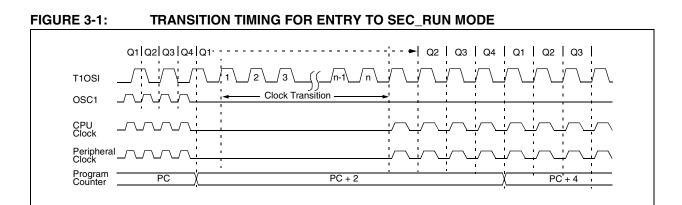
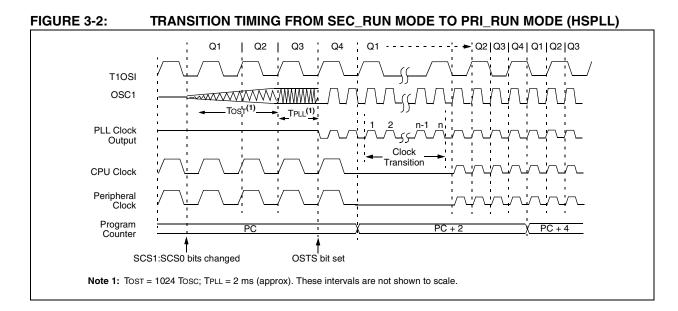


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2680-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer; the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting SCS1 to '1'. Although it is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 3-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

IABLE 4-4:		IALIZ			DITIONS FOR ALL	REGISTERS	
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
TOSU	2585	2680	4585	4680	0 0000	0 0000	0 uuuu ⁽³⁾
TOSH	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu (3)
TOSL	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu (3)
STKPTR	2585	2680	4585	4680	00-0 0000	uu-0 0000	uu-u uuuu (3)
PCLATU	2585	2680	4585	4680	0 0000	0 0000	u uuuu
PCLATH	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
PCL	2585	2680	4585	4680	0000 0000	0000 0000	PC + 2 ⁽²⁾
TBLPTRU	2585	2680	4585	4680	00 0000	00 0000	uu uuuu
TBLPTRH	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
TBLPTRL	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
TABLAT	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
PRODH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
PRODL	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
INTCON	2585	2680	4585	4680	0000 000x	0000 000u	uuuu uuuu (1)
INTCON2	2585	2680	4585	4680	1111 -1-1	1111 -1-1	uuuu -u-u (1)
INTCON3	2585	2680	4585	4680	11-0 0-00	11-0 0-00	uu-u u-uu (1)
INDF0	2585	2680	4585	4680	N/A	N/A	N/A
POSTINC0	2585	2680	4585	4680	N/A	N/A	N/A
POSTDEC0	2585	2680	4585	4680	N/A	N/A	N/A
PREINC0	2585	2680	4585	4680	N/A	N/A	N/A
PLUSW0	2585	2680	4585	4680	N/A	N/A	N/A
FSR0H	2585	2680	4585	4680	0000	0000	uuuu
FSR0L	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
WREG	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF1	2585	2680	4585	4680	N/A	N/A	N/A
POSTINC1	2585	2680	4585	4680	N/A	N/A	N/A
POSTDEC1	2585	2680	4585	4680	N/A	N/A	N/A
PREINC1	2585	2680	4585	4680	N/A	N/A	N/A
PLUSW1	2585	2680	4585	4680	N/A	N/A	N/A
FSR1H	2585	2680	4585	4680	0000	0000	uuuu
FSR1L	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu

 TABLE 4-4:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9.1 **INTCON Registers**

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

				-			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
bit 7							bit 0

bit 7 **GIE/GIEH:** Global Interrupt Enable bit

When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1: 1 = Enables all high priority interrupts 0 = Disables all high priority interrupts bit 6 **PEIE/GIEL:** Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts TMR0IE: TMR0 Overflow Interrupt Enable bit bit 5 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4 **INTOIE:** INTO External Interrupt Enable bit 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt bit 3 **RBIE:** RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1 INTOIF: INTO External Interrupt Flag bit

