

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4680-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC18F2585/2680 (28-PIN) BLOCK DIAGRAM

Note 1: RE3 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.

2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 2.0 "Oscillator Configurations" for additional information.

TABLE 1-2: PIC18F2585/2680 PINOUT I/O DESCRIPTION

Dia Norra	Pin Number Pin		Buffer	_		
	PDIP, SOIC	Туре	Туре	Description		
MCLR/VPP/RE3	1			Master Clear (input) or programming voltage (input).		
MCLR		I	ST	Master Clear (Reset) input. This pin is an active-low		
Vpp		Р		Programming voltage input.		
RE3		I	ST	Digital input.		
OSC1/CLKI/RA7	9			Oscillator crystal or external clock input.		
OSC1		I	ST	Oscillator crystal input or external clock source input.		
CLKI		I	CMOS	ST buffer when configured in RC mode; CMOS otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKL OSC2/CLKO pins.)		
RA7		I/O	TTL	General purpose I/O pin.		
OSC2/CLKO/RA6	10			Oscillator crystal or clock output.		
OSC2		0	—	Oscillator crystal output. Connects to crystal or resonator in		
CLKO		0	_	Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
RA6		I/O	TTL	General purpose I/O pin.		
Legend: TTL = TTL cor	npatible in	put		CMOS = CMOS compatible input or output		
ST = Schmitt Trigger input with CMOS levels I = Input						

0 = Output

= Input = Power

I P

Din Norro	Pi	n Numl	ber	Pin	Buffer	Description	
Pin Name	PDIP Q		TQFP	Туре	Туре	Description	
						PORTA is a bidirectional I/O port.	
RA0/AN0/CVREF	2	19	19				
RA0				I/O	TTL	Digital I/O.	
AN0				I	Analog	Analog input 0.	
CVREF				0	Analog	Analog comparator reference output.	
RA1/AN1	3	20	20				
RA1				I/O	TTL	Digital I/O.	
AN1				I	Analog	Analog input 1.	
RA2/AN2/VREF-	4	21	21				
RA2				I/O	TTL	Digital I/O.	
AN2				I	Analog	Analog input 2.	
VREF-				I	Analog	A/D reference voltage (low) input.	
RA3/AN3/VREF+	5	22	22				
RA3				I/O	TTL	Digital I/O.	
AN3					Analog	Analog input 3.	
VREF+				I	Analog	A/D reference voltage (nign) input.	
RA4/T0CKI	6	23	23				
RA4				1/0	TTL	Digital I/O.	
TUCKI				I	SI	limeru external clock input.	
RA5/AN4/SS/HLVDIN	7	24	24				
RA5				I/O	TTL	Digital I/O.	
$\frac{AN4}{DD}$					Analog	Analog input 4.	
					11L Angleg	SPI slave select input.	
				1	Analog		
RA6						See the OSC2/CLKO/RA6 pin.	
RA7						See the OSC1/CLKI/RA7 pin.	
Legend: TTL = TTL	compat	ible inpu	ut		С	MOS = CMOS compatible input or output	
ST = Schr	ST = Schmitt Trigger input with CMOS levels I = Input						
O = Output P = Power							

TABLE 1-3:	PIC18F4585/4680 PINOUT I/O DESCRIPTIONS (CONTINUED))

5.2 PIC18 Instruction Cycle

5.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the Program Counter (PC) is incremented on every Q1; the instruction is fetched from the program memory and latched into the Instruction Register (IR) during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-3.

5.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-3).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 5-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 5-3: INSTRUCTION PIPELINE FLOW

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
EEADRH	—	—				_	EEPROM A Register Hig	ddress h Byte	51
EEADR	EEPROM Address Register							51	
EEDATA	EEPROM Data Register							51	
EECON2	EEPROM Control Register 2 (not a physical register)							51	
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	51
IPR2	OSCFIP	CMIP ⁽¹⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽¹⁾	51
PIR2	OSCFIF	CMIF ⁽¹⁾	—	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽¹⁾	51
PIE2	OSCFIE	CMIE ⁽¹⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽¹⁾	52

TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

Note 1: These bits are available in PIC18F4X8X devices and reserved in PIC18F2X8X devices.

