

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

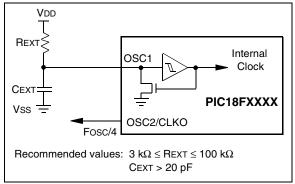
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4680-e-ml

Email: info@E-XFL.COM

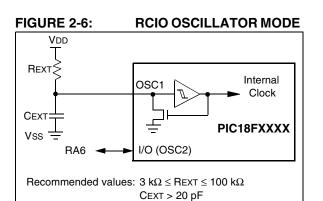
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4 RC Oscillator

For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The actual oscillator frequency is a function of several factors:


- supply voltage
- values of the external resistor (REXT) and capacitor (CEXT)
- · operating temperature

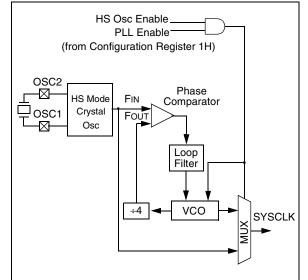
Given the same device, operating voltage and temperature and component values, there will also be unit-to-unit frequency variations. These are due to factors such as:


- normal manufacturing variation
- difference in lead frame capacitance between package types (especially for low CEXT values)
- variations within the tolerance of limits of REXT and CEXT

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-5 shows how the R/C combination is connected.

The RCIO Oscillator mode (Figure 2-6) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

2.5 PLL Frequency Multiplier


A Phase Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency oscillator circuit or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals or users who require higher clock speeds from an internal oscillator.

2.5.1 HSPLL OSCILLATOR MODE

The HSPLL mode makes use of the HS mode oscillator for frequencies up to 10 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 40 MHz.

The PLL is only available to the crystal oscillator when the FOSC3:FOSC0 Configuration bits are programmed for HSPLL mode (= 0110).

FIGURE 2-7: PLL BLOCK DIAGRAM (HS MODE)

2.5.2 PLL AND INTOSC

The PLL is also available to the internal oscillator block in selected oscillator modes. In this configuration, the PLL is enabled in software and generates a clock output of up to 32 MHz. The operation of INTOSC with the PLL is described in **Section 2.6.4 "PLL in INTOSC Modes"**.

5.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 5-1) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 24.1 "Configuration Bits**" for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an							
	underflow has the effect of vectoring the							
	program to the Reset vector, where the							
	stack conditions can be verified and							
	appropriate actions can be taken. This is							
	not the same as a Reset, as the contents							
	of the SFRs are not affected.							

5.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

	01101111												
	R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	STKFUL ⁽¹⁾ STKUNF ⁽¹⁾ — SP4 SP3 SP2 SP1												
	bit 7							bit 0					
bit 7	STKFUL: S	Stack Full Flag	bit ⁽¹⁾										
	- 0.000.0	ecame full or		<i>.</i>									
	• • •••••	as not becom											
bit 6	STKUNF: S	Stack Underflo	w Flag bit ⁽¹)									
	1 = Stack u	nderflow occu	rred										
	0 = Stack underflow did not occur												
bit 5	Unimpleme	ented: Read a	as '0'										
bit 4-0	SP4:SP0: 8	Stack Pointer I	_ocation bits	5									
	Note 1:	Bit 7 and bit 6	are cleare	d by user so	ftware or by	/ a POR.							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	C = Clearable only bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
PORTE ⁽³⁾	_	_		_	RE3 ⁽⁵⁾	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	52, 145
PORTD ⁽³⁾	Read PORTD	pins, Write P	ORTD Data L	atch.					xxxx xxxx	52, 138
PORTC	Read PORTC	pins, Write P	ORTC Data L	.atch					xxxx xxxx	52, 135
PORTB	Read PORTB	pins, Write P	ORTB Data L	atch					xxxx xxxx	52, 132
PORTA	RA7 ⁽⁶⁾	RA6 ⁽⁶⁾	Read PORT	A pins, Write	PORTA Data I	_atch			xx00 0000	52, 129
ECANCON	MDSEL1	MDSEL0	FIFOWM	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0	0001 000	52, 280
TXERRCNT	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0	0000 0000	52, 285
RXERRCNT	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0	0000 0000	52, 293
COMSTAT Mode 0	RXB0OVFL	RXB1OVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000 0000	52, 281
COMSTAT Mode 1	—	RXBnOVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	-000 0000	52, 281
COMSTAT Mode 2	FIFOEMPTY	RXBnOVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000 0000	52, 281
CIOCON	_	_	ENDRHI	CANCAP	_	_	_	_	00	52, 314
BRGCON3	WAKDIS	WAKFIL	_	_	_	SEG2PH2	SEG2PH1	SEG2PH0	00000	52, 313
BRGCON2	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000 0000	52, 312
BRGCON1	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000 0000	52, 311
CANCON Mode 0	REQOP2	REQOP1	REQOP0	ABAT	WIN2 ⁽⁷⁾	WIN1 ⁽⁷⁾	WIN0 ⁽⁷⁾	(7)	1000 000-	53, 276
CANCON Mode 1	REQOP2	REQOP1	REQOP0	ABAT	(7)	(7)	(7)	(7)	1000	53, 276
CANCON Mode 2	REQOP2	REQOP1	REQOP0	ABAT	FP3 ⁽⁷⁾	FP2 ⁽⁷⁾	FP1 ⁽⁷⁾	FP0 ⁽⁷⁾	1000 0000	53, 276
CANSTAT Mode 0	OPMODE2	OPMODE1	OPMODE0	(7)	ICODE3 ⁽⁷⁾	ICODE2 ⁽⁷⁾	ICODE1 ⁽⁷⁾	(7)	000- 0000	53, 277
CANSTAT Modes 1, 2	OPMODE2	OPMODE1	OPMODE0	EICODE4 ⁽⁷⁾	EICODE3 ⁽⁷⁾	EICODE2 ⁽⁷⁾	EICODE1 ⁽⁷⁾	EICODE0 ⁽⁷⁾	0000 0000	53, 277
RXB0D7	RXB0D77	RXB0D76	RXB0D75	RXB0D74	RXB0D73	RXB0D72	RXB0D71	RXB0D70	xxxx xxxx	53, 292
RXB0D6	RXB0D67	RXB0D66	RXB0D65	RXB0D64	RXB0D63	RXB0D62	RXB0D61	RXB0D60	xxxx xxxx	53, 292
RXB0D5	RXB0D57	RXB0D56	RXB0D55	RXB0D54	RXB0D53	RXB0D52	RXB0D51	RXB0D50	xxxx xxxx	53, 292
RXB0D4	RXB0D47	RXB0D46	RXB0D45	RXB0D44	RXB0D43	RXB0D42	RXB0D41	RXB0D40	xxxx xxxx	53, 292
RXB0D3	RXB0D37	RXB0D36	RXB0D35	RXB0D34	RXB0D33	RXB0D32	RXB0D31	RXB0D30	xxxx xxxx	53, 292
RXB0D2	RXB0D27	RXB0D26	RXB0D25	RXB0D24	RXB0D23	RXB0D22	RXB0D21	RXB0D20	xxxx xxxx	53, 292
RXB0D1	RXB0D17	RXB0D16	RXB0D15	RXB0D14	RXB0D13	RXB0D12	RXB0D11	RXB0D10	xxxx xxxx	53, 292
RXB0D0	RXB0D07	RXB0D06	RXB0D05	RXB0D04	RXB0D03	RXB0D02	RXB0D01	RXB0D00	xxxx xxxx	53, 292
RXB0DLC		RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	53, 292
RXB0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	53, 291
RXB0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	53, 291
RXB0SIDL	SID2	SID1	SID0	SRR	EXID		EID17	EID16	xxxx x-xx	53, 291
RXB0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	53, 290
RXB0CON Mode 0	RXFUL	RXM1	RXM0 ⁽⁷⁾	(7)	RXRTRRO ⁽⁷⁾	RXBODBEN ⁽⁷⁾	JTOFF ⁽⁷⁾	FILHITO ⁽⁷⁾	000- 0000	53, 287
RXB0CON Mode 1, 2	RXFUL	RXM1	RTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	53, 287

