

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 25MHz                                                                     |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                               |
| Number of I/O              | 36                                                                        |
| Program Memory Size        | 64KB (32K x 16)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 1K x 8                                                                    |
| RAM Size                   | 3.25K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 11x10b                                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 44-TQFP                                                                   |
| Supplier Device Package    | 44-TQFP (10x10)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f4680-e-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Pin Name              | Pin<br>Number<br>PDIP | Pin<br>Type                             | Buffer<br>Type | Description                            |  |  |  |  |  |
|-----------------------|-----------------------|-----------------------------------------|----------------|----------------------------------------|--|--|--|--|--|
|                       | SOIC                  | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | .,,,,,         |                                        |  |  |  |  |  |
|                       |                       |                                         |                | PORTA is a bidirectional I/O port.     |  |  |  |  |  |
| RA0/AN0               | 2                     |                                         |                |                                        |  |  |  |  |  |
| RA0                   |                       | I/O                                     | TTL            | Digital I/O.                           |  |  |  |  |  |
| AN0                   |                       | I                                       | Analog         | Analog input 0.                        |  |  |  |  |  |
| RA1/AN1               | 3                     |                                         |                |                                        |  |  |  |  |  |
| RA1                   |                       | I/O                                     | TTL            | Digital I/O.                           |  |  |  |  |  |
| AN1                   |                       | I                                       | Analog         | Analog input 1.                        |  |  |  |  |  |
| RA2/AN2/VREF-         | 4                     |                                         |                |                                        |  |  |  |  |  |
| RA2                   |                       | I/O                                     | TTL            | Digital I/O.                           |  |  |  |  |  |
| AN2                   |                       | I                                       | Analog         | Analog input 2.                        |  |  |  |  |  |
| VREF-                 |                       | I                                       | Analog         | A/D reference voltage (low) input.     |  |  |  |  |  |
| RA3/AN3/VREF+         | 5                     |                                         |                |                                        |  |  |  |  |  |
| RA3                   |                       | I/O                                     | TTL            | Digital I/O.                           |  |  |  |  |  |
| AN3                   |                       | I                                       | Analog         | Analog input 3.                        |  |  |  |  |  |
| VREF+                 |                       | I                                       | Analog         | A/D reference voltage (high) input.    |  |  |  |  |  |
| RA4/T0CKI             | 6                     |                                         |                |                                        |  |  |  |  |  |
| RA4                   |                       | I/O                                     | TTL            | Digital I/O.                           |  |  |  |  |  |
| TOCKI                 |                       | I                                       | ST             | Timer0 external clock input.           |  |  |  |  |  |
| RA5/AN4/SS/HLVDIN     | 7                     |                                         |                |                                        |  |  |  |  |  |
| RA5                   |                       | I/O                                     | TTL            | Digital I/O.                           |  |  |  |  |  |
| AN4                   |                       | I                                       | Analog         | Analog input 4.                        |  |  |  |  |  |
| SS                    | I   T                 |                                         | TTL            | SPI slave select input.                |  |  |  |  |  |
| HLVDIN                |                       | I                                       | Analog         | High/Low-Voltage Detect input.         |  |  |  |  |  |
| RA6                   |                       |                                         |                | See the OSC2/CLKO/RA6 pin.             |  |  |  |  |  |
| RA7                   |                       |                                         |                | See the OSC1/CLKI/RA7 pin.             |  |  |  |  |  |
| Legend: TTL = TTL cor | npatible in           | put                                     |                | CMOS = CMOS compatible input or output |  |  |  |  |  |
| ST = Schmitt          | Trigger in            | out with                                | CMOS le        | evels I = Input                        |  |  |  |  |  |
| O = Output            |                       |                                         |                | P = Power                              |  |  |  |  |  |

| TABLE 1-2: | PIC18F2585/2680 PINOUT I/O DESCRIPTIONS ( | (CONTINUED) |
|------------|-------------------------------------------|-------------|
|            |                                           |             |

O = Output

© 2007 Microchip Technology Inc.

# 2.0 OSCILLATOR CONFIGURATIONS

## 2.1 Oscillator Types

PIC18F2585/2680/4585/4680 devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC3:FOSC0, in Configuration Register 1H to select one of these ten modes:

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HSPLL High-Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor with FOSC/4 output on RA6
- 6. RCIO External Resistor/Capacitor with I/O on RA6
- 7. INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- 8. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 9. EC External Clock with Fosc/4 output
- 10. ECIO External Clock with I/O on RA6

## 2.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The oscillator design requires the use of a parallel cut crystal.

Note: Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

FIGURE 2-1:

#### CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION)



# TABLE 2-1:CAPACITOR SELECTION FOR<br/>CERAMIC RESONATORS

| Typical Capacitor Values Used: |          |       |       |  |  |  |  |  |
|--------------------------------|----------|-------|-------|--|--|--|--|--|
| Mode                           | Freq     | OSC1  | OSC2  |  |  |  |  |  |
| ХТ                             | 455 kHz  | 56 pF | 56 pF |  |  |  |  |  |
|                                | 2.0 MHz  | 47 pF | 47 pF |  |  |  |  |  |
|                                | 4.0 MHz  | 33 pF | 33 pF |  |  |  |  |  |
| HS                             | 8.0 MHz  | 27 pF | 27 pF |  |  |  |  |  |
|                                | 16.0 MHz | 22 pF | 22 pF |  |  |  |  |  |

#### Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes on page 24 for additional information.

| Resonators Used: |         |  |  |  |  |  |  |
|------------------|---------|--|--|--|--|--|--|
| 455 kHz          | 4.0 MHz |  |  |  |  |  |  |
| 2.0 MHz          | 8.0 MHz |  |  |  |  |  |  |
| 16.0 MHz         |         |  |  |  |  |  |  |

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode, rather than XT mode, is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω.

