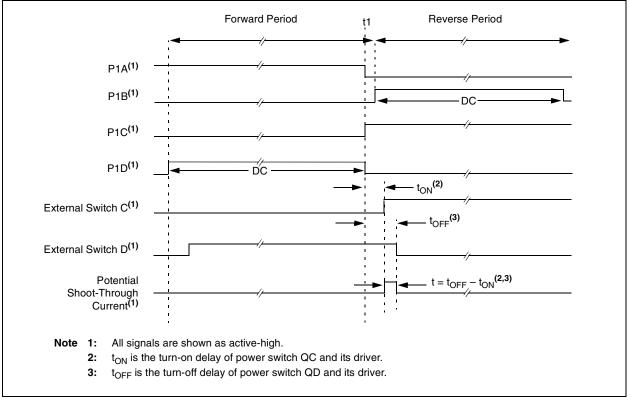
The special event trigger output of ECCP1 resets the TMR1 or TMR3 register pair, depending on which timer resource is currently selected. This allows the ECCP1 register to effectively be a 16-bit programmable period register for Timer1 or Timer3. The special event trigger for ECCP1 can also start an A/D conversion. In order to start the conversion, the A/D converter must be previously enabled.

16.3 Standard PWM Mode

When configured in Single Output mode, the ECCP1 module functions identically to the standard CCP1 module in PWM mode, as described in **Section 15.4 "PWM Mode"**. This is also sometimes referred to as "Compatible CCP1" mode, as in Table 16-1.


Note: When setting up single output PWM operations, users are free to use either of the processes described in Section 15.4.4 "Setup for PWM Operation" or Section 16.4.9 "Setup for PWM Operation". The latter is more generic but will work for either single or multi-output PWM.

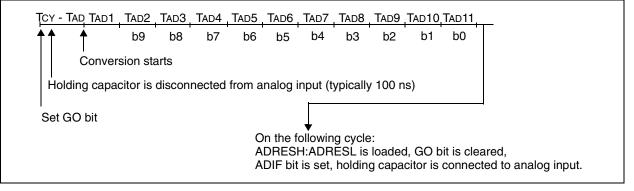
ECCP1 Mode	CCP1CON Configuration	n RD4 RD5		RD6	RD7						
All PIC18F4585/4680 devices:											
Compatible CCP1	00xx 11xx	CCP1	RD5/PSP5	RD6/PSP6	RD7/PSP7						
Dual PWM	10xx 11xx	P1A	P1B	RD6/PSP6	RD7/PSP7						
Quad PWM	x1xx 11xx	P1A	P1B	P1C	P1D						


TABLE 16-1: PIN ASSIGNMENTS FOR VARIOUS ECCP1 MODES

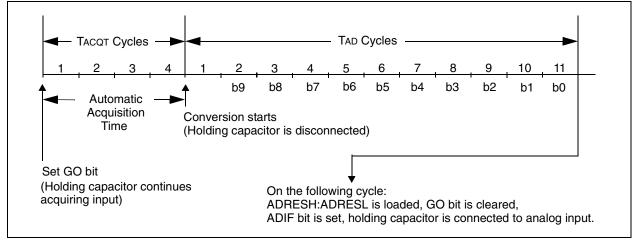
Legend: x = Don't care. Shaded cells indicate pin assignments not used by ECCP1 in a given mode.

19.6 A/D Conversions

Figure 19-3 shows the operation of the A/D converter after the GO bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.


Figure 19-4 shows the operation of the A/D converter after the GO bit has been set and the ACQT2:ACQT0 bits are set to '010' and selecting a 4 TAD acquisition time before the conversion starts.

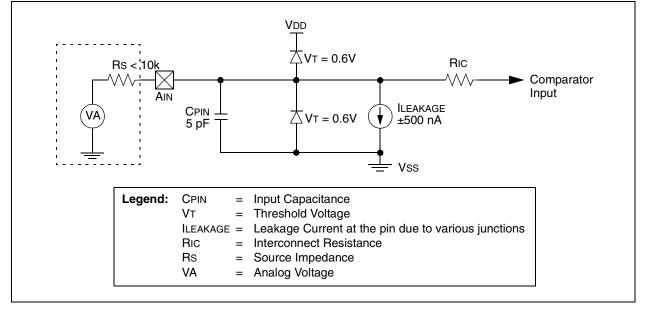
Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 19-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 19-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)