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2585/2680/4585/4680) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.
2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X8X devices and are read as '0'. Reset values are shown for PIC18F4X8X devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X8X devices only.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TXB1SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	54, 283
TXB1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	54, 283
TXB1CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	-	TXPRI1	TXPRI0	0000 0-00	54, 282
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	XXXX XXXX	54, 284
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	XXXX XXXX	54, 284
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	XXXX XXXX	54, 284
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	XXXX XXXX	54, 284
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	xxxx xxxx	54, 284
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	XXXX XXXX	54, 284
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	XXXX XXXX	55, 284
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	XXXX XXXX	55, 284
TXB2DLC	_	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	55, 285
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 284
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 283
TXB2SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx x-xx	55, 283
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxx- x-xx	55, 283
TXB2CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0-00	55, 282
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 304
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 304
RXM1SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 304
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 304
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 304
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 304
RXM0SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 304
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 303
RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF5SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 302
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302
RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF4SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	55, 302
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302
RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF3SIDL	SID2	SID1	SID0	—	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 302
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302
RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF2SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	55, 302
RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302

TABLE 5-2: REGISTER FILE SUMMARY (PIC18F2585/2680/4585/4680) (CONTINUED	TABLE 5-2:	REGISTER FILE SUMMARY	(PIC18F2585/2680/4585/4680)	(CONTINUED)
---	------------	-----------------------	-----------------------------	-------------

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition **Note 1:** Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X8X devices and are read as '0'. Reset values are shown for PIC18F4X8X devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

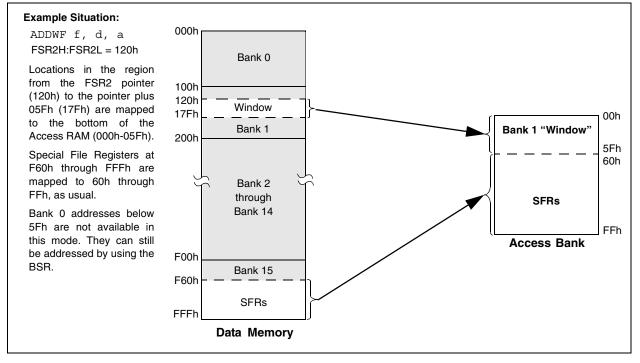
5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X8X devices only.


5.6.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the lower half of Access RAM (00h to 7Fh) is mapped. Rather than containing just the contents of the bottom half of Bank 0, this mode maps the contents from Bank 0 and a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 5.3.2 "Access Bank**"). An example of Access Bank remapping in this addressing mode is shown in Figure 5-9. Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before. Any indirect or indexed operation that explicitly uses any of the indirect file operands (including FSR2) will continue to operate as standard indirect addressing. Any instruction that uses the Access Bank, but includes a register address of greater than 05Fh, will use direct addressing and the normal Access Bank map.