| REGISTER 4-1: | RCON: R                                                                                                                                                                                                                   | ESET CON                                                                                                                                                                                                    |                               | GISTER                         |                         |                      |                      |         |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------|----------------------|----------------------|---------|--|--|
|               | R/W-0                                                                                                                                                                                                                     | R/W-1 <sup>(1)</sup>                                                                                                                                                                                        | U-0                           | R/W-1                          | R-1                     | R-1                  | R/W-0 <sup>(2)</sup> | R/W-0   |  |  |
|               | IPEN                                                                                                                                                                                                                      | SBOREN                                                                                                                                                                                                      | _                             | RI                             | TO                      | PD                   | POR                  | BOR     |  |  |
|               | bit 7                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                               |                                |                         |                      |                      | bit 0   |  |  |
| bit 7         | IPEN: Inte                                                                                                                                                                                                                | rrupt Priority I                                                                                                                                                                                            | Enable bit                    |                                |                         |                      |                      |         |  |  |
|               | 1 = Enable<br>0 = Disabl                                                                                                                                                                                                  | e priority level<br>e priority leve                                                                                                                                                                         | s on interru<br>Is on interru | pts<br>.pts (16CXX             | X Compatib              | ility mode)          |                      |         |  |  |
| bit 6         | SBOREN:<br>If BOREN:<br>1 = BOR is<br>0 = BOR is<br>If BOREN:<br>Bit is disat                                                                                                                                             | SBOREN: BOR Software Enable bit <sup>(1)</sup><br><u>If BOREN1:BOREN0 = 01:</u><br>1 = BOR is enabled<br>0 = BOR is disabled<br><u>If BOREN1:BOREN0 = 00, 10 or 11:</u><br>Bit is disabled and read as '0'. |                               |                                |                         |                      |                      |         |  |  |
| bit 5         | Unimplem                                                                                                                                                                                                                  | nented: Read                                                                                                                                                                                                | <b>as</b> '0'                 |                                |                         |                      |                      |         |  |  |
| bit 4         | <b>RI:</b> RESET                                                                                                                                                                                                          | Instruction Fl                                                                                                                                                                                              | ag bit                        |                                |                         |                      |                      |         |  |  |
|               | <ul> <li>1 = The RESET instruction was not executed (set by firmware only)</li> <li>0 = The RESET instruction was executed causing a device Reset (must be set in software after<br/>a Brown-out Reset occurs)</li> </ul> |                                                                                                                                                                                                             |                               |                                |                         |                      |                      |         |  |  |
| bit 3         | TO: Watch                                                                                                                                                                                                                 | ndog Time-out                                                                                                                                                                                               | Flag bit                      |                                |                         |                      |                      |         |  |  |
|               | 1 = Set by<br>0 = A WD                                                                                                                                                                                                    | power-up, CI<br>T time-out occ                                                                                                                                                                              | RWDT instr                    | uction or SLI                  | EEP instruct            | ion                  |                      |         |  |  |
| bit 2         | PD: Powe                                                                                                                                                                                                                  | r-down Detec                                                                                                                                                                                                | tion Flag bi                  | t                              |                         |                      |                      |         |  |  |
|               | 1 = Set by<br>0 = Set by                                                                                                                                                                                                  | <ul> <li>1 = Set by power-up or by the CLRWDT instruction</li> <li>0 = Set by execution of the SLEEP instruction</li> </ul>                                                                                 |                               |                                |                         |                      |                      |         |  |  |
| bit 1         | POR: Pow                                                                                                                                                                                                                  | er-on Reset S                                                                                                                                                                                               | Status bit <sup>(2)</sup>     |                                |                         |                      |                      |         |  |  |
|               | 1 = A Pow<br>0 = A Pow                                                                                                                                                                                                    | er-on Reset h<br>er-on Reset c                                                                                                                                                                              | as not occ<br>occurred (m     | urred (set by<br>ust be set in | firmware of software at | nly)<br>iter a Power | -on Reset or         | curs)   |  |  |
| bit 0         | BOR: Brow                                                                                                                                                                                                                 | wn-out Reset                                                                                                                                                                                                | Status bit                    |                                |                         |                      |                      |         |  |  |
|               | <ul> <li>1 = A Brown-out Reset has not occurred (set by firmware only)</li> <li>0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)</li> </ul>                                        |                                                                                                                                                                                                             |                               |                                |                         |                      |                      |         |  |  |
|               | Note 1:                                                                                                                                                                                                                   | If SBOREN                                                                                                                                                                                                   | is enabled,                   | its Reset sta                  | ate is '1'; oth         | nerwise, it is       | ʻ0'.                 |         |  |  |
|               | 2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this register and Section 4.6 "Reset State of Registers" for additional information.                                  |                                                                                                                                                                                                             |                               |                                |                         |                      |                      |         |  |  |
|               | Legend                                                                                                                                                                                                                    |                                                                                                                                                                                                             |                               |                                |                         |                      |                      |         |  |  |
|               | R = Read                                                                                                                                                                                                                  | able bit                                                                                                                                                                                                    | W = V                         | Nritable bit                   | U = Uni                 | mplemented           | d bit. read as       | '0'     |  |  |
|               | -n = Value                                                                                                                                                                                                                | at POR                                                                                                                                                                                                      | '1' = l                       | Bit is set                     | '0' = Bit               | is cleared           | x = Bit is u         | unknown |  |  |

**Note 1:** It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected.

2: Brown-out Reset is said to have occurred when BOR is '0' and POR is '1' (assuming that POR was set to '1' by software immediately after POR).

| Register | Applicable Devices |      | Applicable Devices Power-on Reset,<br>Brown-out Reset |      | MCLR Resets,<br>WDT Reset,<br>RESET Instruction,<br>Stack Resets | Wake-up via WDT<br>or Interrupt |           |
|----------|--------------------|------|-------------------------------------------------------|------|------------------------------------------------------------------|---------------------------------|-----------|
| TXB0D5   | 2585               | 2680 | 4585                                                  | 4680 | xxxx xxxx                                                        | uuuu uuuu                       | uuuu uuuu |
| TXB0D4   | 2585               | 2680 | 4585                                                  | 4680 | xxxx xxxx                                                        | uuuu uuuu                       | uuuu uuuu |
| TXB0D3   | 2585               | 2680 | 4585                                                  | 4680 | xxxx xxxx                                                        | uuuu uuuu                       | uuuu uuuu |
| TXB0D2   | 2585               | 2680 | 4585                                                  | 4680 | xxxx xxxx                                                        | սսսս սսսս                       | uuuu uuuu |
| TXB0D1   | 2585               | 2680 | 4585                                                  | 4680 | XXXX XXXX                                                        | นนนน นนนน                       | uuuu uuuu |
|          | 0505               | 0000 | 4505                                                  | 1000 |                                                                  |                                 |           |

### TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

|          |      |      |      |      |      |         | aaaa | aaaa    | aaaa | aaaa |
|----------|------|------|------|------|------|---------|------|---------|------|------|
| TXB0D1   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB0D0   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB0DLC  | 2585 | 2680 | 4585 | 4680 | -x   | xxxx    | -u   | uuuu    | -u   | uuuu |
| TXB0EIDL | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | սսսս | uuuu    | uuuu | uuuu |
| TXB0EIDH | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | -uuu | uuuu |
| TXB0SIDL | 2585 | 2680 | 4585 | 4680 | xxx- | x-xx    | uuu- | u-uu    | uuu- | u-uu |
| TXB0SIDH | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB0CON  | 2585 | 2680 | 4585 | 4680 | 0000 | 0 - 0 0 | 0000 | 0 - 0 0 | uuuu | u-uu |
| TXB1D7   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1D6   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1D5   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1D4   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1D3   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1D2   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1D1   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1D0   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1DLC  | 2585 | 2680 | 4585 | 4680 | -x   | xxxx    | -u   | uuuu    | -u   | uuuu |
| TXB1EIDL | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1EIDH | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | uuuu | uuuu |
| TXB1SIDL | 2585 | 2680 | 4585 | 4680 | xxx- | x-xx    | uuu- | u-uu    | uuu- | uu-u |
| TXB1SIDH | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | -uuu | uuuu |
| TXB1CON  | 2585 | 2680 | 4585 | 4680 | 0000 | 0 - 0 0 | 0000 | 0 - 0 0 | uuuu | u-uu |
| TXB2D7   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | 0uuu | uuuu |
| TXB2D6   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | 0uuu | uuuu |
| TXB2D5   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | 0uuu | uuuu |
| TXB2D4   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | 0uuu | uuuu |
| TXB2D3   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | 0uuu | uuuu |
| TXB2D2   | 2585 | 2680 | 4585 | 4680 | xxxx | xxxx    | uuuu | uuuu    | 0uuu | uuuu |
|          |      |      |      |      |      |         |      |         |      |      |

