



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 40MHz                                                                    |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART                                |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                              |
| Number of I/O              | 36                                                                       |
| Program Memory Size        | 48KB (24K x 16)                                                          |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | 1K x 8                                                                   |
| RAM Size                   | 3.25K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                              |
| Data Converters            | A/D 11x10b                                                               |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Through Hole                                                             |
| Package / Case             | 40-DIP (0.600", 15.24mm)                                                 |
| Supplier Device Package    | 40-PDIP                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f4585-i-p |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Pin Diagrams (Continued)**



| Din Nome                                          | Pi                                                                                                                                                                                           | n Num | ber  | Pin             | Buffer                    | Deparimiter                                                                                                   |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----------------|---------------------------|---------------------------------------------------------------------------------------------------------------|
| Pin Name                                          | PDIP                                                                                                                                                                                         | QFN   | TQFP | Туре            | Туре                      | Description                                                                                                   |
|                                                   |                                                                                                                                                                                              |       |      |                 |                           | PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs. |
| RB0/INT0/FLT0/AN10<br>RB0<br>INT0<br>FLT0<br>AN10 | 33                                                                                                                                                                                           | 9     | 8    | I/O<br>I<br>I   | TTL<br>ST<br>ST<br>Analog | Digital I/O.<br>External interrupt 0.<br>Enhanced PWM Fault input (ECCP1 module).<br>Analog input 10.         |
| RB1/INT1/AN8<br>RB1<br>INT1<br>AN8                | 34                                                                                                                                                                                           | 10    | 9    | I/O<br>I<br>I   | TTL<br>ST<br>Analog       | Digital I/O.<br>External interrupt 1.<br>Analog input 8.                                                      |
| RB2/INT2/CANTX<br>RB2<br>INT2<br>CANTX            | 35                                                                                                                                                                                           | 11    | 10   | I/O<br>I<br>O   | TTL<br>ST<br>TTL          | Digital I/O.<br>External interrupt 2.<br>CAN bus TX.                                                          |
| RB3/CANRX<br>RB3<br>CANRX                         | 36                                                                                                                                                                                           | 12    | 11   | I/O<br>I        | TTL<br>TTL                | Digital I/O.<br>CAN bus RX.                                                                                   |
| RB4/KBI0/AN9<br>RB4<br>KBI0<br>AN9                | 37                                                                                                                                                                                           | 14    | 14   | I/O<br>I<br>I   | TTL<br>TTL<br>Analog      | Digital I/O.<br>Interrupt-on-change pin.<br>Analog input 9.                                                   |
| RB5/KBI1/PGM<br>RB5<br>KBI1<br>PGM                | 38                                                                                                                                                                                           | 15    | 15   | I/O<br>I<br>I/O | TTL<br>TTL<br>ST          | Digital I/O.<br>Interrupt-on-change pin.<br>Low-Voltage ICSP™ Programming enable pin.                         |
| RB6/KBI2/PGC<br>RB6<br>KBI2<br>PGC                | 39                                                                                                                                                                                           | 16    | 16   | I/O<br>I<br>I/O | TTL<br>TTL<br>ST          | Digital I/O.<br>Interrupt-on-change pin.<br>In-Circuit Debugger and ICSP programming<br>clock pin.            |
| RB7/KBI3/PGD<br>RB7<br>KBI3<br>PGD                | 40                                                                                                                                                                                           | 17    | 17   | I/O<br>I<br>I/O | TTL<br>TTL<br>ST          | Digital I/O.<br>Interrupt-on-change pin.<br>In-Circuit Debugger and ICSP programming<br>data pin.             |
| Legend: TTL = TTL<br>ST = Schr<br>O = Outr        | Legend:     TTL = TTL compatible input     CMOS = CMOS compatible input or output       ST = Schmitt Trigger input with CMOS levels     I     = Input       O     = Output     B     = Rower |       |      |                 |                           |                                                                                                               |

#### TABLE 1-3: PIC18F4585/4680 PINOUT I/O DESCRIPTIONS (CONTINUED)

#### 5.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 5.1.1 "Program Counter").

Figure 5-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 5-4 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 25.0 "Instruction Set Summary" provides further details of the instruction set.

|             |           |                     | <b>LSB =</b> 1 | LSB = 0 | Word Address $\downarrow$ |
|-------------|-----------|---------------------|----------------|---------|---------------------------|
|             | Program N | lemory              |                |         | 000000h                   |
|             | Byte Loca | tions $\rightarrow$ |                |         | 000002h                   |
|             |           |                     |                |         | 000004h                   |
|             |           |                     |                |         | 000006h                   |
| Instruction | 1: MOVLW  | 055h                | 0Fh            | 55h     | 000008h                   |
| Instruction | 2: GOTO   | 0006h               | EFh            | 03h     | 00000Ah                   |
|             |           |                     | F0h            | 00h     | 00000Ch                   |
| Instruction | 3: MOVFF  | 123h, 456h          | C1h            | 23h     | 00000Eh                   |
|             |           |                     | F4h            | 56h     | 000010h                   |
|             |           |                     |                |         | 000012h                   |
|             |           |                     |                |         | 000014h                   |

## FIGURE 5-4: INSTRUCTIONS IN PROGRAM MEMORY

## 5.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed

and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 5-4 shows how this works.

| Note: | See Se  | ction 5.5   | "Program Me    | emory and    |
|-------|---------|-------------|----------------|--------------|
|       | the E   | xtended     | Instruction    | Set" for     |
|       | informa | tion on tw  | o-word instruc | tions in the |
|       | extende | ed instruct | ion set.       |              |

| EXAMPLE 5-4: | <b>TWO-WORD INSTRUCTIONS</b> | j |
|--------------|------------------------------|---|
|              |                              |   |

| CASE 1:             |                  |                              |
|---------------------|------------------|------------------------------|
| Object Code         | Source Code      |                              |
| 0110 0110 0000 0000 | TSTFSZ REG1      | ; is RAM location 0?         |
| 1100 0001 0010 0011 | MOVFF REG1, REG2 | ; No, skip this word         |
| 1111 0100 0101 0110 |                  | ; Execute this word as a NOP |
| 0010 0100 0000 0000 | ADDWF REG3       | ; continue code              |
| CASE 2:             |                  |                              |
| Object Code         | Source Code      |                              |
| 0110 0110 0000 0000 | TSTFSZ REG1      | ; is RAM location 0?         |
| 1100 0001 0010 0011 | MOVFF REG1, REG2 | ; Yes, execute this word     |
| 1111 0100 0101 0110 |                  | ; 2nd word of instruction    |
| 0010 0100 0000 0000 | ADDWF REG3       | ; continue code              |