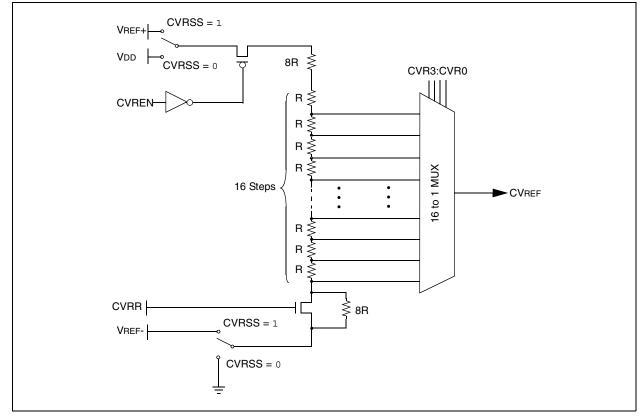
20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 20-4: COMPARATOR ANALOG INPUT MODEL

TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMCON ⁽³⁾	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	51
CVRCON ⁽³⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	52
IPR2	OSCFIP	CMIP ⁽²⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽²⁾	51
PIR2	OSCFIF	CMIF ⁽²⁾	—	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽²⁾	51
PIE2	OSCFIE	CMIE ⁽²⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽²⁾	52
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data Output Register						52
TRISA TRISA7 ⁽¹⁾ TRISA6 ⁽¹⁾ PORTA Data Direction Register								52	

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA pins are enabled based on oscillator configuration.

2: These bits are available in PIC18F4X8X devices and reserved in PIC18F2X8X devices.

3: These registers are unimplemented on PIC18F2X8X devices.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

21.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 21-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 27.0 "Electrical Characteristics"**.

21.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

21.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA0 pin by clearing bit CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit CVRR (CVRCON<5>). The CVR value select bits are also cleared.

21.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA0 pin if the TRISA<0> bit and the CVROE bit are both set. Enabling the voltage reference output onto the RA0 pin, with an input signal present, will increase current consumption. Connecting RA0 as a digital output with CVRSS enabled will also increase current consumption.

The RA0 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 21-2 shows an example buffering technique.

23.15.5 BUS ACTIVITY WAKE-UP INTERRUPT

When the PIC18F2585/2680/4585/4680 devices are in Sleep mode and the bus activity wake-up interrupt is enabled, an interrupt will be generated and the WAKIF bit will be set when activity is detected on the CAN bus. This interrupt causes the PIC18F2585/2680/4585/ 4680 devices to exit Sleep mode. The interrupt is reset by the MCU, clearing the WAKIF bit.

23.15.6 ERROR INTERRUPT

When the error interrupt is enabled, an interrupt is generated if an overflow condition occurs or if the error state of the transmitter or receiver has changed. The error flags in COMSTAT will indicate one of the following conditions.

23.15.6.1 Receiver Overflow

An overflow condition occurs when the MAB has assembled a valid received message (the message meets the criteria of the acceptance filters) and the receive buffer associated with the filter is not available for loading of a new message. The associated RXBnOVFL bit in the COMSTAT register will be set to indicate the overflow condition. This bit must be cleared by the MCU.

23.15.6.2 Receiver Warning

The receive error counter has reached the MCU warning limit of 96.

23.15.6.3 Transmitter Warning

The transmit error counter has reached the MCU warning limit of 96.

23.15.6.4 Receiver Bus Passive

The receive error counter has exceeded the errorpassive limit of 127 and the device has gone to error-passive state.

23.15.6.5 Transmitter Bus Passive

The transmit error counter has exceeded the errorpassive limit of 127 and the device has gone to error-passive state.

23.15.6.6 Bus-Off

The transmit error counter has exceeded 255 and the device has gone to bus-off state.

23.15.6.7 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in the PIR register. Interrupts are pending as long as one of the flags is set. Once an interrupt flag is set by the device, the flag can not be reset by the microcontroller until the interrupt condition is removed.

25.0 INSTRUCTION SET SUMMARY

PIC18F2585/2680/4585/4680 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

25.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 25-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 25-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 25-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 25-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 25.1.1 "Standard Instruction Set" provides a description of each instruction.

POP	Рор Тор	of Return St	ack				
Syntax:	POP						
Operands:	None						
Operation:	$(TOS) \to b$	it bucket					
Status Affected:	None						
Encoding:	0000	0000 00	00 0110				
Description: The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack							
Words:	1	1					
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	No	POP TOS	No				
	operation	value	operation				
Example:	POP GOTO	NEW					
Before Instru TOS Stack (1	ction level down)	= 0031A = 01433					
After Instruct TOS PC	ion	= 01433 = NEW	2h				

PUS	н	Push Top	Push Top of Return Stack					
Synta	ax:	PUSH	PUSH					
Oper	ands:	None						
Oper	ation:	$(PC + 2) \rightarrow$	TOS					
Statu	is Affected:	None						
Enco	oding:	0000	0000	000	0	0101		
Desc	ription:	the return s value is pus This instruc software sta	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS and then pushing it onto the return stack.					
Word	ds:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4	Q4		
	Decode	PUSH PC + 2 onto return stack	N opera	•	ор	No eration		
Exar	nple:	PUSH						
	Before Instruc TOS PC	tion	= =	345Ah 0124h				
	After Instructio PC TOS Stack (1	= = =	0126h 0126h 345Ah					