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

**3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

**5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN<sup>™</sup> technology is set up in Mode 1 or Mode 2.

### 5.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top half of Bank 15 (F80h to FFFh). A list of these registers is given in Table 5-1 and Table 5-2.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the

peripheral functions. The reset and interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

| TABLE 5-1: | SPECIAL FUNCTION REGISTER MAP FOR |
|------------|-----------------------------------|
|            | PIC18F2585/2680/4585/4680 DEVICES |

| Address | Name                    | Address | Name                    | Address | Name                    | Address | Name                 |
|---------|-------------------------|---------|-------------------------|---------|-------------------------|---------|----------------------|
| FFFh    | TOSU                    | FDFh    | INDF2 <sup>(3)</sup>    | FBFh    | CCPR1H                  | F9Fh    | IPR1                 |
| FFEh    | TOSH                    | FDEh    | POSTINC2 <sup>(3)</sup> | FBEh    | CCPR1L                  | F9Eh    | PIR1                 |
| FFDh    | TOSL                    | FDDh    | POSTDEC2 <sup>(3)</sup> | FBDh    | CCP1CON                 | F9Dh    | PIE1                 |
| FFCh    | STKPTR                  | FDCh    | PREINC2 <sup>(3)</sup>  | FBCh    | ECCPR1H <sup>(1)</sup>  | F9Ch    | —                    |
| FFBh    | PCLATU                  | FDBh    | PLUSW2 <sup>(3)</sup>   | FBBh    | ECCPR1L <sup>(1)</sup>  | F9Bh    | OSCTUNE              |
| FFAh    | PCLATH                  | FDAh    | FSR2H                   | FBAh    | ECCP1CON <sup>(1)</sup> | F9Ah    | _                    |
| FF9h    | PCL                     | FD9h    | FSR2L                   | FB9h    | _                       | F99h    | _                    |
| FF8h    | TBLPTRU                 | FD8h    | STATUS                  | FB8h    | BAUDCON                 | F98h    | —                    |
| FF7h    | TBLPTRH                 | FD7h    | TMR0H                   | FB7h    | ECCP1DEL                | F97h    | —                    |
| FF6h    | TBLPTRL                 | FD6h    | TMR0L                   | FB6h    | ECCP1AS <sup>(1)</sup>  | F96h    | TRISE <sup>(1)</sup> |
| FF5h    | TABLAT                  | FD5h    | TOCON                   | FB5h    | CVRCON <sup>(1)</sup>   | F95h    | TRISD <sup>(1)</sup> |
| FF4h    | PRODH                   | FD4h    | —                       | FB4h    | CMCON                   | F94h    | TRISC                |
| FF3h    | PRODL                   | FD3h    | OSCCON                  | FB3h    | TMR3H                   | F93h    | TRISB                |
| FF2h    | INTCON                  | FD2h    | HLVDCON                 | FB2h    | TMR3L                   | F92h    | TRISA                |
| FF1h    | INTCON2                 | FD1h    | WDTCON                  | FB1h    | T3CON                   | F91h    | _                    |
| FF0h    | INTCON3                 | FD0h    | RCON                    | FB0h    | SPBRGH                  | F90h    | —                    |
| FEFh    | INDF0 <sup>(3)</sup>    | FCFh    | TMR1H                   | FAFh    | SPBRG                   | F8Fh    | —                    |
| FEEh    | POSTINC0 <sup>(3)</sup> | FCEh    | TMR1L                   | FAEh    | RCREG                   | F8Eh    | —                    |
| FEDh    | POSTDEC0 <sup>(3)</sup> | FCDh    | T1CON                   | FADh    | TXREG                   | F8Dh    | LATE <sup>(1)</sup>  |
| FECh    | PREINC0 <sup>(3)</sup>  | FCCh    | TMR2                    | FACh    | TXSTA                   | F8Ch    | LATD <sup>(1)</sup>  |
| FEBh    | PLUSW0 <sup>(3)</sup>   | FCBh    | PR2                     | FABh    | RCSTA                   | F8Bh    | LATC                 |
| FEAh    | FSR0H                   | FCAh    | T2CON                   | FAAh    | EEADRH                  | F8Ah    | LATB                 |
| FE9h    | FSR0L                   | FC9h    | SSPBUF                  | FA9h    | EEADR                   | F89h    | LATA                 |
| FE8h    | WREG                    | FC8h    | SSPADD                  | FA8h    | EEDATA                  | F88h    | _                    |
| FE7h    | INDF1 <sup>(3)</sup>    | FC7h    | SSPSTAT                 | FA7h    | EECON2 <sup>(3)</sup>   | F87h    | —                    |
| FE6h    | POSTINC1 <sup>(3)</sup> | FC6h    | SSPCON1                 | FA6h    | EECON1                  | F86h    | —                    |
| FE5h    | POSTDEC1 <sup>(3)</sup> | FC5h    | SSPCON2                 | FA5h    | IPR3                    | F85h    | —                    |
| FE4h    | PREINC1 <sup>(3)</sup>  | FC4h    | ADRESH                  | FA4h    | PIR3                    | F84h    | PORTE <sup>(1)</sup> |
| FE3h    | PLUSW1 <sup>(3)</sup>   | FC3h    | ADRESL                  | FA3h    | PIE3                    | F83h    | PORTD <sup>(1)</sup> |
| FE2h    | FSR1H                   | FC2h    | ADCON0                  | FA2h    | IPR2                    | F82h    | PORTC                |
| FE1h    | FSR1L                   | FC1h    | ADCON1                  | FA1h    | PIR2                    | F81h    | PORTB                |
| FE0h    | BSR                     | FC0h    | ADCON2                  | FA0h    | PIE2                    | F80h    | PORTA                |

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX\_ENn bit in RX\_TX\_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

### 5.6.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the lower half of Access RAM (00h to 7Fh) is mapped. Rather than containing just the contents of the bottom half of Bank 0, this mode maps the contents from Bank 0 and a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 5.3.2 "Access Bank**"). An example of Access Bank remapping in this addressing mode is shown in Figure 5-9. Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before. Any indirect or indexed operation that explicitly uses any of the indirect file operands (including FSR2) will continue to operate as standard indirect addressing. Any instruction that uses the Access Bank, but includes a register address of greater than 05Fh, will use direct addressing and the normal Access Bank map.

#### 5.6.4 BSR IN INDEXED LITERAL OFFSET MODE

Although the Access Bank is remapped when the extended instruction set is enabled, the operation of the BSR remains unchanged. Direct addressing using the BSR to select the data memory bank operates in the same manner as previously described.