# TABLE 5-1:SPECIAL FUNCTION REGISTER MAP FOR<br/>PIC18F2585/2680/4585/4680 DEVICES (CONTINUED)

| Address | Name     | Address | Name     | Address | Name | Address | Name      |
|---------|----------|---------|----------|---------|------|---------|-----------|
| DFFh    | _        | DDFh    | _        | DBFh    | _    | D9Fh    | _         |
| DFEh    |          | DDEh    | —        | DBEh    | —    | D9Eh    | _         |
| DFDh    | —        | DDDh    | —        | DBDh    | -    | D9Dh    | —         |
| DFCh    | TXBIE    | DDCh    | —        | DBCh    | —    | D9Ch    | —         |
| DFBh    | _        | DDBh    | —        | DBBh    | —    | D9Bh    | _         |
| DFAh    | BIE0     | DDAh    | —        | DBAh    | —    | D9Ah    | _         |
| DF9h    |          | DD9h    | —        | DB9h    | —    | D99h    | _         |
| DF8h    | BSEL0    | DD8h    | SDFLC    | DB8h    | —    | D98h    | _         |
| DF7h    |          | DD7h    | —        | DB7h    | —    | D97h    | _         |
| DF6h    |          | DD6h    | —        | DB6h    | —    | D96h    | _         |
| DF5h    | _        | DD5h    | RXFCON1  | DB5h    | —    | D95h    | _         |
| DF4h    |          | DD4h    | RXFCON0  | DB4h    | —    | D94h    | _         |
| DF3h    | MSEL3    | DD3h    | —        | DB3h    | —    | D93h    | RXF15EIDL |
| DF2h    | MSEL2    | DD2h    | —        | DB2h    | —    | D92h    | RXF15EIDH |
| DF1h    | MSEL1    | DD1h    | —        | DB1h    | —    | D91h    | RXF15SIDL |
| DF0h    | MSEL0    | DD0h    | —        | DB0h    | —    | D90h    | RXF15SIDH |
| DEFh    | _        | DCFh    | —        | DAFh    | —    | D8Fh    | _         |
| DEEh    | _        | DCEh    | —        | DAEh    | —    | D8Eh    | _         |
| DEDh    | _        | DCDh    | _        | DADh    | _    | D8Dh    |           |
| DECh    | _        | DCCh    | —        | DACh    | —    | D8Ch    | _         |
| DEBh    | _        | DCBh    | —        | DABh    | —    | D8Bh    | RXF14EIDL |
| DEAh    | _        | DCAh    | _        | DAAh    | _    | D8Ah    | RXF14EIDH |
| DE9h    | _        | DC9h    | —        | DA9h    | —    | D89h    | RXF14SIDL |
| DE8h    | _        | DC8h    | —        | DA8h    | —    | D88h    | RXF14SIDH |
| DE7h    | RXFBCON7 | DC7h    | _        | DA7h    | _    | D87h    | RXF13EIDL |
| DE6h    | RXFBCON6 | DC6h    | <u> </u> | DA6h    | —    | D86h    | RXF13EIDH |
| DE5h    | RXFBCON5 | DC5h    | —        | DA5h    | —    | D85h    | RXF13SIDL |
| DE4h    | RXFBCON4 | DC4h    | _        | DA4h    | _    | D84h    | RXF13SIDH |
| DE3h    | RXFBCON3 | DC3h    | <u> </u> | DA3h    | —    | D83h    | RXF12EIDL |
| DE2h    | RXFBCON2 | DC2h    | _        | DA2h    | _    | D82h    | RXF12EIDH |
| DE1h    | RXFBCON1 | DC1h    |          | DA1h    | _    | D81h    | RXF12SIDL |
| DE0h    | RXFBCON0 | DC0h    | —        | DA0h    | —    | D80h    | RXF12SIDH |

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX\_ENn bit in RX\_TX\_SELn is set, then the corresponding bit in this register has transmit properties.

**3:** This is not a physical register.

# 5.4.3.1 FSR Registers and the INDF Operand

At the core of indirect addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. The four upper bits of the FSRnH register are not used, so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space, but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because indirect addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.



# FIGURE 5-7: INDIRECT ADDRESSING

© 2007 Microchip Technology Inc.

# 9.6 INTn Pin Interrupts

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxE. Flag bit INTxF must be cleared in software in the Interrupt.

All external interrupts (INT0, INT1 and INT2) can wake-up the processor from the power managed modes, if bit INTxE was set prior to going into power managed modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high priority interrupt source.

# 9.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh  $\rightarrow$  00h) will set flag bit TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh  $\rightarrow$  0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 11.0 "Timer0 Module" for further details on the Timer0 module.

# 9.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

# 9.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (See **Section 5.3 "Data Memory Organization**"), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 9-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

|                         | ,                                              |                                                                                              |
|-------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|
| MOVWF<br>MOVFF<br>MOVFF | W_TEMP<br>STATUS, STATUS_TEMP<br>BSR, BSR_TEMP | ; W_TEMP is in virtual bank<br>; STATUS_TEMP located anywhere<br>; BSR_TMEP located anywhere |
| ;<br>; USER<br>;        | ISR CODE                                       |                                                                                              |
| MOVFF                   | BSR_TEMP, BSR                                  | ; Restore BSR                                                                                |
| MOVF                    | W_TEMP, W                                      | ; Restore WREG                                                                               |
| MOVFF                   | STATUS_TEMP, STATUS                            | ; Restore STATUS                                                                             |
|                         |                                                |                                                                                              |

EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

# 10.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

Pins RB2 through RB3 are multiplexed with the ECAN peripheral. Refer to **Section 23.0** "**ECAN™ Technol-ogy**" for proper settings of TRISB when CAN is enabled.

| CLRF  | PORTB  | ; Initialize PORTB by<br>; clearing output |
|-------|--------|--------------------------------------------|
|       |        | ; data latches                             |
| CLRF  | LATB   | ; Alternate method                         |
|       |        | ; to clear output                          |
|       |        | ; data latches                             |
| MOVLW | 0Eh    | ; Set RB<4:0> as                           |
| MOVWF | ADCON1 | ; digital I/O pins                         |
|       |        | ; (required if config bit                  |
|       |        | ; PBADEN is set)                           |
| MOVLW | 0CFh   | ; Value used to                            |
|       |        | ; initialize data                          |
|       |        | ; direction                                |
| MOVWF | TRISB  | ; Set RB<3:0> as inputs                    |
|       |        | ; RB<5:4> as outputs                       |
|       |        | ; RB<7:6> as inputs                        |

EXAMPLE 10-2: INITIALIZING PORTB

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on all device Resets.

| Note: | On a Power-on Reset, RB4:RB0 are<br>configured as analog inputs by default and<br>read as '0'; RB7:RB5 are configured as<br>digital inputs. |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|
|       | By programming the Configuration bit,<br>PBADEN (CONFIG3H<1>), RB4:RB0 will<br>alternatively be configured as digital inputs<br>on POR.     |

Four of the PORTB pins (RB7:RB4) have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

# PIC18F2585/2680/4585/4680

#### 16.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 16-4). This mode can be used for half-bridge applications, as shown in Figure 16-5, or for full-bridge applications where four power switches are being modulated with two PWM signals.

In Half-Bridge Output mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits, PDC6:PDC0, sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 16.4.6** "**Programmable Dead-Band Delay**" for more details of the dead-band delay operations.

Since the P1A and P1B outputs are multiplexed with the PORTD<4> and PORTD<5> data latches, the TRISD<4> and TRISD<5> bits must be cleared to configure P1A and P1B as outputs.