- 1 = The INT0 external interrupt occurred (must be cleared in software)
- 0 = The INT0 external interrupt did not occur
- bit 0 **RBIF:** RB Port Change Interrupt Flag bit
 - 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
 - 0 = None of the RB7:RB4 pins have changed state
 - Note: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 9-6:	PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3														
Mode 0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0														
Mode 0	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF ⁽¹⁾	TXB0IF ⁽¹⁾	RXB1IF	RXB0IF							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
Mode 1, 2	IRXIF	WAKIF	ERRIF	TXBnIF	TXB1IF ⁽¹⁾	TXB0IF ⁽¹⁾	RXBnIF	FIFOWMIF							
	bit 7					1		bit 0							
hit 7				aaa aa latar	wat Elea hit										
bit 7		RXIF: CAN Invalid Received Message Interrupt Flag bit L = An invalid message has occurred on the CAN bus													
		0 = No invalid message on CAN bus													
bit 6		WAKIF: CAN bus Activity Wake-up Interrupt Flag bit 1 = Activity on CAN bus has occurred													
		L = Activity on CAN bus has occurred													
bit 5		0 = No activity on CAN bus ERRIF: CAN bus Error Interrupt Flag bit													
2		ERRIF: CAN bus Error Interrupt Flag bit													
	0 = No CAI	 1 = An error has occurred in the CAN module (multiple sources) 0 = No CAN module errors 													
bit 4	When CAN			nterrupt Fla	a hit										
						nessage and	mav be rel	oaded							
	0 = Transn	nit Buffer 2	has not co	mpleted tra	nsmission of	a message	,								
	When CAN														
				errupt Flag I rs have cor		smission of a	a message	and may be							
	reload						a moodage	and may be							
	0 = No tran				(1)										
bit 3	TXB1IF: C					essage and i	may ba rok	adad							
					ismission of		hay be reit	Jaueu							
bit 2	TXB0IF: C			-		C C									
						essage and i	may be relo	baded							
bit 1	0 = Transm When CAN			npleted trar	ismission of	a message									
Dit 1				nterrupt Fla	g bit										
				d a new me											
				eived a new	message										
	When CAN RXBnIF: A			errupt Flag b	oit										
					d a new mes	sage									
bit 0	0 = No rece When CAN			ed a new me	essage										
Dit U	RXB0IF: C			nterrupt Fla	g bit										
	1 = Receive	e Buffer 0 h	nas receive	d a new me	ssage										
	0 = Receive Buffer 0 has not received a new message														
	When CAN Unimplem														
	When CAN														
				errupt Flag I	oit										
	1 = FIFO h 0 = FIFO h														
		•			forced to '0'.										
				-, 110 0110											
	Legend:														
	D - Doodo	hla hit	M = M/ri	tabla bit	11 - 11-	implomontor	hit road a	nc 'O'							