5.6.4 BSR IN INDEXED LITERAL OFFSET MODE

Although the Access Bank is remapped when the extended instruction set is enabled, the operation of the BSR remains unchanged. Direct addressing using the BSR to select the data memory bank operates in the same manner as previously described.

FIGURE 5-9: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

7.6 **Operation During Code-Protect**

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal Data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 24.0 "Special Features of the CPU" for additional information.

7.7 **Protection Against Spurious Write**

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

7.8 Using the Data EEPROM

The data EEPROM is a high endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 7-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124.

EXAM	PLE 7-3:	DATA EEPROM	REFRESH ROUTINE
	CLRF	EEADR	; Start at address 0
	CLRF	EEADRH	i
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
Loop			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	i
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	INCFSZ	EEADRH, F	; Increment the high address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

EX

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 8-1.

8.2 Operation

Example 8-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the signed bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;	
MULWF	ARG2		;	ARG1 * ARG2 ->
			;	PRODH: PRODL

EXAMPLE 8-2:

8 x 8	SIGNED	MUL	ΓIPLY
ROU	TINE		

MOVE	' ARG	31, W	I		
MULV	IF ARG	32	;	ARG1 * ARG2 ->	
			;	PRODH:PRODL	
BTFS	C ARC	32, S	B;	Test Sign Bit	
SUBV	IF PRO	DDH,	F;	PRODH = PRODH	
			;	- ARG1	
MOVE	r ARG	32, W	I		
BTFS	SC ARC	31, S	B ;	Test Sign Bit	
SUBV	IF PRO	DDH,	F;	PRODH = PRODH	
			;	- ARG2	

		Program	Cycles	Time				
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz		
8 x 8 unsigned	Without hardware multiply	13	69	6.9 μs	27.6 μs	69 µs		
	Hardware multiply	1	1	100 ns	400 ns	1 μs		
	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs		
8 x 8 signed	Hardware multiply	6	6	600 ns	2.4 μs	6 µs		
16 x 16 uppigned	Without hardware multiply	21	242	24.2 μs	96.8 µs	242 μs		
16 x 16 unsigned	Hardware multiply	28	28	2.8 μs	11.2 μs	28 µs		
16 x 16 signad	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs		
16 x 16 signed	Hardware multiply	35	40	4.0 μs	16.0 μs	40 µs		

TABLE 8-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS2:T0PS0 bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

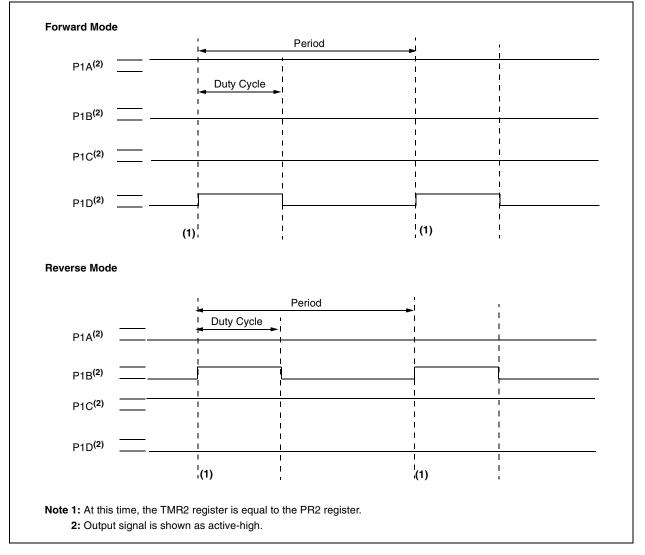
11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

 TABLE 11-1:
 REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TMR0L	Timer0 Module Low Byte Register								50
TMR0H	Timer0 Moc	lule High Byt	e Register						50
INTCON	ON GIE/GIEH PEIE/GIEL TMROIE INTOIE RBIE TMROIF INTOIF RBIF							49	
T0CON	TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0								50
TRISA	PORTA Data Direction Register								52


Legend: x = unknown, u = unchanged, — = unimplemented locations, read as '0'. Shaded cells are not used by Timer0.

NOTES:

16.4.5 FULL-BRIDGE MODE

In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin P1A is continuously active and pin P1D is modulated. In the Reverse mode, pin P1C is continuously active and pin P1B is modulated. These are illustrated in Figure 16-6. P1A, P1B, P1C and P1D outputs are multiplexed with the PORTD<4>, PORTD<5>, PORTD<6> and PORTD<7> data latches. The TRISD<4>, TRISD<5>, TRISD<6> and TRISD<7> bits must be cleared to make the P1A, P1B, P1C and P1D pins outputs.