#### FIGURE 16-4: HALF-BRIDGE PWM OUTPUT



# FIGURE 16-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS



#### 16.4.5 FULL-BRIDGE MODE

In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin P1A is continuously active and pin P1D is modulated. In the Reverse mode, pin P1C is continuously active and pin P1B is modulated. These are illustrated in Figure 16-6. P1A, P1B, P1C and P1D outputs are multiplexed with the PORTD<4>, PORTD<5>, PORTD<6> and PORTD<7> data latches. The TRISD<4>, TRISD<5>, TRISD<6> and TRISD<7> bits must be cleared to make the P1A, P1B, P1C and P1D pins outputs.





# 17.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 17-18).





# **19.1** A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 19-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k $\Omega$ . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

| Note: | When    | the    | conversion      | is  | started,   | the |
|-------|---------|--------|-----------------|-----|------------|-----|
|       | holding | g capa | acitor is disco | nne | ected from | the |
|       | input p | in.    |                 |     |            |     |

To calculate the minimum acquisition time, Equation 19-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 19-3 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

| CHOLD            | =      | 120 pF                             |
|------------------|--------|------------------------------------|
| Rs               | =      | 2.5 kΩ                             |
| Conversion Error | $\leq$ | 1/2 LSb                            |
| Vdd              | =      | $5V \rightarrow Rss = 7 \ k\Omega$ |
| Temperature      | =      | 50°C (system max.)                 |
| Vhold            | =      | 0V @ time = 0                      |

## EQUATION 19-1: ACQUISITION TIME

| TACQ | = | Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient |
|------|---|-------------------------------------------------------------------------------------|
|      | = | TAMP + TC + TCOFF                                                                   |

#### EQUATION 19-2: A/D MINIMUM CHARGING TIME

| VHOLD | = | $(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{Tc/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$ |
|-------|---|----------------------------------------------------------------------------------------------------------------|
| or    |   |                                                                                                                |
| TC    | = | $-(CHOLD)(RIC + RSS + RS) \ln(1/2048)$                                                                         |

## EQUATION 19-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

| TACQ   | =     | TAMP + TC + TCOFF                                                                                                                                |
|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| TAMP   | =     | 5 μs                                                                                                                                             |
| TCOFF  | =     | (Temp – 25°C)(0.05 μs/°C)<br>(50°C – 25°C)(0.05 μs/°C)<br>1.25 μs                                                                                |
| Temper | ature | coefficient is only required for temperatures $> 25^{\circ}$ C. Below $25^{\circ}$ C, TCOFF = 0 ms.                                              |
| ТС     | =     | -(Chold)(Ric + Rss + Rs) $\ln(1/2047) \mu s$<br>-(120 pF) (1 k $\Omega$ + 7 k $\Omega$ + 2.5 k $\Omega$ ) $\ln(0.0004883) \mu s$<br>9.61 $\mu s$ |
| TACQ   | =     | 5 μs + 1.25 μs + 9.61 μs<br>12.86 μs                                                                                                             |

# 20.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 20-1. Bits CM2:CM0 of the CMCON register are used to select these modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Section 27.0 "Electrical Characteristics".

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.



# 20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k $\Omega$  is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

# FIGURE 20-4: COMPARATOR ANALOG INPUT MODEL



## TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

| Name                  | Bit 7                 | Bit 6                 | Bit 5                         | Bit 4                    | Bit 3 | Bit 2  | Bit 1  | Bit 0                  | Reset<br>Values<br>on page |  |
|-----------------------|-----------------------|-----------------------|-------------------------------|--------------------------|-------|--------|--------|------------------------|----------------------------|--|
| CMCON <sup>(3)</sup>  | C2OUT                 | C1OUT                 | C2INV                         | C1INV                    | CIS   | CM2    | CM1    | CM0                    | 51                         |  |
| CVRCON <sup>(3)</sup> | CVREN                 | CVROE                 | CVRR                          | CVRSS                    | CVR3  | CVR2   | CVR1   | CVR0                   | 51                         |  |
| INTCON                | GIE/GIEH              | PEIE/GIEL             | TMR0IE                        | INT0IE                   | RBIE  | TMR0IF | INT0IF | RBIF                   | 52                         |  |
| IPR2                  | OSCFIP                | CMIP <sup>(2)</sup>   | —                             | EEIP                     | BCLIP | HLVDIP | TMR3IP | ECCP1IP <sup>(2)</sup> | 51                         |  |
| PIR2                  | OSCFIF                | CMIF <sup>(2)</sup>   | —                             | EEIF                     | BCLIF | HLVDIF | TMR3IF | ECCP1IF <sup>(2)</sup> | 51                         |  |
| PIE2                  | OSCFIE                | CMIE <sup>(2)</sup>   | —                             | EEIE                     | BCLIE | HLVDIE | TMR3IE | ECCP1IE <sup>(2)</sup> | 52                         |  |
| PORTA                 | RA7 <sup>(1)</sup>    | RA6 <sup>(1)</sup>    | RA5                           | RA4                      | RA3   | RA2    | RA1    | RA0                    | 52                         |  |
| LATA                  | LATA7 <sup>(1)</sup>  | LATA6 <sup>(1)</sup>  | LATA Data                     | ATA Data Output Register |       |        |        |                        |                            |  |
| TRISA                 | TRISA7 <sup>(1)</sup> | TRISA6 <sup>(1)</sup> | PORTA Data Direction Register |                          |       |        |        |                        |                            |  |

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA pins are enabled based on oscillator configuration.

2: These bits are available in PIC18F4X8X devices and reserved in PIC18F2X8X devices.

3: These registers are unimplemented on PIC18F2X8X devices.