INTCON3	: INTERRU	PT CONTI	ROL REGI	STER 3					
R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
INT2IP	INT1IP		INT2IE	INT1IE	_	INT2IF	INT1IF		
bit 7							bit 0		
INT2IP: IN	INT2IP: INT2 External Interrupt Priority bit								
1 = High p 0 = Low p	priority riority								
INT1IP: IN	T1 External	Interrupt Pri	ority bit						
1 = High p 0 = Low p	priority riority								
Unimplem	ented: Read	d as '0'							
INT2IE: IN	T2 External	Interrupt En	able bit						
1 = Enabl 0 = Disab	 1 = Enables the INT2 external interrupt 0 = Disables the INT2 external interrupt 								
INT1IE: IN	INT1IE: INT1 External Interrupt Enable bit								
1 = Enabl 0 = Disab	 1 = Enables the INT1 external interrupt 0 = Disables the INT1 external interrupt 								
Unimplem	Unimplemented: Read as '0'								
INT2IF: IN	INT2IF: INT2 External Interrupt Flag bit								
1 = The IN 0 = The IN	 1 = The INT2 external interrupt occurred (must be cleared in software) 0 = The INT2 external interrupt did not occur 								
INT1IF: IN	T1 External	Interrupt Fla	g bit						
1 = The IN 0 = The IN	NT1 external NT1 external	interrupt oc interrupt dic	curred (mus I not occur	t be cleared	in software)				
Longrati									

REGISTER 9-

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Interrupt flag bits are set when an interrupt condition occurs regardless of the state Note: of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

10.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4X8X
	devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Three of the PORTD pins are multiplexed with outputs P1A, P1B, P1C and P1D of the Enhanced CCP1 (ECCP1) module. The operation of these additional PWM output pins is covered in greater detail in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP1) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs.

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 10.6** "**Parallel Slave Port**" for additional information on the Parallel Slave Port (PSP).

Note:	When the Enhanced PWM mode is used						
	with either dual or quad outputs, the PSI						
	functions of PORTD are automatically						
	disabled.						

10-4.		DORTO
10-4:	INTTALIZING	PURID

	-	
CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

18.2 EUSART Asynchronous Mode

The Asynchronous mode of operation is selected by clearing the SYNC bit (TXSTA<4>). In this mode, the EUSART uses standard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip dedicated 8-bit/16-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate depending on the BRGH and BRG16 bits (TXSTA<2> and BAUDCON<3>). Parity is not supported by the hardware, but can be implemented in software and stored as the 9th data bit.

When operating in Asynchronous mode, the EUSART module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver
- Auto-Wake-up on Sync Break Character
- 12-bit Break Character Transmit
- Auto-Baud Rate Detection

18.2.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 18-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and the TXIF flag bit (PIR1<4>) is set. This interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF will be set regardless of the state of TXIE; it cannot be cleared in software. TXIF is also not cleared immediately upon loading TXREG, but becomes valid in the second instruction cycle following the load instruction. Polling TXIF immediately following a load of TXREG will return invalid results.

While TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty.

- **Note 1:** The TSR register is not mapped in data memory so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set.

To set up an Asynchronous Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-3: EUSART TRANSMIT BLOCK DIAGRAM

20.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register
	(C1OUT or C2OUT) should occur when a
	read operation is being executed (start of
	the Q2 cycle), then the CMIF (PIR
	registers) interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

20.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM2:CM0 = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

20.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Reset mode (CM2:CM0 = 000). This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators are powered down during the Reset interval.

'0' = Bit is cleared

x = Bit is unknown

REGISTER 23-16: RXBnSIDL: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS, I OW BYTE [0 < n < 1]

			·]					
	R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16
	bit 7							bit 0
bit 7-5	SID2:SID0	: Standard Id	dentifier bits	(if EXID = 0)			
	Extended lo	dentifier bits	EID20:EID1	18 (if EXID =	; :1).			
bit 4	SRR: Subs	titute Remo	te Request l	oit				
	This bit is a EXID = 0.	llways 'o' wh	ien EXID = 2	⊥ or equal to	the value of	f RXRTRRO	(RBXnCON	I<3>) when
bit 3	EXID: Exte	nded Identif	ier bit					
	 1 = Received message is an extended data frame, SID10:SID0 are EID28:EID18 0 = Received message is a standard data frame 							
bit 2	Unimplem	ented: Read	d as '0'					
bit 1-0	EID17:EID16: Extended Identifier bits							
	Legend:							
	R = Readab	ole bit	W = Writat	ole bit	U = Unim	plemented	bit, read as '	ʻ0'

REGISTER 23-17: RXBnEIDH: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE $[0 \le n \le 1]$