18.1 Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>) also control the baud rate. In Synchronous mode, BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 18-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 18-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 18-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

18.1.1 OPERATION IN POWER MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG register pair.

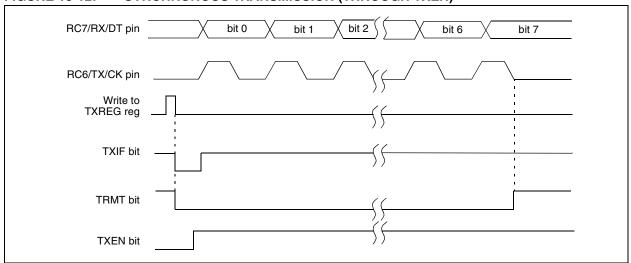
18.1.2 SAMPLING

The data on the RX pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

Co	onfiguration B	its	BRG/EUSART Mode	Baud Rate Formula		
SYNC	BRG16 BRGH		BRG/EUSANT Mode	Baud hate Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]		
0	0	1	8-bit/Asynchronous	Fosc/[16 (n + 1)]		
0	1	0	16-bit/Asynchronous	F050/[10 (11 + 1)]		
0	1	1	16-bit/Asynchronous			
1	1 0		8-bit/Synchronous	Fosc/[4 (n + 1)]		
1	1	x	16-bit/Synchronous			

TABLE 18-1: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair


EXAMPLE 18-1: CALCULATING BAUD RATE ERROR

For a device with Fosc	For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:						
Desired Baud Rate	Desired Baud Rate = $Fosc/(64 ([SPBRGH:SPBRG] + 1))$						
Solving for SPBRGH:S	SPBRG:						
X	= ((Fosc/Desired Baud Rate)/64) – 1						
	= ((1600000/9600)/64) - 1						
	= [25.042] = 25						
Calculated Baud Rate	= 1600000/(64(25+1))						
	= 9615						
Error	= (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate						
	= (9615 - 9600)/9600 = 0.16%						

TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
RCSTA	SPEN	SPEN RX9 SREN CREN ADDEN FERR OERR RX9D					51		
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH EUSART Baud Rate Generator Register High Byte								•	51
SPBRG EUSART Baud Rate Generator Register Low Byte								51	
Legend: —	= unimplem	ented read	as '0' Sha	ded cells ar	e not used	hy the BBG			

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

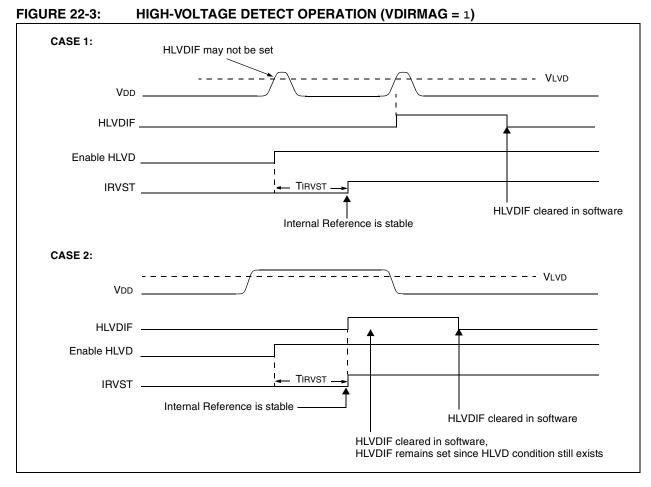
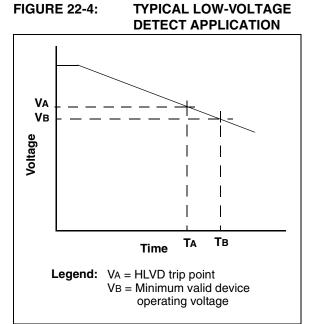
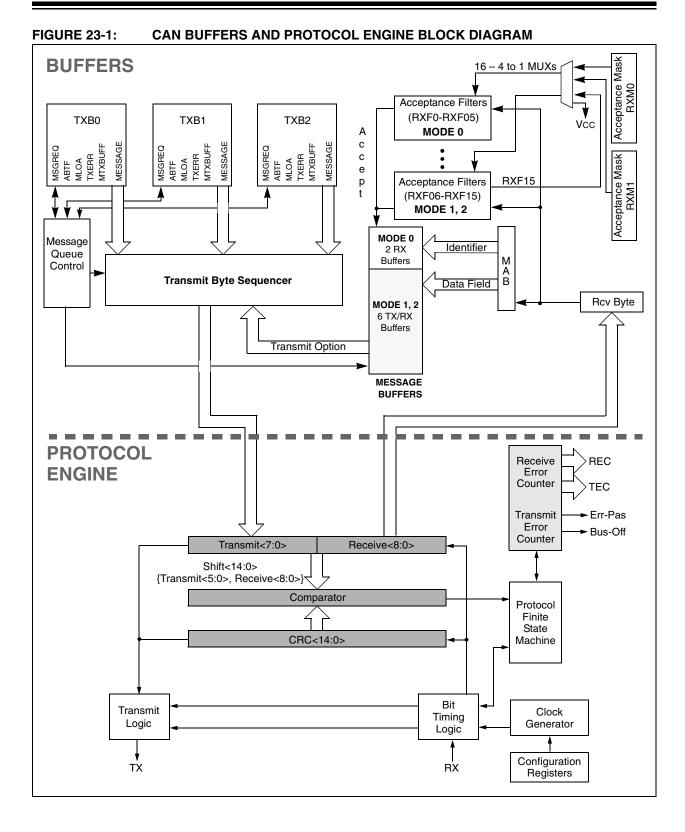

FIGURE 18-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
TXREG	EUSART T	ransmit Reg	ister						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART Baud Rate Generator Register High Byte								51
SPBRG	EUSART Baud Rate Generator Register Low Byte							51	

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.


Note 1: Reserved in PIC18F2X8X devices; always maintain these bits clear.