#### FIGURE 5-9: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING



#### 9.1 **INTCON Registers**

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

#### **REGISTER 9-1:** INTCON: INTERRUPT CONTROL REGISTER

| R/W-0    | R/W-0                      | R/W-0                                      | R/W-0                                  | R/W-0                                             | R/W-0                                                      | R/W-0                                                                 | R/W-x                                                                       |
|----------|----------------------------|--------------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| GIE/GIEH | PEIE/GIEL                  | TMR0IE                                     | INT0IE                                 | RBIE                                              | TMR0IF                                                     | <b>INT0IF</b>                                                         | RBIF                                                                        |
| bit 7    |                            |                                            |                                        |                                                   |                                                            |                                                                       | bit 0                                                                       |
|          |                            |                                            |                                        |                                                   |                                                            |                                                                       |                                                                             |
|          | R/W-0<br>GIE/GIEH<br>bit 7 | R/W-0 R/W-0<br>GIE/GIEH PEIE/GIEL<br>bit 7 | R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEbit 7 | R/W-0R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEINT0IEbit 7 | R/W-0R/W-0R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEINT0IERBIEbit 7 | R/W-0R/W-0R/W-0R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFbit 7 | R/W-0R/W-0R/W-0R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFINT0IFbit 7 |

bit 7 **GIE/GIEH:** Global Interrupt Enable bit

When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1: 1 = Enables all high priority interrupts 0 = Disables all high priority interrupts bit 6 **PEIE/GIEL:** Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts TMR0IE: TMR0 Overflow Interrupt Enable bit bit 5 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4 **INTOIE:** INTO External Interrupt Enable bit 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt bit 3 **RBIE:** RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1 INTOIF: INTO External Interrupt Flag bit

1 = The INT0 external interrupt occurred (must be cleared in software)

- 0 = The INT0 external interrupt did not occur
- bit 0 **RBIF:** RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

- 0 = None of the RB7:RB4 pins have changed state
  - Note: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

| Legend:           |                  |                                    |                    |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |

# 9.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Request (Flag) registers (PIR1, PIR2).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit, GIE (INTCON<7>).
  - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

### REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

| R/W-0                | R/W-0 | R-0  | R-0  | R/W-0 | R/W-0  | R/W-0  | R/W-0  |
|----------------------|-------|------|------|-------|--------|--------|--------|
| PSPIF <sup>(1)</sup> | ADIF  | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF |
| bit 7                |       |      |      |       |        |        | bit 0  |

|     | <ul> <li>1 = A read or a write operation has taken place (must be cleared in software)</li> <li>0 = No read or write has occurred</li> </ul>        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Note 1: This bit is reserved on PIC18F2X8X devices; always maintain this bit clear.                                                                 |
| 6   | ADIF: A/D Converter Interrupt Flag bit                                                                                                              |
|     | <ul> <li>1 = An A/D conversion completed (must be cleared in software)</li> <li>0 = The A/D conversion is not complete</li> </ul>                   |
| 5   | RCIF: EUSART Receive Interrupt Flag bit                                                                                                             |
|     | <ul> <li>1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)</li> <li>0 = The EUSART receive buffer is empty</li> </ul>      |
| 4   | TXIF: EUSART Transmit Interrupt Flag bit                                                                                                            |
|     | <ul> <li>1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)</li> <li>0 = The EUSART transmit buffer is full</li> </ul> |
| 3   | SSPIF: Master Synchronous Serial Port Interrupt Flag bit                                                                                            |
|     | <ul> <li>1 = The transmission/reception is complete (must be cleared in software)</li> <li>0 = Waiting to transmit/receive</li> </ul>               |
| 2   | CCP1IF: CCP1 Interrupt Flag bit                                                                                                                     |
|     | <u>Capture mode:</u><br>1 = A TMR1 register capture occurred (must be cleared in software)<br>0 = No TMR1 register capture occurred                 |
|     | Compare mode:                                                                                                                                       |
|     | <ul> <li>1 = A TMR1 register compare match occurred (must be cleared in software)</li> <li>0 = No TMR1 register compare match occurred</li> </ul>   |
|     | <u>PWM mode:</u><br>Unused in this mode.                                                                                                            |
| : 1 | TMR2IF: TMR2 to PR2 Match Interrupt Flag bit                                                                                                        |
|     | <ul> <li>1 = TMR2 to PR2 match occurred (must be cleared in software)</li> <li>0 = No TMR2 to PR2 match occurred</li> </ul>                         |
| 0   | TMR1IF: TMR1 Overflow Interrupt Flag bit                                                                                                            |
|     | 1 = TMR1 register overflowed (must be cleared in software)                                                                                          |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

| Name  | Bit 7    | Bit 6                         | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reset<br>Values<br>on page |  |  |
|-------|----------|-------------------------------|-------|-------|-------|-------|-------|-------|----------------------------|--|--|
| PORTC | RC7      | RC6                           | RC5   | RC4   | RC3   | RC2   | RC1   | RC0   | 52                         |  |  |
| LATC  | PORTC Da | PORTC Data Output Register    |       |       |       |       |       |       |                            |  |  |
| TRISC | PORTC Da | PORTC Data Direction Register |       |       |       |       |       |       |                            |  |  |

### TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC



# 18.0 ENHANCED UNIVERSAL SYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs and so on.

The EUSART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN bus) systems.

The EUSART can be configured in the following modes:

- Asynchronous (full-duplex) with:
  - Auto-Wake-up on character reception
  - Auto-Baud calibration
  - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

The pins of the Enhanced USART are multiplexed with PORTC. In order to configure RC6/TX/CK and RC7/RX/DT as a USART:

- bit SPEN (RCSTA<7>) must be set (= 1)
- bit TRISC<7> must be set (= 1)
- bit TRISC<6> must be cleared (= 0) for Asynchronous and Synchronous Master modes, or set (= 1) for Synchronous Slave mode

| Note: | The EUSART control will automatically       |
|-------|---------------------------------------------|
|       | reconfigure the pin from input to output as |
|       | needed.                                     |

The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These are detailed on the following pages in Register 18-1, Register 18-2 and Register 18-3, respectively.

# 19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 8 inputs for the PIC18F2X8X devices and 11 for the PIC18F4X8X devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 19-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 19-2, configures the functions of the port pins. The ADCON2 register, shown in Register 19-3, configures the A/D clock source, programmed acquisition time and justification.

#### REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0 U-0 U-0 **R/W-0** R/W-0 R/W-0 **R/W-0 R/W-0** R/W-0 CHS3 CHS2 CHS1 CHS0 GO/DONE ADON bit 7 bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-2 CHS3:CHS0: Analog Channel Select bits
  - 0000 = Channel 0 (AN0)
  - 0001 = Channel 1 (AN1)
  - 0010 = Channel 2 (AN2)
  - 0011 = Channel 3 (AN3)
  - 0100 = Channel 4 (AN4) 0101 = Channel 5 (AN5)<sup>(1,2)</sup>
  - 0110 =Channel 6 (AN6)<sup>(1,2)</sup>
  - $0111 = Channel 7 (AN7)^{(1,2)}$
  - 1000 = Channel 8 (AN8)
  - 1001 = Channel 9 (AN9)
  - 1010 = Channel 10 (AN10)
  - 1011 = Unused
  - 1100 = Unused
  - 1101 = Unused
  - 1110 = Unused
  - 1111 = Unused
    - Note 1: These channels are not implemented on PIC18F2X8X devices.
      - **2:** Performing a conversion on unimplemented channels will return full-scale measurements.
- bit 1 GO/DONE: A/D Conversion Status bit
  - When ADON = 1:
  - 1 = A/D conversion in progress
  - 0 = A/D Idle
- bit 0 ADON: A/D On bit
  - 1 = A/D converter module is enabled
  - 0 = A/D converter module is disabled

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | l bit, read as '0' |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

© 2007 Microchip Technology Inc.

| B/W-1 B/W-1 B/W-1 B/W-1 B/W-1 B/W-1 B/W-1                                        |           |
|----------------------------------------------------------------------------------|-----------|
|                                                                                  | -1 R/W-1  |
| Mode U IRXIP WAKIP ERRIP TXB2IP TXB1IP <sup>(1)</sup> TXB0IP <sup>(1)</sup> RXB1 | IP RXB0IP |
| R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1                                        | -1 R/W-1  |
| Mode 1, 2                                                                        |           |
| bit 7                                                                            | bit 0     |
|                                                                                  |           |
| bit 7 IRXIP: CAN Invalid Received Message Interrupt Priority bit                 |           |
| 1 = High priority<br>0 = Low priority                                            |           |
| bit 6 <b>WAKIP:</b> CAN bus Activity Wake-up Interrupt Priority bit              |           |
| 1 = High priority                                                                |           |
| 0 = Low priority                                                                 |           |
| bit 5 ERRIP: CAN bus Error Interrupt Priority bit                                |           |
|                                                                                  |           |
| bit 4 When CAN is in Mode 0:                                                     |           |
| <b>TXB2IP:</b> CAN Transmit Buffer 2 Interrupt Priority bit                      |           |
| 0 = Low priority                                                                 |           |
| When CAN is in Mode 1 or 2:                                                      |           |
| <b>TXBnIP:</b> CAN Transmit Buffer Interrupt Priority bit                        |           |
| 0 = Low priority                                                                 |           |
| bit 3 <b>TXB1IP:</b> CAN Transmit Buffer 1 Interrupt Priority bit <sup>(1)</sup> |           |
| <ul><li>1 = High priority</li><li>0 = Low priority</li></ul>                     |           |
| bit 2 <b>TXB0IP:</b> CAN Transmit Buffer 0 Interrupt Priority bit <sup>(1)</sup> |           |
| 1 = High priority $0 = 1  ow priority$                                           |           |
| bit 1 <u>When CAN is in Mode 0:</u>                                              |           |
| <b>RXB1IP:</b> CAN Receive Buffer 1 Interrupt Priority bit                       |           |
| 1 = High priority<br>0 = Low priority                                            |           |
| When CAN is in Mode 1 or 2:                                                      |           |
| <b>RXBnIP:</b> CAN Receive Buffer Interrupts Priority bit                        |           |
| = High priority $ 0 = Low priority$                                              |           |
| bit 0 When CAN is in Mode 0:                                                     |           |
| <b>RXB0IP:</b> CAN Receive Buffer 0 Interrupt Priority bit                       |           |
| = High priority $ 0 = Low priority$                                              |           |
| When CAN is in Mode 1:                                                           |           |
| Unimplemented: Read as '0'                                                       |           |
| When CAN is in Mode 2:<br><b>FIFOWMIP:</b> FIFO Watermark Interrupt Priority bit |           |
| 1 = High priority                                                                |           |
| 0 = Low priority                                                                 |           |
| <b>Note 1:</b> In CAN Mode 1 and 2, this bit is forced to '0'.                   |           |
| Legende                                                                          |           |

R = Readable bit

-n = Value at POR

W = Writable bit

'1' = Bit is set

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

#### REGISTER 24-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

| U-0   | U-0 | U-0 | R/P-1 | R/P-1 | R/P-1                 | R/P-1                 | R/P-1                 |
|-------|-----|-----|-------|-------|-----------------------|-----------------------|-----------------------|
| _     | —   | —   | BORV1 | BORV0 | BOREN1 <sup>(1)</sup> | BOREN0 <sup>(1)</sup> | PWRTEN <sup>(1)</sup> |
| bit 7 |     |     |       |       |                       |                       | bit 0                 |

- bit 7-5 Unimplemented: Read as '0'
- bit 4-3 BORV1:BORV0: Brown-out Reset Voltage bits
  - 11 = VBOR set to 2.1V
  - 10 = VBOR set to 2.8V
  - Ol = VBOR set to 4.3V
  - 00 = VBOR set to 4.6V

### bit 2-1 BOREN1:BOREN0 Brown-out Reset Enable bits<sup>(1)</sup>

- 11 = Brown-out Reset enabled in hardware only (SBOREN is disabled)
- 10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled)
- 01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled)
- 00 = Brown-out Reset disabled in hardware and software

bit 0 **PWRTEN:** Power-up Timer Enable bit<sup>(1)</sup>

- 1 = PWRT disabled
- 0 = PWRT enabled
  - **Note 1:** The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

| Legend:                |                      |                                     |
|------------------------|----------------------|-------------------------------------|
| R = Readable bit       | P = Programmable bit | U = Unimplemented bit, read as '0'  |
| -n = Value when device | e is unprogrammed    | u = Unchanged from programmed state |