TABLE 10-3: PC	ORTB I/O SUMMARY								
Pin Name	Function	I/O	TRIS	Buffer	Description				
RB0/INT0/FLT0/AN10	RB0	OUT	0	DIG	LATB<0> data output.				
		IN	1	TTL	PORTB<0> data input. Weak pull-up available only in this mode.				
	INT0	IN	1	ST	External interrupt 0 input.				
	FLT0	IN	1	ST	Enhanced PWM Fault input.				
	AN10	IN	1	ANA	A/D input channel 10. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
RB1/INT1/AN8	RB1	OUT	0	DIG	LATB<1> data output.				
		IN	1	TTL	PORTB<1> data input. Weak pull-up available only in this mode.				
	INT1	IN	1	ST	External interrupt 1 input.				
	AN8	IN	1	ANA	A/D input channel 8. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
RB2/INT2/CANTX	RB2	OUT	x	DIG	LATB<2> data output.				
		IN	1	TTL	PORTB<2> data input. Weak pull-up available only in this mode.				
	INT2	IN	1	ST	External interrupt 2 input.				
	CANTX	OUT	1	DIG	CAN transmit signal output. The CAN interface overrides the TRIS<2> control when enabled.				
RB3/CANRX	RB3	OUT	0	DIG	LATB<3> data output.				
		IN	1	TTL	PORTB<3> data input. Weak pull-up available only in this mode.				
	CANRX	IN	1	ST	CAN receive signal input. Pin must be configured as a digital input by setting TRISB<3>.				
RB4/KBI0/AN9	RB4	OUT	0	DIG	LATB<4> data output.				
		IN	1	TTL	PORTB<4> data input. Weak pull-up available only in this mode.				
	KBI0	IN	1	TTL	Interrupt-on-pin change.				
	AN9	IN	1	ANA	A/D input channel 9. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
RB5/KBI1/PGM	RB5	OUT	0	DIG	LATB<5> data output.				
		IN	1	TTL	PORTB<5> data input. Weak pull-up available only in this mode.				
	KBI1	IN	1	TTL	Interrupt-on-pin change.				
	PGM	IN	х	ST	Low-Voltage Programming mode entry (ICSP™). Enabling this function overrides digital output.				
RB6/KBI2/PGC	RB6	OUT	0	DIG	LATB<6> data output.				
		IN	1	TTL	PORTB<6> data input. Weak pull-up available only in this mode.				
	KBI2	IN	1	TTL	Interrupt-on-pin change.				
	PGC	IN	x	ST	Low-Voltage Programming mode entry (ICSP) clock input.				
RB7/KBI3/PGD	RB7	OUT	0	DIG	LATB<7> data output.				
		IN	1	TTL	PORTB<7> data input. Weak pull-up available only in this mode.				
	KBI3	IN	1	TTL	Interrupt-on-pin change.				
	PGD	OUT	x	DIG	Low-Voltage Programming mode entry (ICSP) clock output.				
		IN	x	ST	Low-Voltage Programming mode entry (ICSP) clock input.				

TABLE 10-3: PORTB I/O SUMMARY

Legend: PWR = Power Supply; OUT = Output; IN = Input; ANA = Analog Signal; DIG = Digital Output; ST = Schmitt Buffer Input; TTL – TTL Buffer Input

TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52		
LATB	LATB Data Output Register (Read and Write to Data Latch)										
TRISB	PORTB Dat	a Direction C	ontrol Regi	ster					52		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49		
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP	_	RBIP	49		
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	49		
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	50		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS2:T0PS0 bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

 TABLE 11-1:
 REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
TMR0L	Timer0 Module Low Byte Register										
TMR0H	Timer0 Module High Byte Register										
INTCON	GIE/GIEH	H PEIE/GIEL TMROIE INTOIE RBIE TMROIF INTOIF RBIF									
T0CON	TMR0ON	T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0									
TRISA	—	PORTA Data	a Direction	Register					52		

Legend: x = unknown, u = unchanged, — = unimplemented locations, read as '0'. Shaded cells are not used by Timer0.

17.3.8 OPERATION IN POWER MANAGED MODES

In SPI Master mode, module clocks may be operating at a different speed than when in full power mode; in the case of the Sleep mode, all clocks are halted.

In most power managed modes, a clock is provided to the peripherals. That clock should be from the primary clock source, the secondary clock (Timer1 oscillator at 32.768 kHz) or the INTOSC source. See **Section 2.7 "Clock Sources and Oscillator Switching**" for additional information.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSP interrupts are enabled, they can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the devices wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power managed mode and data to be shifted into the SPI Transmit/ Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.3.10 BUS MODE COMPATIBILITY

Table 17-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

TABLE 17-1: SPI BUS MODES

There is also a SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
TRISA	PORTA Da	ta Direction	Register						52
TRISC	PORTC Da	ata Direction	Register						52
SSPBUF	Synchrono	us Serial Po	rt Receive E	Buffer/Transi	mit Register				50
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	50
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	50