22.5 Applications

In many applications, the ability to detect a drop below, or rise above a particular threshold is desirable. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 22-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

DS39625C-page 274

'0' = Bit is cleared

x = Bit is unknown

REGISTER 23-16: RXBnSIDL: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS, I OW BYTE [0 < n < 1]

	LOW BY I	E [0 ≤ n ≤	1]					
	R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16
	bit 7							bit 0
bit 7-5	SID2:SID0:	: Standard I	dentifier bits	(if EXID = 0)			
	Extended lo	dentifier bits	EID20:EID1	18 (if EXID =	:1).			
bit 4	SRR: Subs	titute Remo	te Request l	oit				
	This bit is a EXID = 0.	lways 'o' wł	nen EXID = 1	1 or equal to	the value of	f RXRTRRC	(RBXnCON	I<3>) when
bit 3	EXID: Exte	nded Identif	ier bit					
	1 = Receive	ed message	is an exten	ded data fra	me, SID10:8	SID0 are EI	028:EID18	
	0 = Receive	ed message	e is a standa	rd data fram	е			
bit 2	Unimplem	ented: Read	d as '0'					
bit 1-0	EID17:EID16: Extended Identifier bits							
	Legend:							
	R = Readab	ole bit	W = Writat	ole bit	U = Unim	plemented	bit, read as	0'

REGISTER 23-17: RXBnEIDH: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE $[0 \le n \le 1]$

'1' = Bit is set

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0

bit 7-0 EID15:EID8: Extended Identifier bits

-n = Value at POR

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$	

REGISTER 23-18: RXBnEIDL: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS,

LOW BYTE $[0 \le n \le 1]$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

bit 7-0 **EID7:EID0:** Extended Identifier bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Move Indexed to f

MOVSF [zs], fd

 $0 \leq z_s \leq 127$ $0 \leq f_d \leq 4095$

MOVSF

Syntax:

Operands:

CAL	.LW	Subrouti	Subroutine Call Using WREG					
Synta	ax:	CALLW						
Oper	ands:	None						
Oper	ation:	(PC + 2) - $(W) \rightarrow PCI$ (PCLATH) (PCLATU)	\rightarrow PCH,					
Statu	s Affected:	None						
Enco	ding:	0000	0000	0001	0100			
Desc	ription	First, the re pushed on contents of existing va contents of latched inter respectivel executed a new next in Unlike CAI update W,	to the retu f W are wi lue is disc f PCLATH o PCH an y. The sec is a NOP i nstruction CL, there	urn stack ritten to carded. 1 and PC d PCU, cond cyc nstructio is fetche is no opt	Next, the PCL; the Then, the LATU are cle is n while the ed.			
Word	ls:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read WREG	Push Po stack		No operation			
	No	No	No		No			
	operation	operation	operati	ion c	operation			
Example: HERE CALLW Before Instruction PC = address (HERE) PCLATH = 10h PCLATU = 00h								
	W	= 06h						

001006h address (HERE + 2) 10h 00h 06h

Operation:		((FSR2) +	$z_s) \rightarrow f_d$			
Status Affected:		None				
Encoding:						
1st word (source	e)	1110	1011	0 z z		ZZZZS
2nd word (destir	า.)	1111	ffff	fff	f	ffff _d
Description:		moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresse can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to		urce register is e 7-bit literal d to the value of he destination he 12-bit literal Both addresses 4096-byte data annot use the OSL as the ddress points to		
		an indirect value retur				, the
Words:		2				
Cycles:		2				
Q Cycle Activity	/:					
Q1		Q2	Q3	3		Q4
Decode	Г	Determine	Determ	nine		Read

Q1	Q2	Q3	Q4
Decode	Determine	Determine	Read
	source addr	source addr	source reg
Decode	No operation No dummy	No operation	Write register 'f' (dest)
	read		(uoot)

Example:	MOVSF	[05h],	REG2
----------	-------	--------	------

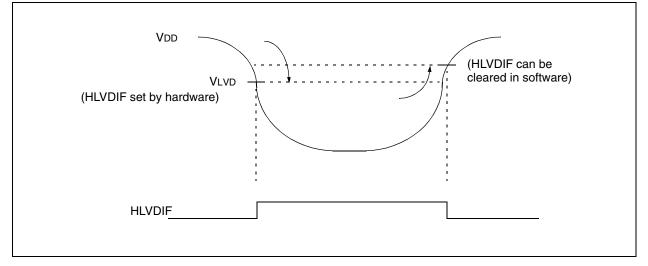
•		
Before Instruction		
FSR2	=	80h
Contents of 85h	_	33h
BFG2	=	11h
	=	1111
After Instruction		
FSR2	=	80h
Contents		
of 85h	=	33h
REG2	=	33h

After Instruction

PC = TOS = PCLATH = PCLATU = W =

DC Cha	racteris	stics					unless otherwise stated) ≤ +85°C for industrial
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Internal Program Memory Programming Specifications ⁽¹⁾					
D110	Vpp	Voltage on MCLR/VPP/RE3 pin	9.00	—	13.25	V	(Note 3)
D113	IDDP	Supply Current during Programming	—	—	10	mA	
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K	1M		E/W	-40°C to +85°C
D121	Vdrw	VDD for Read/Write	VMIN	—	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	—	4	—	ms	
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	5.5	V	VMIN = Minimum operating voltage
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP™ port
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port
D132B	Vpew	VDD for Self-timed Write	VMIN	—	5.5	V	VMIN = Minimum operating voltage
D133	TIE	ICSP Block Erase Cycle Time	—	4	—	ms	VDD > 4.5V
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	_	_	ms	VDD > 4.5V
D133A	Tiw	Self-timed Write Cycle Time	—	2	—	ms	
D134	TRETD	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated

TABLE 27-1: MEMORY PROGRAMMING REQUIREMENTS


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 7.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

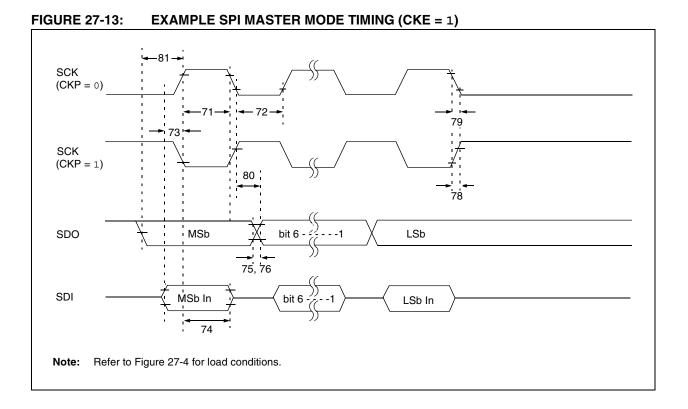

3: Required only if Single-Supply Programming is disabled.

FIGURE 27-3: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

								(unless otherwise stated) $A \le +85^{\circ}C$ for industrial
Param No.	Symbol	Characteris	tic	Min	Тур†	Max	Units	Conditions
D420		HLVD Voltage on VDD		2.12	2.17	2.22	V	
		Transition High to Low	LVV = 0001	2.18	2.23	2.28	V	
			LVV = 0010	2.31	2.36	2.42	V	
			LVV = 0011	2.38	2.44	2.49	V	
			LVV = 0100	2.54	2.60	2.66	V	
			LVV = 0101	2.72	2.79	2.85	V	
			LVV = 0110	2.82	2.89	2.95	V	
			LVV = 0111	3.05	3.12	3.19	V	
			LVV = 1000	3.31	3.39	3.47	V	
			LVV = 1001	3.46	3.55	3.63	V	
			LVV = 1010	3.63	3.71	3.80	V	
			LVV = 1011	3.81	3.90	3.99	V	
			LVV = 1100	4.01	4.11	4.20	V	
			LVV = 1101	4.23	4.33	4.43	V	
			LVV = 1110	4.48	4.59	4.69	V	
			LVV = 1111	1.14	1.20	1.26	V	

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

TABLE 27-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characterist	ic	Min	Max	Units	Conditions
73	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input	to SCK Edge	100	_	ns	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to	o SCK Edge	100	—	ns	
75	TDOR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time		—	25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXXXX	—	50	ns	
	TscL2doV	SCK Edge	PIC18LFXXXX		100	ns	VDD = 2.0V
81	TDOV2scH, TDOV2scL	SDO Data Output Setup to SO	CK Edge	Тсү	_	ns	

© 2007 Microchip Technology Inc.