| <b>REGISTER 24-6:</b> | CONFIG5                    | CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)                                                            |                            |                               |                    |             |              |          |  |  |  |  |  |
|-----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|--------------------|-------------|--------------|----------|--|--|--|--|--|
|                       | U-0                        | U-0                                                                                                                      | U-0                        | U-0                           | R/C-1              | R/C-1       | R/C-1        | R/C-1    |  |  |  |  |  |
|                       | —                          | —                                                                                                                        | _                          | —                             | CP3 <sup>(1)</sup> | CP2         | CP1          | CP0      |  |  |  |  |  |
|                       | bit 7                      |                                                                                                                          |                            |                               |                    |             |              | bit 0    |  |  |  |  |  |
| bit 7-4               | 1 Unimplem                 | Unimplemented: Read as '0'                                                                                               |                            |                               |                    |             |              |          |  |  |  |  |  |
| bit 3                 | CP3: Code                  | Protection                                                                                                               | bit <sup>(1)</sup>         |                               |                    |             |              |          |  |  |  |  |  |
|                       | 1 = Block 3<br>0 = Block 3 | 3 (00C000-0<br>3 (00C000-0                                                                                               | 0FFFFh) not<br>0FFFFh) cod | t code-proted<br>de-protected | cted<br>I          |             |              |          |  |  |  |  |  |
|                       | Note 1:                    | Note 1: Unimplemented in PIC18FX585 devices; maintain this bit set.                                                      |                            |                               |                    |             |              |          |  |  |  |  |  |
| bit 2                 | CP2: Code                  | CP2: Code Protection bit                                                                                                 |                            |                               |                    |             |              |          |  |  |  |  |  |
|                       | 1 = Block 2<br>0 = Block 2 | <ul> <li>1 = Block 2 (008000-00BFFFh) not code-protected</li> <li>0 = Block 2 (008000-00BFFFh) code-protected</li> </ul> |                            |                               |                    |             |              |          |  |  |  |  |  |
| bit 1                 | CP1: Code                  | Protection                                                                                                               | bit                        |                               |                    |             |              |          |  |  |  |  |  |
|                       | 1 = Block 1<br>0 = Block 1 | <ul> <li>1 = Block 1 (004000-007FFFh) not code-protected</li> <li>0 = Block 1 (004000-007FFFh) code-protected</li> </ul> |                            |                               |                    |             |              |          |  |  |  |  |  |
| bit 0                 | CP0: Code                  | Protection                                                                                                               | bit                        |                               |                    |             |              |          |  |  |  |  |  |
|                       | 1 = Block C                | 1 = Block 0 (000800-003FFFh) not code-protected                                                                          |                            |                               |                    |             |              |          |  |  |  |  |  |
|                       | 0 = Block C                | 0 = Block 0 (000800-003FFFh) code-protected                                                                              |                            |                               |                    |             |              |          |  |  |  |  |  |
|                       | Legend:                    |                                                                                                                          |                            |                               |                    |             |              |          |  |  |  |  |  |
|                       | R = Reada                  | able bit                                                                                                                 | C = Clear                  | able bit                      | U = Unir           | nplemented  | bit, read as | '0'      |  |  |  |  |  |
|                       | -n = Value                 | when devic                                                                                                               | e is unprogra              | ammed                         | u = Uncl           | nanged from | n programme  | ed state |  |  |  |  |  |

#### REGISTER 24-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

|         | R/C-1                                              | R/C-1     | U-0          | U-0      | U-0      | U-0        | U-0          | U-0   |  |  |  |  |
|---------|----------------------------------------------------|-----------|--------------|----------|----------|------------|--------------|-------|--|--|--|--|
|         | CPD                                                | CPB       | —            | —        | —        | _          | —            | —     |  |  |  |  |
|         | bit 7                                              |           |              |          |          |            |              | bit 0 |  |  |  |  |
|         |                                                    |           |              |          |          |            |              |       |  |  |  |  |
| bit 7   | CPD: Data                                          | EEPROM C  | ode Protec   | tion bit |          |            |              |       |  |  |  |  |
|         | 1 = Data EEPROM not code-protected                 |           |              |          |          |            |              |       |  |  |  |  |
|         | 0 = Data El                                        | EPROM coc | le-protected |          |          |            |              |       |  |  |  |  |
| bit 6   | CPB: Boot Block Code Protection bit                |           |              |          |          |            |              |       |  |  |  |  |
|         | 1 = Boot block (000000-0007FFh) not code-protected |           |              |          |          |            |              |       |  |  |  |  |
|         | 0 = Boot block (000000-0007FFh) code-protected     |           |              |          |          |            |              |       |  |  |  |  |
| bit 5-0 | Unimplemented: Read as '0'                         |           |              |          |          |            |              |       |  |  |  |  |
|         |                                                    |           |              |          |          |            |              |       |  |  |  |  |
|         | Legend:                                            |           |              |          |          |            |              |       |  |  |  |  |
|         | R = Reada                                          | ble bit   | C = Clear    | able bit | U = Unin | nplemented | bit, read as | '0'   |  |  |  |  |

-n = Value when device is unprogrammed

u = Unchanged from programmed state

# 24.2 Watchdog Timer (WDT)

For PIC18F2585/2680/4585/4680 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
  - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
  - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

### 24.2.1 CONTROL REGISTER

Register 24-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.



#### FIGURE 24-1: WDT BLOCK DIAGRAM

| BNC         | v                | Branch if                                                                                                                                                                                                                  | Not Overflo                       | w           | BNZ              | Branch i                                                                          | f Not Zero                                                                                                 |                                                                       |  |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------|------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Synta       | ax:              | BNOV n                                                                                                                                                                                                                     |                                   | Syntax:     | BNZ n            | BNZ n                                                                             |                                                                                                            |                                                                       |  |
| Oper        | ands:            | -128 ≤ n ≤ 127                                                                                                                                                                                                             |                                   | Operands:   | -128 ≤ n ≤       | 127                                                                               |                                                                                                            |                                                                       |  |
| Oper        | ation:           | if Overflow<br>(PC) + 2 + 2                                                                                                                                                                                                | bit is '0'<br>2n $\rightarrow$ PC |             | Operation:       | if Zero bit i<br>(PC) + 2 +                                                       | s '0'<br>2n → PC                                                                                           |                                                                       |  |
| Statu       | s Affected:      | None                                                                                                                                                                                                                       |                                   |             | Status Affected: | None                                                                              |                                                                                                            |                                                                       |  |
| Enco        | dina:            | 1110                                                                                                                                                                                                                       | 0101 nni                          | n nnnn      | Encodina:        | 1110                                                                              | 0001 nm                                                                                                    | n nnnn                                                                |  |
| Desc        | ription:         | If the Overfl<br>program wil                                                                                                                                                                                               | low bit is '0', th<br>Il branch.  | nen the     | Description:     | If the Zero<br>will branch                                                        | bit is '0', then t                                                                                         | he program                                                            |  |
|             |                  | The 2's complement number '2n' is<br>added to the PC. Since the PC will have<br>incremented to fetch the next<br>instruction, the new address will be<br>PC + 2 + 2n. This instruction is then a<br>two-cycle instruction. |                                   |             |                  | The 2's co<br>added to th<br>incremente<br>instruction<br>PC + 2 + 2<br>two-cycle | mplement num<br>ne PC. Since th<br>ed to fetch the r<br>, the new addre<br>n. This instruct<br>nstruction. | ber '2n' is<br>e PC will have<br>hext<br>ess will be<br>ion is then a |  |
| Word        | s:               | 1                                                                                                                                                                                                                          |                                   |             | Words:           | 1                                                                                 |                                                                                                            |                                                                       |  |
| Cycle       | es:              | 1(2)                                                                                                                                                                                                                       |                                   |             | Cycles:          | 1(2)                                                                              |                                                                                                            |                                                                       |  |
| QC          | vcle Activity:   |                                                                                                                                                                                                                            |                                   |             | Q Cvcle Activit  | v:                                                                                |                                                                                                            |                                                                       |  |
| lf Ju       | mp:              |                                                                                                                                                                                                                            |                                   |             | If Jump:         |                                                                                   |                                                                                                            |                                                                       |  |
|             | Q1               | Q2                                                                                                                                                                                                                         | Q3                                | Q4          | Q1               | Q2                                                                                | Q3                                                                                                         | Q4                                                                    |  |
|             | Decode           | Read literal<br>'n'                                                                                                                                                                                                        | Process<br>Data                   | Write to PC | Decode           | Read literal<br>'n'                                                               | Process<br>Data                                                                                            | Write to PC                                                           |  |
|             | No               | No                                                                                                                                                                                                                         | No                                | No          | No               | No                                                                                | No                                                                                                         | No                                                                    |  |
|             | operation        | operation                                                                                                                                                                                                                  | operation                         | operation   | operation        | n operation                                                                       | operation                                                                                                  | operation                                                             |  |
| If No       | Jump:            |                                                                                                                                                                                                                            |                                   |             | If No Jump:      |                                                                                   |                                                                                                            |                                                                       |  |
|             | Q1               | Q2                                                                                                                                                                                                                         | Q3                                | Q4          | Q1               | Q2                                                                                | Q3                                                                                                         | Q4                                                                    |  |
|             | Decode           | Read literal                                                                                                                                                                                                               | Process                           | No          | Decode           | Read literal                                                                      | Process                                                                                                    | No                                                                    |  |
|             |                  | 'n'                                                                                                                                                                                                                        | Data                              | operation   |                  | 'n'                                                                               | Data                                                                                                       | operation                                                             |  |
| <u>Exam</u> | <u>iple:</u>     | HERE                                                                                                                                                                                                                       | BNOV Jump                         |             | Example:         | HERE                                                                              | BNZ Jump                                                                                                   |                                                                       |  |
|             | Before Instruc   | tion                                                                                                                                                                                                                       |                                   |             | Before Inst      | truction                                                                          |                                                                                                            |                                                                       |  |
|             | PC               | = ad                                                                                                                                                                                                                       | dress (HERE)                      | )           | PC               | = a                                                                               | ddress (HERE)                                                                                              |                                                                       |  |
|             | After Instructio | on                                                                                                                                                                                                                         |                                   |             | After Instru     | iction                                                                            |                                                                                                            |                                                                       |  |
|             | It Overflo<br>PC | w = 0;<br>= ad                                                                                                                                                                                                             | dress (Jump)                      | )           | It Zero          | D = 0;<br>PC = a                                                                  | dress (Jump)                                                                                               |                                                                       |  |
|             | lf Overflo       | w = 1;                                                                                                                                                                                                                     |                                   | *           | If Zer           | c = 1                                                                             |                                                                                                            |                                                                       |  |
|             | PC               | = ad                                                                                                                                                                                                                       | dress (HERE                       | + 2)        | I                | PC = a                                                                            | ddress (HERE                                                                                               | + 2)                                                                  |  |