RRN	ICF	Ro	Rotate Right f (No Carry)						
Synta	ax:	RR	NCF	f {	,d {,a}}				
Oper	rands:	d∈	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Oper	ration:	•	ו>) → ()>) → (st <n 1<br="" –="">st<7></n>	>,			
Statu	is Affected:	Ν, 2	Z						
Enco	oding:	C	0100		00da	fff	f	ffff	
Desc	rription:	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						the result result is ault). ill be alue. If 'a' ected as struction operates essing See ed and Indexed	
Word	ds:	1							
Cycle	es:	1							
	ycle Activity:								
	Q1		Q2		Q3			Q4	
	Decode		ead ster 'f'		Proce Data			/rite to stination	
<u>Exan</u>	nple 1:		NCF	RI	EG, 1,	, 0			
	Before Instruc REG After Instructic	=	1101	01	11				
	REG	=	1110	10)11				
Exan	nple 2:	RRI	NCF	R	EG, 0,	, 0			
	Before Instruc W REG	= =	? 1101	01	11				
	After Instructio	on = =	1110 1101)11 11				

SET	F	Set f	Set f						
Synt	ax:	SETF f{,	a}						
Ope	rands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Ope	ration:	$FFh\tof$							
Statu	us Affected:	None							
Enco	oding:	0110	100a	ffff	ffff				
Desc	cription:	The conter are set to F		specified	register				
		If 'a' is '0', t If 'a' is '1', t GPR bank	he BSR i						
		set is enab in Indexed mode wher Section 25 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Word	ds:	1	1						
Cycl	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proce Data		Write gister 'f'				
<u>Exar</u>	nple:	SETF	RE	G,1					
Before Instruction REG = 5Ah After Instruction REG = FFh									

Table Rea	Table Read								
TBLRD (*; *	*+; *-; +*)								
None	None								
TBLPTR – N if TBLRD *+ (Prog Mem (TBLPTR) + if TBLRD *-, (Prog Mem (TBLPTR) – if TBLRD +* (TBLPTR) +	$(Prog Mem (TBLPTR)) \rightarrow TABLAT;$ TBLPTR – No Change; if TBLRD *+, $(Prog Mem (TBLPTR)) \rightarrow TABLAT;$ $(TBLPTR) + 1 \rightarrow TBLPTR;$								
d: None									
0000	0000	00	00	10nn nn=0 * =1 *+ =2 *- =3 +*					
of Program program me Pointer (TBL	Memory(mory, a p _PTR), is	P.M.). ointer, used.	To ad calle	dress the d Table					
each byte in has a 2-Mby	the progr te addres	ram me ss rang	emory ge.	/. TBLPTR					
-	TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of								
	instructior	n can r							
 post-increase 	ement								
•									
•	nent								
Words: 1									
Cycles: 2									
Q Cycle Activity:									
Q1 Q2 Q3 Q4									
	No No No operation operation operation								
	TBLRD (*; * None if TBLRD *, (Prog Mem 1 TBLPTR – N if TBLRD *- (Prog Mem 1 (TBLPTR) – if TBLRD *- (Prog Mem 1 (TBLPTR) – if TBLRD +* (TBLPTR) + (Prog Mem 1 (TBLPTR) + (Prog Mem 1 (TBLPTR) + (Prog Mem 1 (TBLPTR) + (Prog Mem 1 0000 This instruct of Program 1 program me Pointer (TBL The TBLPTR each byte in has a 2-Mby TBLPTR[(TBLPTR[0 TBLPTR] (TBLPTR] (TBLPTR] 0 of TBLPTR 2 • no chang • post-decr • pre-increr 1 2	TBLRD (*; *+; *-; +*) None if TBLRD *, (Prog Mem (TBLPTR) TBLPTR – No Chang if TBLRD *, (Prog Mem (TBLPTR) (TBLPTR) + 1 \rightarrow TBL if TBLRD *, (Prog Mem (TBLPTR) (TBLPTR) – 1 \rightarrow TBL if TBLRD +*, (TBLPTR) + 1 \rightarrow TBL (Prog Mem (TBLPTR) d: None This instruction is use of Program Memory (program memory, a p Pointer (TBLPTR), is The TBLPTR (a 21-bi each byte in the program has a 2-Mbyte address TBLPTR[0] = 0: Le Print TBLPTR[0] = 0: Le Print The TBLRD instruction of TBLPTR as follows • no change • post-increment • pre-increment 1 2	TBLRD (*; *+; *-; +*) None if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow T. TBLPTR – No Change; if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow T. (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow T. (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow T. d: None This instruction is used to re of Program Memory (P.M.). program memory, a pointer, Pointer (TBLPTR), is used. The TBLPTR (a 21-bit point each byte in the program me has a 2-Mbyte address rang TBLPTR[0] = 0: Least Sig Program TBLPTR[0] = 1: Most Sig Program The TBLRD instruction can r of TBLPTR as follows: • no change • post-increment • pre-increment 1 2	TBLRD (*; *+; *-; +*) None if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLA TBLPTR – No Change; if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLA (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLA (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLA d: None This instruction is used to read th of Program Memory (P.M.). To add program memory, a pointer, caller Pointer (TBLPTR), is used. The TBLPTR (a 21-bit pointer) pointer each byte in the program memory has a 2-Mbyte address range. TBLPTR[0] = 0: Least Significar Program Memory The TBLPTR as follows: • no change • post-increment • pre-increment 1 2					