	17
Associated Registers14	
Clock Source Edge Select (T0SE Bit)14	
Clock Source Select (T0CS Bit)14	
Operation14	
Overflow Interrupt14	19
Prescaler. See Prescaler, Timer0.	
Reads and Writes in 16-Bit Mode14	
Timer1	
16-Bit Read/Write Mode15	
Associated Registers15	
Interrupt15	
Operation	
Oscillator	
Layout Considerations	94
Resetting, Using a Special Event Trigger	
Output (CCP)15 Special Event Trigger (ECCP1)17	
Use as a Real-Time Clock	
Timer2	
Associated Registers	
Interrupt	
Operation	
Output	
PR2 Register	
TMR2 to PR2 Match Interrupt	
Timer3	
16-Bit Read/Write Mode16	
Associated Registers16	
Operation	
Öscillator	
Overflow Interrupt	
Special Event Trigger (CCP)16	
TMR3H Register 151, 15	59
TMR3H Register	
TMR3L Register	59
TMR3L Register151, 15	59
TMR3L Register	59 50 20
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23	59 50 20 39
TMR3L Register 151, 15 Timing Diagrams 45 A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 25 Asynchronous Transmission 25	59 50 20 39 37
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 25 Asynchronous Transmission 25 Asynchronous Transmission (Back to Back) 25	59 50 20 39 37 37
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 25 Asynchronous Transmission 25 Asynchronous Transmission (Back to Back) 25 Automatic Baud Rate Calculation 25	59 50 20 39 37 37
TMR3L Register 151, 15 Timing Diagrams 45 A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission (Back to Back) 25 Automatic Baud Rate Calculation 25 Auto-Wake-up Bit (WUE) During 25	59 20 39 37 37 35
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission (Back to Back) 25 Automatic Baud Rate Calculation 25 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24	59 50 20 39 37 37 35
TMR3L Register 151, 15 Timing Diagrams 45 A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission (Back to Back) 25 Automatic Baud Rate Calculation 25 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24	59 50 20 39 37 37 35 40
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission (Back to Back) 25 Automatic Baud Rate Calculation 25 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Baud Rate Generator with Clock Arbitration 24	59 50 20 39 37 37 35 40 14
TMR3L Register 151, 15 Timing Diagrams 45 A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 23 Asynchronous Transmission (Back to Back) 23 Automatic Baud Rate Calculation 23 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Baud Rate Generator with Clock Arbitration 25 BRG Overflow Sequence 25	59 50 20 39 37 37 35 40 14
TMR3L Register 151, 15 Timing Diagrams 45 A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission (Back to Back) 25 Automatic Baud Rate Calculation 25 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Baud Rate Generator with Clock Arbitration 25 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 25	59 50 20 39 37 35 40 40 14 35
TMR3L Register 151, 15 Timing Diagrams 45 A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 23 Asynchronous Transmission (Back to Back) 23 Automatic Baud Rate Calculation 23 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 23 BRG Reset Due to SDA Arbitration During 25 Start Condition 24	59 50 20 39 37 37 35 40 40 14 35 23
TMR3L Register 151, 15 Timing Diagrams 45 A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 26 Asynchronous Transmission (Back to Back) 26 Automatic Baud Rate Calculation 26 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 24 Start Condition 22 Brown-out Reset (BOR) 43	59 50 20 39 37 37 35 40 40 14 35 23
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 26 Asynchronous Transmission (Back to Back) 26 Automatic Baud Rate Calculation 26 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 24 Start Condition 22 Brown-out Reset (BOR) 43 Bus Collision During a Repeated 34	59 50 20 39 37 35 40 44 35 23 6
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 26 Asynchronous Transmission 26 Automatic Baud Rate Calculation 26 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 24 Brown-out Reset (BOR) 43 Bus Collision During a Repeated 35 Start Condition (Case 1) 22	59 50 20 39 37 35 40 44 35 23 6
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 26 Asynchronous Transmission 26 Automatic Baud Rate Calculation 26 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 23 BRG Reset Due to SDA Arbitration During 24 Brown-out Reset (BOR) 43 Bus Collision During a Repeated 35 Start Condition (Case 1) 22 Bus Collision During a Repeated 34	59 50 20 39 37 35 40 40 35 23 6 24
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 26 Asynchronous Transmission 26 Automatic Baud Rate Calculation 26 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 35 Start Condition 22 Bus Collision During a Repeated 35 Start Condition (Case 1) 22 Bus Collision During a Repeated 35 Start Condition (Case 2) 22	59 50 20 39 37 35 40 40 35 23 6 24
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission (Back to Back) 25 Automatic Baud Rate Calculation 25 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 23 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 34 Bus Collision During a Repeated 35 Start Condition (Case 1) 22 Bus Collision During a Repeated 35 Start Condition (Case 2) 22 Bus Collision During a Start 35	59 50 20 39 37 37 35 40 44 35 23 6 24 24
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission 26 Automatic Baud Rate Calculation 25 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 35 Start Condition 22 Bus Collision During a Repeated 35 Start Condition (Case 1) 22 Bus Collision During a Start 23	59 50 20 39 37 37 35 40 44 35 23 6 24 24
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission 26 Automatic Baud Rate Calculation 26 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 23 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 35 Start Condition 22 Bus Collision During a Repeated 35 Start Condition (Case 1) 22 Bus Collision During a Start 22	59 50 20 39 37 35 40 40 35 23 36 24 24 23
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 25 Asynchronous Transmission 26 Asynchronous Transmission (Back to Back) 25 Automatic Baud Rate Calculation 26 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 35 Start Condition 22 Bus Collision During a Repeated 35 Start Condition (Case 1) 22 Bus Collision During a Start 20 Condition (SCL = 0) 22 Bus Collision During a Start 20 Condition (SDA Only) 22	59 50 20 39 37 35 40 40 35 23 36 24 24 23
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission (Back to Back) 23 Automatic Baud Rate Calculation 23 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 3 Start Condition (Case 1) 22 Bus Collision During a Repeated 3 Start Condition (Case 2) 22 Bus Collision During a Start 24 Condition (SCL = 0) 25 Bus Collision During a Start 24 Bus Collision During a Start 24 Bus Collision During a Start 25 Bus Collision During a Start 25 Bus Collision During a Start 24 <	59 50 20 39 37 35 40 40 435 23 36 24 24 23 22 22
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission (Back to Back) 23 Automatic Baud Rate Calculation 23 Auto-Wake-up Bit (WUE) During 24 Normal Operation 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 25 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 3 Start Condition 22 Bus Collision During a Repeated 3 Start Condition (Case 1) 22 Bus Collision During a Start 24 Condition (SDA Only) 22 Bus Collision During a Start 24 Bus Collision During a Start 24 Condition (SDA Only) 25 Bus Collision During a Start 24 Condi	59 50 20 39 37 35 40 40 435 23 36 24 24 23 22 22
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission (Back to Back) 23 Auto-Wake-up Bit (WUE) During 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 23 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 35 Start Condition (Case 1) 22 Bus Collision During a Repeated 35 Start Condition (Case 2) 22 Bus Collision During a Start 23 Condition (SDA Only) 24 Bus Collision During a Start 24 Condition (Case 1) 25 Bus Collision During a Start 24 Bus Collision During a Start 24 Bus Collision During a Stap 24	59 50 20 39 37 37 37 37 37 37 37 37 37 37 37 37 37
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission (Back to Back) 23 Auto-Wake-up Bit (WUE) During 24 Auto-Wake-up Bit (WUE) During Sleep 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 23 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 3 Start Condition (Case 1) 22 Bus Collision During a Repeated 3 Start Condition (Case 2) 22 Bus Collision During a Start 20 Condition (SDA Only) 22 Bus Collision During a Start 20 Condition (Case 1) 22 Bus Collision During a Stap 22 Bus Collision During a Stop 23 <t< td=""><td>59 50 20 39 37 37 35 40 44 35 23 6 24 22 25 25 25</td></t<>	59 50 20 39 37 37 35 40 44 35 23 6 24 22 25 25 25
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission (Back to Back) 23 Auto-Wake-up Bit (WUE) During 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 23 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 35 Start Condition (Case 1) 22 Bus Collision During a Repeated 35 Start Condition (Case 2) 22 Bus Collision During a Start 23 Condition (SDA Only) 22 Bus Collision During a Start 24 Condition (Case 1) 22 Bus Collision During a Start 24 Condition (Case 1) 22 Bus Collision During a Stop 24 C	59 50 20 39 37 35 40 435 236 24 23 22 25 25 21
TMR3L Register 151, 15 Timing Diagrams A/D Conversion 45 Acknowledge Sequence 22 Asynchronous Reception 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission 23 Asynchronous Transmission (Back to Back) 23 Auto-Wake-up Bit (WUE) During 24 Auto-Wake-up Bit (WUE) During Sleep 24 Auto-Wake-up Bit (WUE) During Sleep 24 Baud Rate Generator with Clock Arbitration 21 BRG Overflow Sequence 23 BRG Reset Due to SDA Arbitration During 24 Bus Collision During a Repeated 3 Start Condition (Case 1) 22 Bus Collision During a Repeated 3 Start Condition (Case 2) 22 Bus Collision During a Start 20 Condition (SDA Only) 22 Bus Collision During a Start 20 Condition (Case 1) 22 Bus Collision During a Stap 22 Bus Collision During a Stop 23 <t< td=""><td>59 50 20 39 37 37 5 40 44 5 23 6 24 23 22 5 51 38</td></t<>	59 50 20 39 37 37 5 40 44 5 23 6 24 23 22 5 51 38