'1' = Bit is set

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0

bit 7-0 EID15:EID8: Extended Identifier bits

-n = Value at POR

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-18: RXBnEIDL: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS,

LOW BYTE $[0 \le n \le 1]$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

bit 7-0 **EID7:EID0:** Extended Identifier bits

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0 bit 7 bit 0

REGISTER 23-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

bit 7-0 **REC7:REC0:** Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EXAMPLE 23-5: READING A CAN MESSAGE

```
; Need to read a pending message from RXB0 buffer.
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be
; programmed correctly.
;
; Make sure that there is a message pending in RXB0.
BTFSS RXBOCON, RXFUL
                                     ; Does RXB0 contain a message?
                                      ; No. Handle this situation...
       NoMessage
BRA
; We have verified that a message is pending in RXB0 buffer.
; If this buffer can receive both Standard or Extended Identifier messages,
; identify type of message received.
BTFSS RXBOSIDL, EXID
                                      ; Is this Extended Identifier?
                                      ; No. This is Standard Identifier message.
BRA
       StandardMessage
                                      ; Yes. This is Extended Identifier message.
; Read all 29-bits of Extended Identifier message.
. . .
; Now read all data bytes
MOVFF RXBODO, MY DATA BYTE1
. . .
; Once entire message is read, mark the RXBO that it is read and no longer FULL.
BCF
       RXBOCON, RXFUL
                                     ; This will allow CAN Module to load new messages
                                      ; into this buffer.
. . .
```

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0				
	bit 7							bit 0				
bit 7	SEG2PHTS:	: Phase Seg	gment 2 Tim	e Select bit								
	 1 = Freely programmable 0 = Maximum of PHEG1 or Information Processing Time (IPT), whichever is greater 											
bit 6	SAM: Sampl	le of the CA	N bus Line	bit								
	1 = Bus line 0 = Bus line	is sampled is sampled	three times once at the	prior to the sample poir	sample point nt	t						
bit 5-3	SEG1PH2:S	EG1PH0: F	Phase Segm	ent 1 bits								
	111 = Phase Segment 1 time = $8 \times TQ$ 110 = Phase Segment 1 time = $7 \times TQ$ 101 = Phase Segment 1 time = $6 \times TQ$ 100 = Phase Segment 1 time = $5 \times TQ$ 011 = Phase Segment 1 time = $4 \times TQ$ 010 = Phase Segment 1 time = $3 \times TQ$ 001 = Phase Segment 1 time = $1 \times TQ$											
bit 2-0	PRSEG2:PF	RSEG0: Pro	pagation Tir	ne Select bi	ts							
	111 = Propagation time = $8 \times TQ$ 110 = Propagation time = $7 \times TQ$ 101 = Propagation time = $6 \times TQ$ 100 = Propagation time = $5 \times TQ$ 011 = Propagation time = $4 \times TQ$ 010 = Propagation time = $3 \times TQ$ 001 = Propagation time = $2 \times TQ$ 000 = Propagation time = $1 \times TQ$											
	Legend:											
	R = Readabl	e bit	W = Writab	le bit	U = Unim	plemented b	oit, read as '	0'				

'0' = Bit is cleared

REGISTER 23-53: BRGCON2: BAUD RATE CONTROL REGISTER 2

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

23.13 Bit Timing Configuration Registers

The Baud Rate Control registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18F2585/2680/4585/4680 devices are in Configuration mode.

23.13.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW < 1:0 > bits select the synchronization jump width in terms of multiples of TQ.

23.13.2 BRGCON2

The PRSEG bits set the length of the propagation segment in terms of To. The SEG1PH bits set the length of Phase Segment 1 in To. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times: twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the Information Processing Time (which is fixed at 2 TQ for the PIC18F2585/2680/4585/4680).

23.13.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

23.14 Error Detection

The CAN protocol provides sophisticated error detection mechanisms. The following errors can be detected.

23.14.1 CRC ERROR

With the Cyclic Redundancy Check (CRC), the transmitter calculates special check bits for the bit sequence, from the start of a frame until the end of the data field. This CRC sequence is transmitted in the CRC field. The receiving node also calculates the CRC sequence using the same formula and performs a comparison to the received sequence. If a mismatch is detected, a CRC error has occurred and an error frame is generated. The message is repeated.

23.14.2 ACKNOWLEDGE ERROR

In the Acknowledge field of a message, the transmitter checks if the Acknowledge slot (which was sent out as a recessive bit) contains a dominant bit. If not, no other node has received the frame correctly. An Acknowledge error has occurred, an error frame is generated and the message will have to be repeated.