| REGISTER 23-2: | CANSTAT: CAN STATUS REGISTER |                                       |                                  |                          |                              |                          |                           |              |  |
|----------------|------------------------------|---------------------------------------|----------------------------------|--------------------------|------------------------------|--------------------------|---------------------------|--------------|--|
| Mada 0         | R-1                          | R-0                                   | R-0                              | R-0                      | R-0                          | R-0                      | R-0                       | U-0          |  |
| Mode U         | OPMODE2                      | <sup>(1)</sup> OPMODE1 <sup>(1)</sup> | OPMODE0 <sup>(1)</sup>           | _                        | ICODE3                       | ICODE2                   | ICODE1                    | _            |  |
|                |                              |                                       |                                  |                          |                              |                          |                           |              |  |
| Mode 1 2       | R-1                          | R-0                                   | R-0                              | R-0                      | R-0                          | R-0                      | R-0                       | R-0          |  |
| Mode I, Z      | OPMODE2                      | <sup>(1)</sup> OPMODE1 <sup>(1)</sup> | OPMODE0 <sup>(1)</sup>           | EICODE4                  | EICODE3                      | EICODE2                  | EICODE1                   | EICODE0      |  |
|                | bit 7                        |                                       |                                  |                          |                              |                          |                           | bit 0        |  |
|                |                              |                                       |                                  |                          |                              |                          |                           |              |  |
| bit 7-5        | OPMODE2                      | :OPMODE0: Op                          | eration Mode S                   | Status bits <sup>(</sup> | 1)                           |                          |                           |              |  |
|                | 111 = Rese                   | erved                                 |                                  |                          |                              |                          |                           |              |  |
|                | 110 = Rese                   | erved                                 |                                  |                          |                              |                          |                           |              |  |
|                | 101 = <b>Rese</b>            | erved                                 |                                  |                          |                              |                          |                           |              |  |
|                | 100 = Conf                   | iguration mode                        |                                  |                          |                              |                          |                           |              |  |
|                | 011 = Liste                  | hack mode                             |                                  |                          |                              |                          |                           |              |  |
|                | 001 = Disal                  | ble/Sleep mode                        |                                  |                          |                              |                          |                           |              |  |
|                | 000 = Norm                   | nal mode                              |                                  |                          |                              |                          |                           |              |  |
| bit 4          | Mode 0:                      |                                       |                                  |                          |                              |                          |                           |              |  |
|                | Unimpleme                    | ented: Read as                        | ʻ0'                              |                          |                              |                          |                           |              |  |
| bit 3-1        | ICODE3:IC                    | ODE1: Interrupt                       | Code bits                        |                          |                              |                          |                           |              |  |
|                | When an in                   | iterrupt occurs, a                    | a prioritized coo                | ded interru              | pt value wi                  | ill be prese             | ent in these              | bits. This   |  |
|                | code indicat                 | tes the source of                     | the interrupt. E                 | By copying               | ICODE3:IC                    | CODE1 to V               | VIN2:WIN                  | ) (Mode 0)   |  |
|                | or EICODE                    | A:EICODEU 10 1                        | s Bank area S                    | (MODE 1 a                | and 2), it is<br>le 23-2 for | s possible<br>a code exa | to select t<br>ample To s | implify the  |  |
|                | description,                 | the following tal                     | ble lists all five               | bits.                    | 10 20 2 101                  |                          |                           | inpiny the   |  |
|                | • ·                          | C C                                   | Mode 0                           |                          | Mode 1                       |                          | Mode                      | 2            |  |
|                | No interrup                  | ot                                    | 00000                            |                          | 00000                        |                          | 00000                     | )            |  |
|                | Error interr                 | upt                                   | 00010                            |                          | 00010                        |                          | 00010                     | )            |  |
|                | TXB2 inter                   | rupt                                  | 00100                            |                          | 00100                        |                          | 00100                     | )            |  |
|                | TXB1 inter                   | rupt                                  | 00110                            |                          | 00110                        |                          | 00110                     | )            |  |
|                | TXB0 inter                   | rupt                                  | 01000                            |                          | 01000                        |                          | 01000                     | )            |  |
|                | RXB1 inter                   | rupt                                  | 01010                            |                          | 10001                        |                          |                           |              |  |
|                | RXB0 inter                   | rupt                                  | 01100                            |                          | 10000                        |                          | 10000                     | )            |  |
|                | Wake-up ir                   | nterrupt                              | 00010                            |                          | 01110                        |                          | 01110                     | )            |  |
|                | RXB0 inter                   | rupt                                  |                                  |                          | 10000                        |                          | 10000                     | )            |  |
|                | RXB1 inter                   | rupt                                  |                                  |                          | 10001                        |                          | 10000                     | )            |  |
|                |                              | interrupt                             |                                  |                          | 10010                        |                          | 10010                     | )<br>(2)     |  |
|                |                              | interrupt                             |                                  |                          | 10011                        |                          | 10011                     | (2)          |  |
|                |                              | interrupt                             |                                  |                          | 10100                        |                          | 10100                     | (2)          |  |
|                | RX/TX B4                     | interrunt                             |                                  |                          | 10101                        |                          | 10101                     | (2)          |  |
|                | BX/TX B5                     | interrupt                             |                                  |                          | 10110                        |                          | 10110                     | (2)          |  |
| hit 0          |                              | ntorupt                               | 'o'                              |                          | 10111                        |                          | 10111                     | •            |  |
|                |                              | enteu: neau as                        | 0                                |                          |                              |                          |                           |              |  |
| DIT 4-0        | Mode 1, 2:                   |                                       |                                  |                          |                              |                          |                           |              |  |
|                | EICODE4:E                    | EICODEU: Interr                       | upt Code bits                    |                          |                              |                          |                           |              |  |
|                | See ICODE                    | -3:ICODE1 abov                        | е.                               |                          |                              |                          |                           |              |  |
|                | Note 1:                      | To achieve may switch CAN mo          | kimum power s<br>dule in Disable | aving and mode before    | /or able to<br>pre putting   | wake-up                  | on CAN bı<br>Sleep.       | us activity, |  |
|                | 2:                           | If buffer is confid                   | gured as receiv                  | ver, EICOD               | E bits will                  | contain '10              | 000 <b>' uoon</b>         | interrupt.   |  |
|                |                              |                                       | ,                                | ,                        |                              |                          |                           |              |  |

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented I  | oit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### **REGISTER 23-31:** BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL<n>) = 1]^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7  | EID6  | EID5  | EID4  | EID3  | EID2  | EID1  | EID0  |
| bit 7 |       |       |       |       |       |       | bit 0 |

bit 7-0

EID7:EID0: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | l bit, read as '0' |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

# REGISTER 23-32: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN RECEIVE MODE $[0 \le n \le 5, 0 \le m \le 7, TXnEN (BSEL<n>) = 0]^{(1)}$

| R-x   |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BnDm7 | BnDm6 | BnDm5 | BnDm4 | BnDm3 | BnDm2 | BnDm1 | BnDm0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

bit 7-0 **BnDm7:BnDm0:** Receive Buffer n Data Field Byte m bits (where  $0 \le n < 3$  and 0 < m < 8) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 7 registers: B0D0 to B0D7.

Note 1: These registers are available in Mode 1 and 2 only.

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented I  | oit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

# REGISTER 23-33: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, 0 \le m \le 7, TXnEN (BSEL<n>) = 1]^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BnDm7 | BnDm6 | BnDm5 | BnDm4 | BnDm3 | BnDm2 | BnDm1 | BnDm0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

bit 7-0 **BnDm7:BnDm0:** Transmit Buffer n Data Field Byte m bits (where  $0 \le n < 3$  and 0 < m < 8) Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

**Note 1:** These registers are available in Mode 1 and 2 only.

| Legend:           |                  |                                    |                    |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |

#### 23.9.2 TIME QUANTA

As already mentioned, the Time Quanta is a fixed unit derived from the oscillator period and baud rate prescaler. Its relationship to TBIT and the Nominal Bit Rate is shown in Example 23-6.

#### EXAMPLE 23-6: CALCULATING TQ, NOMINAL BIT RATE AND NOMINAL BIT TIME

 $TQ (\mu s) = (2 * (BRP + 1))/FOSC (MHz)$ 

TBIT  $(\mu s) = TQ (\mu s) *$  number of TQ per bit interval

Nominal Bit Rate (bits/s) = 1/TBIT

This frequency (Fosc) refers to the effective frequency used. If, for example, a 10 MHz external signal is used along with a PLL, then the effective frequency will be 4 x 10 MHz which equals 40 MHz.