Clock/Instruction Cycle65
EUSART Synchronous Receive
(Master/Slave) 448
EUSART Synchronous Transmission
(Master/Slave)
Example SPI Master Mode (CKE = 0)
Example SPI Master Mode (CKE = 1)
Example SPI Slave Mode (CKE = 0)
Example SPI Slave Mode (CKE = 0)
External Clock (All Modes Except PLL)
Fail-Safe Clock Monitor
First Start Bit Timing
Full-Bridge PWM Output 179
Half-Bridge PWM Output 178
High/Low-Voltage Detect 270
I ² C Bus Data 444
I ² C Bus Start/Stop Bits
I ² C Master Mode (7 or 10-Bit Transmission)
I ² C Master Mode (7-Bit Reception)
I ² C Slave Mode (10-Bit Reception, SEN = 0)
I^2C Slave Mode (10-Bit Reception, SEN = 1)
I^2C Slave Mode (10-Bit Transmission)
I^2C Slave Mode (7-Bit Reception, SEN = 0)
I^2C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission)
I ² C Slave Mode General Call Address
Sequence (7 or 10-Bit Address Mode)
Master SSP I ² C Bus Data 446
Master SSP I ² C Bus Start/Stop Bits
Parallel Slave Port (PIC18F4585/4680) 439
Parallel Slave Port (PSP) Read 145
Parallel Slave Port (PSP) Write 145
PWM Auto-Shutdown (PRSEN = 0,
Auto-Restart Disabled)
PWM Auto-Shutdown (PRSEN = 1,
Auto-Restart Enabled)
PWM Direction Change 181
PWM Direction Change
PWM Direction Change 181 PWM Direction Change at Near 181 100% Duty Cycle 181
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) 436
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) 436
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 100% Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 100% Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, 193
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 1 Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 1 Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 192
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 1 Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 192 SPI Mode (Slave Mode with CKE = 0) 194
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 1 Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 192 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 100% Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 192 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 1 Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, 193 VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 192 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception 220
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 1 Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 192 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception (Master Mode, SREN) 244
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 1 Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 192 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception (Master Mode, SREN) 244 Synchronous Transmission 242
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 1 Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 192 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception (Master Mode, SREN) 244 Synchronous Transmission 242 Synchronous Transmission (Through TXEN) 243
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 100% Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception (Master Mode, SREN) 244 Synchronous Transmission 242 Synchronous Transmission (Through TXEN) 243 Time-out Sequence on POR w/PLL Enabled 243
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 100% Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception (Master Mode, SREN) 244 Synchronous Transmission 242 Synchronous Transmission (Through TXEN) 243 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Slave Mode) 192 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception (Master Mode, SREN) 244 Synchronous Transmission 242 Synchronous Transmission (Through TXEN) 243 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47 Time-out Sequence on Power-up 47
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 100% Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception (Master Mode, SREN) 244 Synchronous Transmission 242 Synchronous Transmission (Through TXEN) 243 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception 244 (Master Mode, SREN) 244 Synchronous Transmission 242 Synchronous Transmission (Through TXEN) 243 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 46
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception 244 (Master Mode, SREN) 244 Synchronous Transmission (Through TXEN) 243 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 46
PWM Direction Change 181 PWM Direction Change at Near 100% Duty Cycle 100% Duty Cycle 181 PWM Output 169 Repeat Start Condition 216 Reset, Watchdog Timer (WDT), Oscillator 216 Start-up Timer (OST) and Power-up 100% Timer (PWRT) 436 Send Break Character Sequence 241 Slave Synchronization 193 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Slave Mode with CKE = 0) 194 SPI Mode (Slave Mode with CKE = 1) 194 Stop Condition Receive or Transmit Mode 220 Synchronous Reception (Master Mode, SREN) 244 Synchronous Transmission 242 Synchronous Transmission (Through TXEN) 243 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 46