23.14.3 FORM ERROR

If a node detects a dominant bit in one of the four segments, including End-Of-Frame, interframe space, Acknowledge delimiter or CRC delimiter, then a form error has occurred and an error frame is generated. The message is repeated.

23.14.4 BIT ERROR

A bit error occurs if a transmitter sends a dominant bit and detects a recessive bit, or if it sends a recessive bit and detects a dominant bit, when monitoring the actual bus level and comparing it to the just transmitted bit. In the case where the transmitter sends a recessive bit and a dominant bit is detected during the arbitration field and the Acknowledge slot, no bit error is generated because normal arbitration is occurring.

23.14.5 STUFF BIT ERROR

If, between the Start-Of-Frame and the CRC delimiter, six consecutive bits with the same polarity are detected, the bit stuffing rule has been violated. A stuff bit error occurs and an error frame is generated. The message is repeated.

23.14.6 ERROR STATES

Detected errors are made public to all other nodes via error frames. The transmission of the erroneous message is aborted and the frame is repeated as soon as possible. Furthermore, each CAN node is in one of the three error states: "error-active", "error-passive" or "bus-off", according to the value of the internal error counters. The error-active state is the usual state where the bus node can transmit messages and activate error frames (made of dominant bits) without any restrictions. In the error-passive state, messages and passive error frames (made of recessive bits) may be transmitted. The bus-off state makes it temporarily impossible for the station to participate in the bus communication. During this state, messages can neither be received nor transmitted.

23.14.7 ERROR MODES AND ERROR COUNTERS

The PIC18F2585/2680/4585/4680 devices contain two error counters: the Receive Error Counter (RXERRCNT) and the Transmit Error Counter (TXERRCNT). The values of both counters can be read by the MCU. These counters are incremented or decremented in accordance with the CAN bus specification.

REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

R/P-1	U-0	U-0	U-0	U-0	R/P-0	R/P-1	U-0
MCLRE	—	—	—	—	LPT1OSC	PBADEN	—
bit 7							bit 0

bit 7 MCLRE: MCLR Pin Enable bit

 $1 = \overline{MCLR}$ pin enabled; RE3 input pin disabled

0 = RE3 input pin enabled; MCLR disabled

- bit 6-3 Unimplemented: Read as '0'
- bit 2 LPT10SC: Low-Power Timer 1 Oscillator Enable bit
 - 1 = Timer1 configured for low-power operation
 - 0 = Timer1 configured for higher power operation

bit 1 PBADEN: PORTB A/D Enable bit

(Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.)

- 1 = PORTB<4:0> pins are configured as analog input channels on Reset
- 0 = PORTB<4:0> pins are configured as digital I/O on Reset
- bit 0 Unimplemented: Read as '0'

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

	R/P-1	R/P-0	R/P-0	R/P-0	U-0	R/P-1	U-0	R/P-1
	DEBUG	XINST	BBSIZ1	BBSIZ2	—	LVP	—	STVREN
k	oit 7							bit 0

bit 7	DEBUG: Background Debugger Enable bit
	 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug
bit 6	XINST: Extended Instruction Set Enable bit
	 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
bit 5	BBSIZ1: Boot Block Size Select Bit 1
	<pre>11 = 4K words (8 Kbytes) boot block 10 = 4K words (8 Kbytes) boot block</pre>
bit 4	BBSIZ2: Boot Block Size Select Bit 0
	01 = 2K words (4 Kbytes) boot block00 = 1K words (2 Kbytes) boot block
bit 3	Unimplemented: Read as '0'
bit 2	LVP: Single-Supply ICSP Enable bit
	1 = Single-Supply ICSP enabled0 = Single-Supply ICSP disabled
bit 1	Unimplemented: Read as '0'
bit 0	STVREN: Stack Full/Underflow Reset Enable bit
	 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset
	Legend:
	B – Beadable bit C – Clearable bit II – Unimplemented bit read as '0'

R = Readable bitC = Clearable bitU = Unimplemented bit, read as '0'<math>-n = Value when device is unprogrammedu = Unchanged from programmed state

IOR	LW	Inclusive	Inclusive OR Literal with W						
Syntax: IORLW k									
Oper	ands:	0 ≤ k ≤ 255	5						
Oper	ation:	(W) .OR. k	$\rightarrow W$						
Statu	s Affected:	N, Z							
Enco	ding:	0000	1001	kkkk	kkkk				
Desc	ription:	The conter eight-bit lit in W.	The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.						
Word	ls:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Data	ss V a	Vrite to W				
<u>Exan</u>	<u>nple:</u>	IORLW	35h						
	Before Instruction								