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

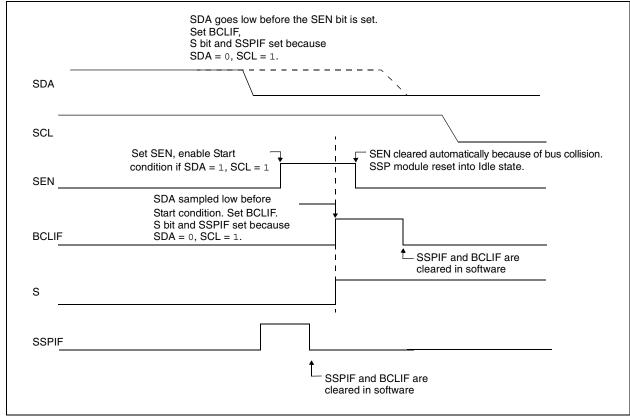
Note 1: These bits are unimplemented in PIC18F2X8X devices; always maintain these bits clear.

17.4.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 17-26).
- b) SCL is sampled low before SDA is asserted low (Figure 17-27).

During a Start condition, both the SDA and the SCL pins are monitored.


If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLIF flag is set; and
- the MSSP module is reset to its Idle state (Figure 17-26).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 17-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to 0 and during this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

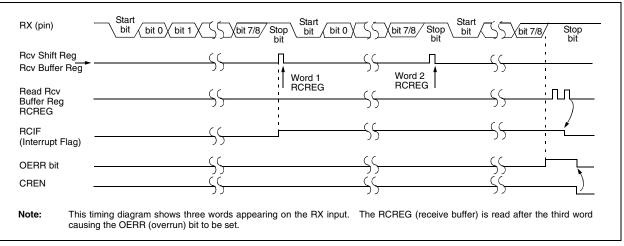
Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 17-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

TER 18-1:	TXSTA: T	RANSMIT S	STATUS A	ND CONT	ROL REGI	STER			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0	
	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	
	bit 7							bit 0	
bit 7		ock Source S	elect bit						
	<u>Asynchron</u> Don't care.								
		<u>ous mode:</u> r mode (clock mode (clock t			om BRG)				
bit 6	TX9: 9-bit	Transmit Ena	able bit						
		ts 9-bit transr ts 8-bit transr							
bit 5	TXEN: Tra	nsmit Enable	e bit						
		mit enabled mit disabled							
	Note:	SREN/CRE	N overrides	TXEN in S	ync mode.				
bit 4	SYNC: EU	SART Mode	Select bit						
	-	ironous mode hronous mod							
bit 3	SENDB: S	end Break C	haracter bit						
	Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed								
	<u>Synchrono</u> Don't care.								
bit 2	BRGH: Hig	gh Baud Rate	e Select bit						
	Asynchronous mode: 1 = High speed 0 = Low speed								
	<u>Synchrono</u> Unused in	ous mode:							
bit 1	TRMT: Tra	nsmit Shift R	egister Stat	us bit					
	1 = TSR e 0 = TSR fi	empty	0						
bit 0	TX9D: 9th	bit of Transm	nit Data						
	Can be ad	dress/data bi	t or a parity	bit.					
	Legend:								
	R = Reada	ıble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'	

REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

DS39625C-page 228


-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

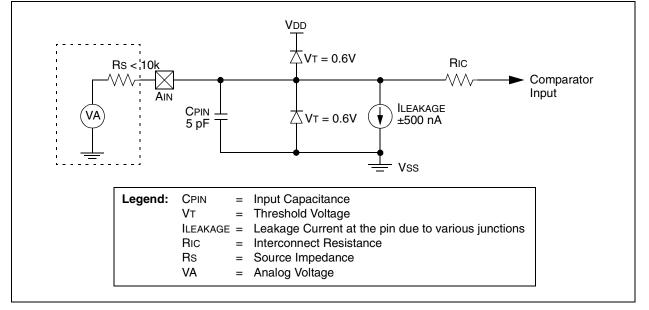
x = Bit is unknown

FIGURE 18-7: ASYNCHRONOUS RECEPTION

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
RCREG	EUSART F	Receive Regi	ster						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH EUSART Baud Rate Generator Register High Byte								51	
SPBRG	SPBRG EUSART Baud Rate Generator Register Low Byte							51	

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.