## CASE 1:

For Fosc = 16 MHz, BRP<5:0> = 00h and Nominal Bit Time = 8 To:

Tq =  $(2 * 1)/16 = 0.125 \ \mu s \ (125 \ ns)$ TBIT =  $8 * 0.125 = 1 \ \mu s \ (10^{-6} s)$ Nominal Bit Rate =  $1/10^{-6} = 10^{6} \ \text{bits/s} \ (1 \ \text{Mb/s})$ 

## CASE 2:

For Fosc = 20 MHz, BRP<5:0> = 01h and Nominal Bit Time = 8 TQ:  $TQ = (2 * 2)/20 = 0.2 \ \mu s \ (200 \ ns)$ TBIT = 8 \* 0.2 = 1.6  $\ \mu s \ (1.6 * 10^{-6} s)$ Nominal Bit Rate = 1/1.6 \* 10<sup>-6</sup>s = 625,000 bits/s (625 Kb/s)

## CASE 3:

For FOSC = 25 MHz, BRP<5:0> = 3Fh and Nominal Bit Time = 25 TQ:  $TQ = (2 * 64)/25 = 5.12 \ \mu s$  $TBIT = 25 * 5.12 = 128 \ \mu s (1.28 * 10^{-4} s)$ Nominal Bit Rate = 1/1.28 \* 10<sup>-4</sup> = 7813 bits/s (7.8 Kb/s)

The frequencies of the oscillators in the different nodes must be coordinated in order to provide a system wide specified nominal bit time. This means that all oscillators must have a Tosc that is an integral divisor of To. It should also be noted that although the number of To is programmable from 4 to 25, the usable minimum is 8 To. There is no assurance that a bit time of less than 8 To in length will operate correctly.

#### 23.9.3 SYNCHRONIZATION SEGMENT

This part of the bit time is used to synchronize the various CAN nodes on the bus. The edge of the input signal is expected to occur during the sync segment. The duration is 1 Tq.

#### 23.9.4 PROPAGATION SEGMENT

This part of the bit time is used to compensate for physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The length of the Propagation Segment can be programmed from 1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.

## 23.9.5 PHASE BUFFER SEGMENTS

The phase buffer segments are used to optimally locate the sampling point of the received bit within the nominal bit time. The sampling point occurs between Phase Segment 1 and Phase Segment 2. These segments can be lengthened or shortened by the resynchronization process. The end of Phase Segment 1 determines the sampling point within a bit time. Phase Segment 1 is programmable from 1 To to 8 To in duration. Phase Segment 2 provides delay before the next transmitted data transition and is also programmable from 1 TQ to 8 TQ in duration. However, due to IPT requirements, the actual minimum length of Phase Segment 2 is 2 To, or it may be defined to be equal to the greater of Phase Segment 1 or the Information Processing Time (IPT). The sampling point should be as late as possible or approximately 80% of the bit time.

## 23.9.6 SAMPLE POINT

The sample point is the point of time at which the bus level is read and the value of the received bit is determined. The sampling point occurs at the end of Phase Segment 1. If the bit timing is slow and contains many To, it is possible to specify multiple sampling of the bus line at the sample point. The value of the received bit is determined to be the value of the majority decision of three values. The three samples are taken at the sample point and twice before, with a time of To/2 between each sample.

## 23.9.7 INFORMATION PROCESSING TIME

The Information Processing Time (IPT) is the time segment starting at the sample point that is reserved for calculation of the subsequent bit level. The CAN specification defines this time to be less than or equal to 2 TQ. The PIC18F2585/2680/4585/4680 devices define this time to be 2 TQ. Thus, Phase Segment 2 must be at least 2 TQ long.

# 24.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 24-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.



Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 24-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the fail-safe condition); and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 3.1.4 "Multiple Sleep Commands" and Section 24.3.1 "Special Considerations for Using Two-Speed Start-up" for more details.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF2:IRCF0, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF2:IRCF0 bits prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

## 24.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF2:IRCF0 bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, fail-safe clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

# 24.4.2 EXITING FAIL-SAFE OPERATION

The fail-safe condition is terminated by either a device Reset or by entering a power managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power managed mode is entered.