| INCFSZ                                  | Incremen                                                                                                                                                                                                                                               | t f, Skip if 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | INFSNZ    |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|--|--|
| Syntax:                                 | INCFSZ f                                                                                                                                                                                                                                               | {,d {,a}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Syntax:   |  |  |
| Operands:                               | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Operand   |  |  |
| Operation:                              | (f) + 1 $\rightarrow$ de skip if resul                                                                                                                                                                                                                 | est,<br>t = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Operatio  |  |  |
| Status Affected:                        | None                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Status A  |  |  |
| Encoding:                               | 0011                                                                                                                                                                                                                                                   | 11da ff:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ff ffff                  | Encodin   |  |  |
| Description:                            | The conten<br>incremente<br>placed in W<br>placed back<br>If the result<br>which is alr<br>and a NOP i<br>it a two-cyc<br>If 'a' is '0', t<br>If 'a' is '0', t<br>GPR bank<br>If 'a' is '0' a<br>set is enabl<br>in Indexed<br>mode when<br>Section 25 | The contents of register 'f' are<br>incremented. If 'd' is '0', the result is<br>placed in W. If 'd' is '1', the result is<br>placed back in register 'f' (default).<br>If the result is '0', the next instruction<br>which is already fetched is discarded<br>and a NOP is executed instead, making<br>it a two-cycle instruction.<br>If 'a' is '0', the Access Bank is selected.<br>If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank (default).<br>If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever f $\leq$ 95 (5Fh). See<br>Section 25.2.3 "Byte-Oriented and |                          |           |  |  |
|                                         | Bit-Oriente                                                                                                                                                                                                                                            | ed Instruction<br>set Mode" for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s in Indexed<br>details. |           |  |  |
| Words:                                  | 1                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Words:    |  |  |
| Cycles:                                 | 1(2)<br>Note: 3 c<br>bv                                                                                                                                                                                                                                | cycles if skip a<br>a 2-word instr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd followed<br>uction.   | Cycles:   |  |  |
| Q Cvcle Activity:                       | - ,                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Q Cycle   |  |  |
| Q1                                      | Q2                                                                                                                                                                                                                                                     | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q4                       | a oyola   |  |  |
| Decode                                  | Read<br>register 'f'                                                                                                                                                                                                                                   | Process<br>Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Write to destination     | [         |  |  |
| If skip:                                |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | lf skip:  |  |  |
| Q1                                      | Q2                                                                                                                                                                                                                                                     | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q4                       |           |  |  |
| No                                      | No                                                                                                                                                                                                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                       |           |  |  |
| operation                               | operation                                                                                                                                                                                                                                              | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | operation                | 0         |  |  |
| If skip and followe                     | d by 2-word in                                                                                                                                                                                                                                         | struction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | lf skip a |  |  |
| Q1                                      | Q2                                                                                                                                                                                                                                                     | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q4                       |           |  |  |
| No                                      | No                                                                                                                                                                                                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                       |           |  |  |
| No                                      | No                                                                                                                                                                                                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                       | 0         |  |  |
| operation                               | operation                                                                                                                                                                                                                                              | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | operation                | 0         |  |  |
| Example:                                | HERE<br>NZERO<br>ZERO                                                                                                                                                                                                                                  | INCFSZ CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PT, 1, 0                 | Example   |  |  |
| Before Instruc<br>PC                    | tion<br>= Address                                                                                                                                                                                                                                      | (HERE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | Bef       |  |  |
| After Instructio<br>CNT<br>If CNT<br>PC | on<br>= CNT + 1<br>= 0;<br>= Address                                                                                                                                                                                                                   | l<br>s (zero)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Afte      |  |  |
| If CNT<br>PC                            | ≠ 0;<br>= Address                                                                                                                                                                                                                                      | (NZERO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |  |  |