Note 1: Reserved in PIC18F2X8X devices; always maintain these bits clear.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 20-4: COMPARATOR ANALOG INPUT MODEL

TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMCON ⁽³⁾	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	51
CVRCON ⁽³⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	52
IPR2	OSCFIP	CMIP ⁽²⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽²⁾	51
PIR2	OSCFIF	CMIF ⁽²⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽²⁾	51
PIE2	OSCFIE	CMIE ⁽²⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽²⁾	52
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data Output Register						52
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ata Directio	n Register				52

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA pins are enabled based on oscillator configuration.

2: These bits are available in PIC18F4X8X devices and reserved in PIC18F2X8X devices.

3: These registers are unimplemented on PIC18F2X8X devices.

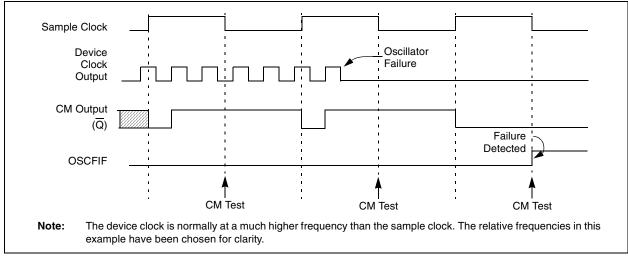
51EN 23-1.	CANCON			GISIEN						
Mada 0	R/W-1	R/W-0	R/W-0	R/S-0	R/W-0	R/W-0	R/W-0	U-0		
Mode 0	REQOP2	REQOP1	REQOP0	ABAT	WIN2	WIN1	WIN0	—		
	DAM 4									
Mode 1	R/W-1	R/W-0	R/W-0	R/S-0	U-0	U-0	U-0	U-0		
	REQOP2	REQOP1	REQOP0	ABAT	_			—		
	R/W-1	R/W-0	R/W-0	R/S-0	R-0	R-0	R-0	R-0		
Mode 2	REQOP2	REQOP1	REQOP0	ABAT	FP3	FP2	FP1	FP0		
	bit 7	n.Edoi i	1120010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				bit 0		
bit 7-5	REQOP2:F	REQOP0: R	equest CAN	Operation N	/lode bits					
			uration mode	-						
		uest Listen (
		uest Loopba								
		uest Disable								
L:1 4	•	uest Normal								
bit 4			ng Transmiss							
			ansmissions		mit buffers)					
bit 3-1	Mode 0:		securing de m	orman						
		WIN2:WIN0: Window Address bits								
	These bits select which of the CAN buffers to switch into the access bank area. This allows									
			gisters from a							
	-		CODE0 bits	-	ied to the W	IN3:WIN0 b	ts to select t	he correct		
		=	3-2 for a code	e example.						
		eive Buffer (
		eive Buffer (eive Buffer 1								
		smit Buffer								
	011 = Tran	smit Buffer	1							
		smit Buffer								
		eive Buffer (eive Buffer (
bit 0										
bit 4-0	Mode 1:	ented: Rea								
Dit 4-0		ented: Rea	d as '∩'							
	Mode 2:	enteu. nea								
		FIFO Read F	Pointer bits							
	These bits	point to the	message bu	ffer to be re	ad.					
	These bits point to the message buffer to be read. 0111:0000 = Message buffer to be read									
	1111:100	0 = Reserve	ed							
	Γ-							1		
	Legend:									
	R = Reada		W = Writat			-	bit, read as '			
	-n = Value	at POR	'1' = Bit is	set	'0' = Bit is	cleared	x = Bit is u	nknown		

REGISTER 23-1: CANCON: CAN CONTROL REGISTER

ER 23-31:		ASK SELE	CI REGIS	IER 3					
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0	
	bit 7							bit 0	
bit 7-6	11 = No mas		5 Select bit	s 1 and 0					
	10 = Filter 15 01 = Acceptance Mask 1 00 = Acceptance Mask 0								
bit 5-4	FIL14_1:FIL14_0: Filter 14 Select bits 1 and 0 11 = No mask 10 = Filter 15 01 = Acceptance Mask 1 00 = Acceptance Mask 0								
bit 3-2	11 = No mas 10 = Filter 1 01 = Accept	5	3 Select bit	s 1 and 0					
bit 1-0	11 = No mas 10 = Filter 1 01 = Accept 00 = Accept	5			nd 2 only.				