# PIC18F2585/2680/4585/4680

| BTFS        | SC                                                                                      | Bit Test Fil                                                                                                        | le, Skip if Clo                                                                                                                  | ear                                                                                                    | BTF     | SS                                                         | Bit Test Fi                                                                                                     | le, Skip if Se                                                                                                                     | t                                                                                                        |
|-------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Synta       | x:                                                                                      | BTFSC f, b                                                                                                          | {,a}                                                                                                                             |                                                                                                        | Synta   | ax:                                                        | BTFSS f, b                                                                                                      | {,a}                                                                                                                               |                                                                                                          |
| Opera       | inds:                                                                                   | $\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$                                  |                                                                                                                                  |                                                                                                        | Oper    | ands:                                                      | 0 ≤ f ≤ 255<br>0 ≤ b < 7<br>a ∈ [0,1]                                                                           |                                                                                                                                    |                                                                                                          |
| Opera       | ition:                                                                                  | skip if (f <b>)</b>                                                                                                 | = 0                                                                                                                              |                                                                                                        | Oper    | ation:                                                     | skip if (f <b>)</b>                                                                                             | = 1                                                                                                                                |                                                                                                          |
| Status      | Affected:                                                                               | None                                                                                                                |                                                                                                                                  |                                                                                                        | Statu   | s Affected:                                                | None                                                                                                            |                                                                                                                                    |                                                                                                          |
| Encoc       | ling:                                                                                   | 1011                                                                                                                | bbba ff                                                                                                                          | ff ffff                                                                                                | Enco    | ding:                                                      | 1010                                                                                                            | bbba ff                                                                                                                            | ff ffff                                                                                                  |
| Descr       | iption:                                                                                 | If bit 'b' in reg<br>instruction is<br>the next instru-<br>current instru-<br>and a NOP is<br>this a two-cy         | gister 'f' is '0', t<br>skipped. If bit<br>ruction fetched<br>uction executio<br>s executed inst<br>cle instruction.             | then the next<br>'b' is '0', then<br>during the<br>n is discarded<br>ead, making                       | Desc    | ription:                                                   | If bit 'b' in re<br>instruction is<br>the next inst<br>current instru-<br>and a NOP is<br>this a two-cy         | gister 'f' is '1', t<br>skipped. If bit<br>ruction fetched<br>uction executio<br>s executed inst<br>rcle instruction.              | then the next<br>'b' is '1', then<br>during the<br>n is discarded<br>ead, making                         |
|             |                                                                                         | If 'a' is '0', th<br>'a' is '1', the<br>GPR bank (c                                                                 | e Access Bank<br>BSR is used to<br>default).                                                                                     | is selected. If select the                                                                             |         |                                                            | If 'a' is '0', th<br>'a' is '1', the<br>GPR bank (o                                                             | e Access Bank<br>BSR is used to<br>default).                                                                                       | is selected. If select the                                                                               |
|             |                                                                                         | If 'a' is '0' and<br>is enabled, the<br>Indexed Lite<br>mode whene<br>See Section<br>Bit-Oriented<br>Literal Offset | d the extended<br>his instruction of<br>ral Offset Addr<br>ever f ≤ 95 (5Fr<br>25.2.3 "Byte-<br>I Instructions<br>et Mode" for d | instruction set<br>operates in<br>essing<br>n).<br><b>Oriented and</b><br><b>in Indexed</b><br>etails. |         |                                                            | If 'a' is '0' an<br>set is enable<br>in Indexed L<br>mode whene<br>See Section<br>Bit-Oriented<br>Literal Offse | d the extended<br>ed, this instruct<br>iteral Offset Ac<br>ever f ≤ 95 (5Ft<br>a 25.2.3 "Byte-<br>d Instructions<br>et Mode" for d | d instruction<br>ion operates<br>ldressing<br>n).<br><b>Oriented and</b><br><b>in Indexed</b><br>etails. |
| Words       | 3:                                                                                      | 1                                                                                                                   |                                                                                                                                  |                                                                                                        | Word    | s:                                                         | 1                                                                                                               |                                                                                                                                    |                                                                                                          |
| Cycles      | S:                                                                                      | 1(2)                                                                                                                |                                                                                                                                  |                                                                                                        | Cycle   | es:                                                        | 1(2)                                                                                                            |                                                                                                                                    |                                                                                                          |
|             |                                                                                         | Note: 3 cy<br>by a                                                                                                  | vcles if skip and<br>a 2-word instrue                                                                                            | d followed<br>ction.                                                                                   |         |                                                            | Note: 3 cyc<br>by a                                                                                             | cles if skip and<br>2-word instruc                                                                                                 | followed<br>tion.                                                                                        |
| Q Cy        | cle Activity:                                                                           |                                                                                                                     |                                                                                                                                  |                                                                                                        | QC      | ycle Activity:                                             |                                                                                                                 |                                                                                                                                    |                                                                                                          |
| г           | Q1                                                                                      | Q2                                                                                                                  | Q3                                                                                                                               | Q4                                                                                                     |         | Q1                                                         | Q2                                                                                                              | Q3                                                                                                                                 | Q4                                                                                                       |
|             | Decode                                                                                  | Read<br>register 'f'                                                                                                | Process<br>Data                                                                                                                  | No<br>operation                                                                                        |         | Decode                                                     | Read<br>register 'f'                                                                                            | Process<br>Data                                                                                                                    | No<br>operation                                                                                          |
| lf skip     | D:                                                                                      | i egietei i                                                                                                         | Duiu                                                                                                                             | oporation                                                                                              | lf sk   | ip:                                                        | i oglotol i                                                                                                     | Data                                                                                                                               | oporation                                                                                                |
|             | Q1                                                                                      | Q2                                                                                                                  | Q3                                                                                                                               | Q4                                                                                                     |         | Q1                                                         | Q2                                                                                                              | Q3                                                                                                                                 | Q4                                                                                                       |
|             | No                                                                                      | No                                                                                                                  | No                                                                                                                               | No                                                                                                     |         | No                                                         | No                                                                                                              | No                                                                                                                                 | No                                                                                                       |
|             | operation                                                                               | operation                                                                                                           | operation                                                                                                                        | operation                                                                                              | 16 - 12 | operation                                                  | operation                                                                                                       | operation                                                                                                                          | operation                                                                                                |
| IT SKI      | o and tollowed                                                                          | Dy 2-word ins                                                                                                       |                                                                                                                                  | 04                                                                                                     | IT SK   | ip and followed                                            | 1 by 2-word ins                                                                                                 |                                                                                                                                    | 04                                                                                                       |
| Γ           | No                                                                                      | No                                                                                                                  | No                                                                                                                               | No                                                                                                     |         | No                                                         | No                                                                                                              | No                                                                                                                                 | No                                                                                                       |
|             | operation                                                                               | operation                                                                                                           | operation                                                                                                                        | operation                                                                                              |         | operation                                                  | operation                                                                                                       | operation                                                                                                                          | operation                                                                                                |
|             | No<br>operation                                                                         | No<br>operation                                                                                                     | No<br>operation                                                                                                                  | No<br>operation                                                                                        |         | No<br>operation                                            | No<br>operation                                                                                                 | No<br>operation                                                                                                                    | No<br>operation                                                                                          |
| <u>Exam</u> | <u>ple:</u>                                                                             | HERE BI<br>FALSE :<br>TRUE :                                                                                        | IFSC FLAG                                                                                                                        | , 1, 0                                                                                                 | Exam    | n <u>ple:</u>                                              | HERE B<br>FALSE :<br>TRUE :                                                                                     | FFSS FLAG                                                                                                                          | , 1, 0                                                                                                   |
| E           | Before Instruct                                                                         | ion                                                                                                                 |                                                                                                                                  |                                                                                                        |         | Before Instruct                                            | ion                                                                                                             |                                                                                                                                    |                                                                                                          |
| ļ           | PC<br>After Instruction<br>If FLAG< <sup>-1</sup><br>PC<br>If FLAG< <sup>-1</sup><br>PC | = add<br>n<br>1> = 0;<br>= add<br>1> = 1;<br>= add                                                                  | ress (HERE)<br>ress (TRUE)<br>ress (FALSE)                                                                                       | 1                                                                                                      |         | PC<br>After Instructio<br>If FLAG<<br>PC<br>If FLAG<<br>PC | = add<br>n<br>1> = 0;<br>= add<br>1> = 1;<br>= add                                                              | ress (HERE)<br>ress (FALSE)<br>ress (TRUE)                                                                                         |                                                                                                          |
|             |                                                                                         |                                                                                                                     |                                                                                                                                  |                                                                                                        |         |                                                            |                                                                                                                 |                                                                                                                                    |                                                                                                          |

# 27.2 DC Characteristics: Power-Down and Supply Current PIC18F2585/2680/4585/4680 (Industrial) PIC18LF2585/2680/4585/4680 (Industrial) (Continued)