TBLRD Table Read (Continued)

Example 1:	TBLRD	*+	;	
Before Instruction	on			
TABLAT			=	55h
TBLPTR MEMORY	(00 A 25 66		=	00A356h 34h
After Instruction	•)	=	3411
TABLAT	1		=	34h
TBLPTR			=	00A357h
<u>Example 2:</u>	TBLRD	+*	;	
Before Instructi	on			
TABLAT			=	0AAh
TBLPTR			=	01A357h
MEMORY	(01A357h)	=	12h
MEMORY	(01A358h)	=	34h
After Instruction	1 ·			
TABLAT			=	34h
TBLPTR			=	01A358h

No

operation

No operation

(Read Program

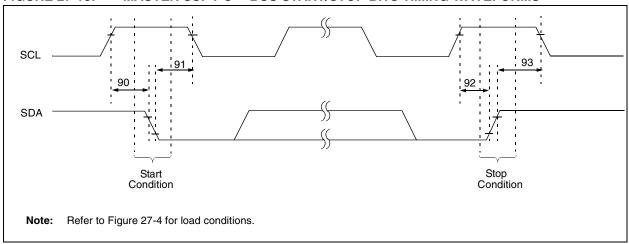
Memory)

No

operation

No operation (Write TABLAT)

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2585/2680/4585/4680 (Industrial) PIC18LF2585/2680/4585/4680 (Industrial) (Continued)


PIC18LF2585/2680/4585/4680 (Industrial)		Standar Operatin	•		•	otherwise stated) ≤ +85°C for industri			
	585/2680/4585/4680 strial, Extended)	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Device	Тур	Max	Units	ts Conditions				
	Supply Current (IDD) ^(2,3)								
	PIC18LFX585/X680	410.00	550.00	μA	-40°C				
		420.00	550.00	μA	+25°C	VDD = 2.0V			
		420.00	550.00	μA	+85°C				
	PIC18LFX585/X680	0.87	0.88	mA	-40°C				
		0.77	0.88	mA	+25°C	VDD = 3.0V	Fosc = 1 MHz (PRI_RUN ,		
		0.72	0.88	mA	+85°C		EC oscillator)		
	All devices	1.90	3.00	mA	-40°C		,		
		1.60	3.00	mA	+25°C				
		1.50	3.00	mA	+85°C	VDD = 3.0V			
	PIC18FX585/X680	1.50	3.30	mA	+125°C				
	PIC18LFX585/X680	1.40	2.20	mA	-40°C				
		1.40	2.20	mA	+25°C	VDD = 2.0V			
		1.40	2.20	mA	+85°C				
	PIC18LFX585/X680	2.30	3.30	mA	-40°C	_			
		2.30	3.30	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI_RUN ,		
		2.30	3.30	mA	+85°C		EC oscillator)		
	All devices	4.50	6.60	mA	-40°C				
		4.30	6.60	mA	+25°C	VDD = 5.0V			
		4.30	6.60	mA	+85°C	755 - 0.0V			
	PIC18FX585/X680	5.00	7.70	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

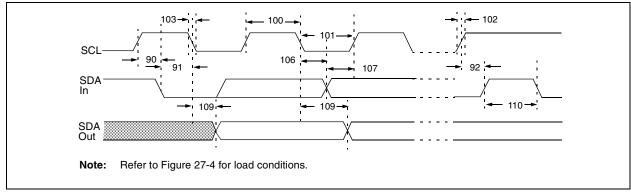

FIGURE 27-18: MASTER SSP I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

TABLE 27-20:	MASTER SSP I ² C [™] BUS START/STOP BITS REQUIREMENTS
--------------	---

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	1	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-19: MASTER SSP I²C[™] BUS DATA TIMING

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820