REGISTER 23-51: MSEL3: MASK SELECT REGISTER 3⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	pit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Address ⁽¹⁾	Name				
D7Fh	(4)				
D7Eh	(4)				
D7Dh	(4)				
D7Ch	(4)				
D7Bh	RXF11EIDL				
D7Ah	RXF11EIDH				
D79h	RXF11SIDL				
D78h	RXF11SIDH				
D77h	RXF10EIDL				
D76h	RXF10EIDH				
D75h	RXF10SIDL				
D74h	RXF10SIDH				
D73h	RXF9EIDL				
D72h	RXF9EIDH				
D71h	RXF9SIDL				
D70h	RXF9SIDH				
D6Fh	(4)				
D6Eh	(4)				
D6Dh	(4)				
D6Ch	(4)				
D6Bh	RXF8EIDL				
D6Ah	RXF8EIDH				
D69h	RXF8SIDL				
D68h	RXF8SIDH				
D67h	RXF7EIDL				
D66h	RXF7EIDH				
D65h	RXF7SIDL				
D64h	RXF7SIDH				
D63h	RXF6EIDL				
D62h	RXF6EIDH				
D61h	RXF6SIDL				
D60h	RXF6SIDH				

Note 1:	Shaded registers are available in Acce	ss Bank low area while the rest are available in Bank 15.
---------	--	---

- 2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.
- 3: These registers are not CAN registers.
- 4: Unimplemented registers are read as '0'.

24.4.3 FSCM INTERRUPTS IN POWER MANAGED MODES

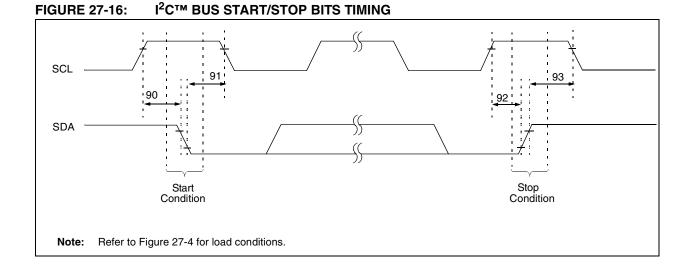
By entering a power managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Monitoring of the power managed clock source resumes in the power managed mode.

If an oscillator failure occurs during power managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTOSC source.

24.4.4 POR OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is EC, RC or INTRC modes, monitoring can begin immediately following these events.


For oscillator modes involving a crystal or resonator (HS, HSPLL, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note:	The same logic that prevents false oscilla- tor failure interrupts on POR, or wake from
	Sleep, will also prevent the detection of
	the oscillator's failure to start at all follow-
	ing these events. This can be avoided by
	monitoring the OSTS bit and using a
	timing routine to determine if the oscillator
	is taking too long to start. Even so, no
	oscillator failure interrupt will be flagged.

As noted in Section 24.3.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power managed mode while waiting for the primary clock to become stable. When the new power managed mode is selected, the primary clock is disabled.