| PIC18LF:<br>(Indus | <b>2585/2680/4585/4680</b><br>strial)   | <b>Standar</b><br>Operatin | <b>d Opera</b><br>ig tempe | <b>ting Co</b> i<br>rature | nditions (unless<br>-40°C ≤ Ta ≤                 | otherwise stated)<br>+85°C for industri                      | al                          |
|--------------------|-----------------------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------------------|--------------------------------------------------------------|-----------------------------|
| PIC18F2<br>(Indus  | 585/2680/4585/4680<br>strial, Extended) | <b>Standar</b><br>Operatin | d Opera<br>ig tempe        | ting Cor<br>rature         | nditions (unless<br>-40°C ≤ Ta ≤<br>-40°C ≤ Ta ≤ | otherwise stated)<br>+85°C for industri<br>+125°C for extend | al<br>ded                   |
| Param<br>No.       | Device                                  | Тур                        | Max                        | Units                      |                                                  | Condit                                                       | ions                        |
|                    | Supply Current (IDD) <sup>(2,3)</sup>   |                            |                            |                            |                                                  |                                                              |                             |
|                    | PIC18LFX585/X680                        | 19.00                      | 35.00                      | μA                         | -40°C                                            |                                                              |                             |
|                    |                                         | 20.00                      | 35.00                      | μA                         | +25°C                                            | VDD = 2.0V                                                   |                             |
|                    |                                         | 22.00                      | 35.00                      | μA                         | +85°C                                            |                                                              |                             |
|                    | PIC18LFX585/X680                        | 57.00                      | 60.00                      | μA                         | -40°C                                            |                                                              |                             |
|                    |                                         | 47.00                      | 60.00                      | μA                         | +25°C                                            | VDD = 3.0V                                                   | Fosc = 31 kHz               |
|                    |                                         | 42.00                      | 60.00                      | μΑ                         | +85°C                                            |                                                              | Internal oscillator source) |
|                    | All devices                             | 150.00                     | 170.00                     | μΑ                         | -40°C                                            |                                                              | ,                           |
|                    |                                         | 120.00                     | 170.00                     | μA                         | +25°C                                            |                                                              |                             |
|                    |                                         | 98.00                      | 170.00                     | μA                         | +85°C                                            | VDD = 3.0V                                                   |                             |
|                    | PIC18FX585/X680                         | 100.00                     | 250.00                     | μA                         | +125°C                                           |                                                              |                             |
|                    | PIC18LFX585/X680                        | 0.53                       | 1.10                       | μA                         | -40°C                                            |                                                              |                             |
|                    |                                         | 0.55                       | 1.10                       | mA                         | +25°C                                            | VDD = 2.0V                                                   |                             |
|                    |                                         | 0.56                       | 1.10                       | mA                         | +85°C                                            |                                                              |                             |
|                    | PIC18LFX585/X680                        | 0.94                       | 1.20                       | mA                         | -40°C                                            |                                                              |                             |
|                    |                                         | 0.90                       | 1.20                       | mA                         | +25°C                                            | VDD = 3.0V                                                   | FOSC = 1 MHz                |
|                    |                                         | 0.88                       | 1.20                       | mA                         | +85°C                                            |                                                              | Internal oscillator source) |
|                    | All devices                             | 1.80                       | 2.30                       | mA                         | -40°C                                            |                                                              |                             |
|                    |                                         | 1.70                       | 2.30                       | mA                         | +25°C                                            |                                                              |                             |
|                    |                                         | 1.60                       | 2.30                       | mA                         | +85°C                                            | VDD = 3.0V                                                   |                             |
|                    | PIC18FX585/X680                         | 2.60                       | 3.60                       | mA                         | +125°C                                           |                                                              |                             |
|                    | PIC18LFX585/X680                        | 1.50                       | 2.10                       | mA                         | -40°C                                            |                                                              |                             |
|                    |                                         | 1.50                       | 2.10                       | mA                         | +25°C                                            | VDD = 2.0V                                                   |                             |
|                    |                                         | 1.50                       | 2.10                       | mA                         | +85°C                                            |                                                              |                             |
|                    | PIC18LFX585/X680                        | 2.40                       | 3.30                       | mA                         | -40°C                                            |                                                              |                             |
|                    |                                         | 2.40                       | 3.30                       | mA                         | +25°C                                            | VDD = 3.0V                                                   | Fosc = 4 MHz                |
|                    |                                         | 2.40                       | 3.30                       | mA                         | +85°C                                            |                                                              | Internal oscillator source) |
|                    | All devices                             | 4.40                       | 5.20                       | mA                         | -40°C                                            |                                                              |                             |
|                    |                                         | 4.40                       | 5.20                       | mA                         | +25°C                                            |                                                              |                             |
|                    |                                         | 4.40                       | 5.20                       | mA                         | +85°C                                            | 0.0 = 0.0 v                                                  |                             |
|                    | PIC18FX585/X680                         | 9.20                       | 11.00                      | mA                         | +125°C                                           |                                                              |                             |

**Legend:** Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

# PIC18F2585/2680/4585/4680

| Pinout I/O Descriptions                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIC18F2585/268012                                                                                                                                                              |
| PIC18F4585/468016                                                                                                                                                              |
| PIR Registers118 PLL                                                                                                                                                           |
| Use with INTOSC                                                                                                                                                                |
| PLL Frequency Multiplier 25                                                                                                                                                    |
| HSPLL Oscillator Mode 25                                                                                                                                                       |
| In INTOSC Modes 26                                                                                                                                                             |
| PLL Lock Time-out 45                                                                                                                                                           |
|                                                                                                                                                                                |
| POR See Power-on Reset                                                                                                                                                         |
| PORTA                                                                                                                                                                          |
| Associated Registers 121                                                                                                                                                       |
| Associated Registers                                                                                                                                                           |
| I ATA Degister 120                                                                                                                                                             |
| DORTA Register 129                                                                                                                                                             |
| TDICA Degister                                                                                                                                                                 |
|                                                                                                                                                                                |
| PORID 104                                                                                                                                                                      |
| Associated Registers                                                                                                                                                           |
| I/O Summary                                                                                                                                                                    |
| LATB Register                                                                                                                                                                  |
| PORTB Register                                                                                                                                                                 |
| RB/:RB4 Interrupt-on-Change Flag                                                                                                                                               |
| (RBIF Bit)                                                                                                                                                                     |
| I RISB Register                                                                                                                                                                |
| PORIC                                                                                                                                                                          |
| Associated Registers                                                                                                                                                           |
| I/O Summary 136                                                                                                                                                                |
| LATC Register                                                                                                                                                                  |
| PORTC Register 135                                                                                                                                                             |
| RC3/SCK/SCL Pin201                                                                                                                                                             |
| TRISC Register 135                                                                                                                                                             |
| PORTD                                                                                                                                                                          |
| Associated Registers140                                                                                                                                                        |
| I/O Summary139                                                                                                                                                                 |
| LATD Register138                                                                                                                                                               |
| Parallel Slave Port (PSP) Function                                                                                                                                             |
| PORTD Register138                                                                                                                                                              |
| TRISD Register 138                                                                                                                                                             |
| PORTE                                                                                                                                                                          |
| Associated Registers143                                                                                                                                                        |
| I/O Summary143                                                                                                                                                                 |
| LATE Register 141                                                                                                                                                              |
| PORTE Register141                                                                                                                                                              |
| PSP Mode Select (PSPMODE Bit)138                                                                                                                                               |
| TRISE Register 141                                                                                                                                                             |
| Postscaler, WDT                                                                                                                                                                |
| Assignment (PSA Bit)149                                                                                                                                                        |
| Rate Select (T0PS2:T0PS0 Bits)149                                                                                                                                              |
| Switching Between Timer0 and WDT149                                                                                                                                            |
| Power Managed Modes                                                                                                                                                            |
| and A/D Operation254                                                                                                                                                           |
|                                                                                                                                                                                |
| and EUSART Operation231                                                                                                                                                        |
| and EUSART Operation                                                                                                                                                           |
| and EUSART Operation231and Multiple Sleep Commands34Clock Sources33Clock Transitions and Status Indicators34Effects on Clock Sources31Entering33                               |
| and EUSART Operation231and Multiple Sleep Commands34Clock Sources33Clock Transitions and Status Indicators34Effects on Clock Sources31Entering33Exiting Idle and Sleep Modes39 |
| and EUSART Operation                                                                                                                                                           |