| FSNZ                | Increment f, Skip if Not 0                                                                                                                                           |                  |                      |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|--|--|--|
| ntax:               | INFSNZ f {,d {,a}}                                                                                                                                                   |                  |                      |  |  |  |
| erands:             | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                                                                                  |                  |                      |  |  |  |
| eration:            | (f) + 1 $\rightarrow$ dest,<br>skip if result $\neq 0$                                                                                                               |                  |                      |  |  |  |
| tus Affected:       | None                                                                                                                                                                 |                  |                      |  |  |  |
| coding:             | 0100 10da ffff ffff                                                                                                                                                  |                  |                      |  |  |  |
| scription:          | The contents of register 'f' are<br>incremented. If 'd' is '0', the result is<br>placed in W. If 'd' is '1', the result is<br>placed back in register 'f' (default). |                  |                      |  |  |  |
|                     | If the result is not '0', the next<br>instruction which is already fetched is<br>discarded and a NOP is executed<br>instead, making it a two-cycle<br>instruction    |                  |                      |  |  |  |
|                     | If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank (default).                                                   |                  |                      |  |  |  |
|                     | If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates                                                                              |                  |                      |  |  |  |
|                     | mode whenever f ≤ 95 (5Fh). See<br>Section 25.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed                                                         |                  |                      |  |  |  |
| vrdo.               |                                                                                                                                                                      | Set Mode for     | details.             |  |  |  |
|                     | 1(0)                                                                                                                                                                 |                  |                      |  |  |  |
| cles: 1(2)          |                                                                                                                                                                      |                  |                      |  |  |  |
|                     | bv                                                                                                                                                                   | a 2-word instr   | uction.              |  |  |  |
| Cvcle Activity:     | ,                                                                                                                                                                    |                  |                      |  |  |  |
| Q1                  | Q2                                                                                                                                                                   | Q3               | Q4                   |  |  |  |
| Decode              | Read<br>register 'f'                                                                                                                                                 | Process<br>Data  | Write to destination |  |  |  |
| skip:               |                                                                                                                                                                      |                  |                      |  |  |  |
| Q1                  | Q2                                                                                                                                                                   | Q3               | Q4                   |  |  |  |
| No                  | No                                                                                                                                                                   | No               | No                   |  |  |  |
| operation           | operation                                                                                                                                                            | operation        | operation            |  |  |  |
| skip and followed   | d by 2-word in:<br>Q2                                                                                                                                                | struction:<br>Q3 | Q4                   |  |  |  |
| No                  | No                                                                                                                                                                   | No               | No                   |  |  |  |
| operation           | operation                                                                                                                                                            | operation        | operation            |  |  |  |
| NO                  | N0<br>operation                                                                                                                                                      | N0<br>operation  | N0<br>operation      |  |  |  |
| ample:              | HERE I<br>ZERO<br>NZERO                                                                                                                                              | INFSNZ REG       | , 1, 0               |  |  |  |
| Before Instruc      | Before Instruction                                                                                                                                                   |                  |                      |  |  |  |
| PC = Address (HERE) |                                                                                                                                                                      |                  |                      |  |  |  |
| REG<br>If REG       | /''<br>= REG + <sup>-</sup><br>≠ 0;                                                                                                                                  | 1                |                      |  |  |  |
| PC                  | = Áddress                                                                                                                                                            | (NZERO)          |                      |  |  |  |
| PC                  | = 0;<br>= Address                                                                                                                                                    | (ZERO)           |                      |  |  |  |

### 27.4.3 TIMING DIAGRAMS AND SPECIFICATIONS



#### TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS

| Param.<br>No. | Symbol | Characteristic                         | Min  | Мах   | Units | Conditions              |  |  |
|---------------|--------|----------------------------------------|------|-------|-------|-------------------------|--|--|
| 1A            | Fosc   | External CLKI Frequency <sup>(1)</sup> | DC   | 1     | MHz   | XT, RC Oscillator modes |  |  |
|               |        |                                        | DC   | 25    | MHz   | HS Oscillator mode      |  |  |
|               |        |                                        | DC   | 31.25 | kHz   | LP Oscillator mode      |  |  |
|               |        |                                        | DC   | 40    | MHz   | EC Oscillator mode      |  |  |
|               |        | Oscillator Frequency <sup>(1)</sup>    | DC   | 4     | MHz   | RC Oscillator mode      |  |  |
|               |        |                                        | 0.1  | 4     | MHz   | XT Oscillator mode      |  |  |
|               |        |                                        | 4    | 25    | MHz   | HS Oscillator mode      |  |  |
|               |        |                                        | 4    | 10    | MHz   | HSPLL Oscillator mode   |  |  |
|               |        |                                        | 5    | 200   | kHz   | LP Oscillator mode      |  |  |
| 1             | Tosc   | External CLKI Period <sup>(1)</sup>    | 1000 | —     | ns    | XT, RC Oscillator modes |  |  |
|               |        |                                        | 40   | —     | ns    | HS Oscillator mode      |  |  |
|               |        |                                        | 32   | —     | μs    | LP Oscillator mode      |  |  |
|               |        |                                        | 25   | —     | ns    | EC Oscillator mode      |  |  |
|               |        | Oscillator Period <sup>(1)</sup>       | 250  | —     | ns    | RC Oscillator mode      |  |  |
|               |        |                                        | 250  | 1     | μs    | XT Oscillator mode      |  |  |
|               |        |                                        | 40   | 250   | ns    | HS Oscillator mode      |  |  |
|               |        |                                        | 100  | 250   | ns    | HSPLL Oscillator mode   |  |  |
|               |        |                                        | 5    | 200   | μs    | LP Oscillator mode      |  |  |
| 2             | Тсү    | Instruction Cycle Time <sup>(1)</sup>  | 100  | —     | ns    | Tcy = 4/Fosc            |  |  |
| 3             | TosL,  | External Clock in (OSC1)               | 30   | —     | ns    | XT Oscillator mode      |  |  |
|               | TosH   | High or Low Time                       | 2.5  | —     | μs    | LP Oscillator mode      |  |  |
|               |        |                                        | 10   | —     | ns    | HS Oscillator mode      |  |  |
| 4             | TosR,  | External Clock in (OSC1)               | —    | 20    | ns    | XT Oscillator mode      |  |  |
|               | TosF   | Rise or Fall Time                      | —    | 50    | ns    | LP Oscillator mode      |  |  |
|               |        |                                        | —    | 7.5   | ns    | HS Oscillator mode      |  |  |

**Note 1:** Instruction cycle period (TcY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

© 2007 Microchip Technology Inc.



#### FIGURE 27-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

### TABLE 27-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

| Param<br>No. | Symbol                | Characteristic                           |                     | Min | Max | Units | Conditions |
|--------------|-----------------------|------------------------------------------|---------------------|-----|-----|-------|------------|
| 73           | TDIV2SCH,<br>TDIV2SCL | Setup Time of SDI Data Input to SCK Edge |                     | 100 |     | ns    |            |
| 74           | TscH2diL,<br>TscL2diL | Hold Time of SDI Data Input to SCK Edge  |                     | 100 | _   | ns    |            |
| 75           | TDOR                  | SDO Data Output Rise Time                | PIC18FXXXX          | —   | 25  | ns    |            |
|              |                       |                                          | PIC18LFXXXX         | _   | 45  | ns    | VDD = 2.0V |
| 76           | TDOF                  | SDO Data Output Fall Time                |                     | —   | 25  | ns    |            |
| 78           | TscR                  | SCK Output Rise Time                     | PIC18FXXXX          | _   | 25  | ns    |            |
|              |                       |                                          | PIC18LFXXXX         | _   | 45  | ns    | VDD = 2.0V |
| 79           | TscF                  | SCK Output Fall Time                     |                     | _   | 25  | ns    |            |
| 80           | TscH2doV,<br>TscL2doV | SDO Data Output Valid after<br>SCK Edge  | PIC18 <b>F</b> XXXX | _   | 50  | ns    |            |
|              |                       |                                          | PIC18LFXXXX         | _   | 100 | ns    | VDD = 2.0V |