BTG	Bit Toggle f	BOV	Branch if	Overflow			
Syntax:	BTG f, b {,a}	Syntax:	BOV n				
Operands:	$0 \le f \le 255$	Operands:	-128 ≤ n ≤ 1	-128 ≤ n ≤ 127			
	0 ≤ b < 7 a ∈ [0,1]	Operation:		if Overflow bit is '1' (PC) + 2 + 2n \rightarrow PC			
Operation:	$(\overline{f}\!<\!b\!\!>) \to f\!<\!b\!\!>$	Status Affected:	None				
Status Affected:	None	Encoding:	1110	0100 nn	inn nnnn		
Encoding:	0111 bbba ffff ffff	Description:	If the Overf				
Description:	inverted. If 'a' is 'o', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction		program will branch.				
			added to th have incren instruction,	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.			
			-				
	set is enabled, this instruction operates in Indexed Literal Offset addressing	Words:	1				
	mode whenever f \leq 95 (5Fh). See	Cycles:	1(2)				
	Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed	Q Cycle Activity:	1(2)				
	Literal Offset Mode" for details.	If Jump:					
Words:	1	Q1	Q2	Q3	Q4		
Cycles:	1	Decode	Read literal 'n'	Process Data	Write to PC		
Q Cycle Activity:		No	No	No	No		
Q1	Q2 Q3 Q4	operation	operation	operation	operation		
Decode	Read Process Write register 'f' Data register 'f'	If No Jump:					
		Q1	Q2	Q3	Q4		
Example:	BTG PORTC, 4, 0	Decode	Read literal 'n'	Process Data	No		
Before Instruc			11	Dala	operation		
PORTC After Instruction	= 0111 0101 [75h]	Example:	HERE	BOV Jump	þ		
PORTC		Before Instru PC After Instruct	= ad	dress (HERE	2)		
If Overflow = 1; PC = address (Jump) If Overflow = 0; PC = address (HERE + 2)							

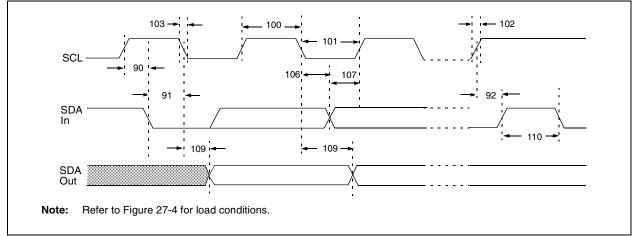

CLRF	Clear f			CLRWDT		Clear Wa	tchdog	Timer		
Syntax:	CLRF f{,	a}		Syntax:		CLRWDT				
Operands:	$0 \le f \le 255$			Operands:		None				
Operation:	$a \in [0,1]$ 000h \rightarrow f 1 \rightarrow Z			Operation:		$\begin{array}{l} 000h \rightarrow W \\ 000h \rightarrow W \\ 1 \rightarrow \overline{\text{TO}}, \end{array}$		caler,		
Status Affected:	Z			0		$1 \rightarrow \overline{PD}$				
Encoding:	0110	101a ff	ff ffff	Status Affe	cted:	TO, PD	r	1		
Description:	Clears the	contents of th	e specified	Encoding:		0000	0000	0000		
	register. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).			Description: CLRWDT instruction Watchdog Timer. It a postscaler of the WE and PD are set.					also resets the	
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing		Words:		1					
			Cycles:		1					
		never f \leq 95 (5	0	Q Cycle Activity:						
		Section 25.2.3 "Byte-Oriented and		Q1	Q2	Q	3	Q4		
		ed Instruction set Mode" for	n s in Indexed details.	De	code	No operation	Proce Data		No operation	
Words:	1			·		. ·			•	
Cycles:	1			Example:		CLRWDT				
Q Cycle Activity:				Befor	e Instruc	ction				
Q1	Q2	Q3	Q4		NDT Co		?			
Decode	Read register 'f'	Process Data	Write register 'f'	After Instruction WDT Counter = 00h <u>WD</u> T Postscaler = 0						
Example:	CLRF	FLAG_REG	,1		<u>PD</u>	=				
Before Instri FLAG_ After Instruc FLAG_	REG = 5A									

TABLE 27-18: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	_		Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first clock pulse is generated	
		Hold Time	400 kHz mode	600	_			
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns		
		Setup Time	400 kHz mode	600	_			
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns		
		Hold Time	400 kHz mode	600	_			

FIGURE 27-17: I²C[™] BUS DATA TIMING

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442.*" The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration.*" This Application Note is available as Literature Number DS00726.