| Idle Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRI_IDLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RC_IDLE 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SEC_IDLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Run Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PRI_RUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RC_RUN 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SEC_RUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Selecting 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sleep Mode 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Summary (table)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Power-on Reset (POR) 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Oscillator Start-up Timer (OST) 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Power-up Timer (PWRT)45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Time-out Sequence 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power-up Delays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Power-up Timer (PWRT) 31, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Prescaler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Timer2 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Prescaler, Capture 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Prescaler, Timer0 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Assignment (PSA Bit) 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rate Select (T0PS2:T0PS0 Bits) 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Switching Between Timer0 and WDT 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Prescaler, Timer2 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PRI_IDLE Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PRI_RUN Mode 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Program Counter 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PCL, PCH and PCU Registers 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCLATH and PCLATU Registers 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Program Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| and the Extended Instruction Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Code Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Code Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Code Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Code Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Program Verification and Code Protection       357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       2010         Parallel Slave Port.       2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       92         Pulse-Width Modulation. See PWM (CCP1 Module)       and RWM (ECCR1 Module)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       361         Pulse-Width Modulation. See PWM (CCP1 Module)       and PWM (ECCP1 Module).         PULSU       200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       81         Pulse-Width Modulation. See PWM (CCP1 Module)       and PWM (ECCP1 Module).         PUSH       390         PUSH       390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       81         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH and POP Instructions       63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       81         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH and POP Instructions       63         PUSHL       406         PWM (CCP1 Module)       168                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       80         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       63         PUSHL       406         PWM (CCP1 Module)       169         Associated Registers       171                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       81         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       390         PUSH       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169                                                                                                                                                                                                                                                                                                                                                                                                  |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       81         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH and POP Instructions       63         PUSH L       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         Acsociated Registers       171         Duty Cycle       169                                                                                                                                                                                                                                                                                                        |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       80         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       390         PUSH and POP Instructions       63         PUSH L       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         ECCPR1L Registers       169         ECCPR1L Registers       169         Example Frequencies/Resolutions       170                                                                                                                                                                                                                           |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       80         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       390         PUSH       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         Example Frequencies/Resolutions       170         Period       169                                                                                                                                                                                                                                                                           |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       80         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       390         PUSH and POP Instructions       63         PUSH L       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         Example Frequencies/Resolutions       170         Period       169         Setup for PWM Operation       170                                                                                                                                                                                    |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       80         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       390         PUSH and POP Instructions       63         PUSH L       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         Example Frequencies/Resolutions       170         Period       169         Setup for PWM Operation       170         TMR2 to PR2 Match       169                                                                                                                                                |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       80         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       390         PUSH and POP Instructions       63         PUSH L       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         Example Frequencies/Resolutions       170         Period       169         Setup for PWM Operation       170         TMR2 to PR2 Match       169         PWM (ECCP1 Module)       175                                                                                                           |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       80         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH and POP Instructions       63         PUSH L       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         Example Frequencies/Resolutions       170         Period       169         Setup for PWM Operation       170         TMR2 to PR2 Match       169         PWM (ECCP1 Module)       175         Associated Registers       186                                                                                           |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       800         PUSH       390         PUSH       390         PUSH       390         PUSH       406         PWM (ECCP1 Module).       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         Example Frequencies/Resolutions       170         Period       169         Setup for PWM Operation       170         TMR2 to PR2 Match       169         PWM (ECCP1 Module)       175         Associated Registers       186         Auto-Shutdown       170                                                                                                                       |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       800         PUSH       390         PUSH       390         PUSH       390         PUSH       406         PWM (ECCP1 Module).       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         Example Frequencies/Resolutions       170         Period       169         Setup for PWM Operation       170         TMR2 to PR2 Match       169         PWM (ECCP1 Module)       175         Associated Registers       186         Auto-Shutdown       170         Direction Change in Full-Bridge       170                                                                     |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       7         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       390         PUSH       390         PUSH       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         EXample Frequencies/Resolutions       170         Period       169         Setup for PWM Operation       170         TMR2 to PR2 Match       169         PWM (ECCP1 Module)       175         Associated Registers       186         Auto-Shutdown       170         Direction Change in Full-Bridge       0utput Mode |
| Code Protection358Instructions66Two-Word66Interrupt Vector61Look-up Tables64Map and Stack (diagram)61Reset Vector61Program Verification and Code Protection357Associated Registers357Programming, Device Instructions361PSP. See Parallel Slave Port.70Pulse-Width Modulation. See PWM (CCP1 Module)390PUSH390PUSH390PUSH and POP Instructions63PUSHL406PWM (CCP1 Module)169Associated Registers171Duty Cycle169ECCPR1H:ECCPR1L Registers169Example Frequencies/Resolutions170Period169Setup for PWM Operation170TMR2 to PR2 Match169PWM (ECCP1 Module)175Associated Registers186Auto-Shutdown170Direction Change in Full-Bridge0utput ModeOutput Mode180Duty Cycle176                                                                                                                                                                                                                                                                                                                                                                                                       |
| Code Protection358Instructions66Two-Word66Interrupt Vector61Look-up Tables64Map and Stack (diagram)61Reset Vector61Program Verification and Code Protection357Associated Registers357Programming, Device Instructions361PSP. See Parallel Slave Port.71Pulse-Width Modulation. See PWM (CCP1 Module)390PUSH390PUSH390PUSH and POP Instructions63PUSHL406PWM (CCP1 Module)169Associated Registers171Duty Cycle169ECCPR1H:ECCPR1L Registers169Example Frequencies/Resolutions170Period169Setup for PWM Operation170TMR2 to PR2 Match169PWM (ECCP1 Module)175Associated Registers186Auto-Shutdown170Direction Change in Full-Bridge0utput ModeOutput Mode180Duty Cycle176ECCPR1H:ECCPR1L Registers176ECCPR1H:ECCPR1L Registers176Duty Cycle176ECCPR1H:ECCPR1L Registers176                                                                                                                                                                                                                                                                                                      |
| Code Protection358Instructions66Two-Word66Interrupt Vector61Look-up Tables64Map and Stack (diagram)61Reset Vector61Program Verification and Code Protection357Associated Registers357Programming, Device Instructions361PSP. See Parallel Slave Port.70Pulse-Width Modulation. See PWM (CCP1 Module)390PUSH390PUSH390PUSH and POP Instructions63PUSHL406PWM (CCP1 Module)169Associated Registers171Duty Cycle169ECCPR1H:ECCPR1L Registers169Example Frequencies/Resolutions170Period169Setup for PWM Operation170TMR2 to PR2 Match169PWM (ECCP1 Module)175Associated Registers186Auto-Shutdown170Direction Change in Full-Bridge0utput ModeOutput Mode180Duty Cycle176ECCPR1H:ECCPR1L Registers175Effects of a Reset185                                                                                                                                                                                                                                                                                                                                                      |
| Code Protection       358         Instructions       66         Two-Word       66         Interrupt Vector       61         Look-up Tables       64         Map and Stack (diagram)       61         Reset Vector       61         Program Verification and Code Protection       357         Associated Registers       357         Programming, Device Instructions       361         PSP. See Parallel Slave Port.       7         Pulse-Width Modulation. See PWM (CCP1 Module)       390         PUSH       390         PUSH       390         PUSH       390         PUSH       406         PWM (CCP1 Module)       169         Associated Registers       171         Duty Cycle       169         ECCPR1H:ECCPR1L Registers       169         Example Frequencies/Resolutions       170         Period       169         Setup for PWM Operation       170         PWM (ECCP1 Module)       175         Associated Registers       186         Auto-Shutdown       170         Direction Change in Full-Bridge       0         Output Mode       180         Duty C  |