IORWF Inclusive OR W with f							
Syntax:	IORWF f	{,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(W) .OR. (f)	ightarrow dest					
Status Affected:	N, Z						
Encoding:	0001 00da ffff ffff						
Description:	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the ASR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
		D	[10/			

201010 11101101		
W	=	9Ah
After Instructi	on	
W	=	BFh

Example:

IORWF RESULT, 0, 1

Before Instruction						
RESULT =	13h					
W =	91h					
After Instruction						
RESULT =	13h					
W =	93h					

DS39625C-page 384

RET	FIE	Return fro	om Interrup	t	RET	RETLW Retu		Return Literal to W			
Synta	ax:	RETFIE {	5}		Synt	ax:	RETLW k				
Oper	ands:	s ∈ [0,1]			Ope	rands:	$0 \le k \le 255$	$0 \le k \le 255$			
Operation:		$(TOS) \rightarrow P$ 1 \rightarrow GIE/G if s = 1	C, IEH or PEIE/G	iIEL,	Ope	Operation:		$k \rightarrow W$, (TOS) → PC, PCLATU, PCLATH are unchanged			
		$(WS) \rightarrow W,$			Statu	is Affected:	None				
		$(BSRS) \rightarrow$	BSR,		Enco	oding:	0000	1100 kk	kk kkkk		
		PCLATU, F	CLATH are ur	nchanged.	Desc	cription:	W is loaded	d with the eigh	t-bit literal 'k'.		
Statu	is Affected:	GIE/GIEH,	PEIE/GIEL.				The progra	m counter is lo	baded from the		
Enco Desc	oding: cription:	0000 Return from	0000 0000 0001 000s Return from Interrupt. Stack is popped				The high ad remains un	ddress latch (F changed.	PCLATH)		
2000.19.00.0		and Top-of-	and Top-of-Stack (TOS) is loaded into			ds:	1	•			
		the PC. Inte setting eith	the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the			es:	2				
		global inter				ycle Activity:					
		contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default)				Q1	Q2	Q3	Q4		
						Decode	Read literal 'k'	Process Data	POP PC from stack, Write to W		
Word	ls:	1			No	No	No	No			
Cvcle	es:	2				operation	operation	operation	operation		
QC	vcle Activitv:				Eva	nnlo:					
	Q1	Q2	Q3	Q4		CALL TABL	E ; W cont	ains table			
	Decode	No operation	No operation	POP PC from stack Set GIEH or GIEL		:	; offset ; W now ; table	value has value			
	No operation	No operation	No operation	No operation	TAB.	LE ADDWF PCL RETLW k0	; W = of ; Begin	fset table			
Exan	nple:	RETFIE	1			KEILW KI	;				
	After Interrupt PC W BSR		= TOS = WS = BSRS	166		: RETLW kn Before Instruc W	; End of ction = 07h	table			
	GIE/GIE	H, PEIE/GIEL	= 5 ATC = 1	133		After Instruction	on = value o	f kn			

RLNCF		Rotate Le	eft f (No Car	ry)	RRC	F	Rotate R	ight f throug	h Carry
Syntax:		RLNCF	f {,d {,a}}		Synta	IX:	RRCF f	[,d {,a}}	
Operands:		0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]			Oper	ands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]		
Operation:		$(f < n >) \rightarrow d$ $(f < 7 >) \rightarrow d$	lest <n +="" 1="">, lest<0></n>		Oper	ation:	$(f < n >) \rightarrow c$ $(f < 0 >) \rightarrow c$ $(C) \rightarrow des$	lest <n 1="" –="">,), t<7></n>	
Status Affec	cted:	Ν, Ζ			Statu	s Affected:	(c) , doo		
Encoding:		0100	01da ff	ff ffff	Enco	dina:	0011	00da ff	ff ffff
Description:	:	Ine conter one bit to t is placed ir stored bac If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enab in Indexed	the left. If 'd' is he left. If 'd' is '1 k in register 'f' the Access Ba the BSR is use (default). and the extend led, this instru Literal Offset	" are rotated "o", the result ", the result is " (default). nk is selected. ed to select the ded instruction ction operates Addressing	Desc	ription:	The conter one bit to t flag. If 'd' is If 'd' is '1', register 'f' If 'a' is '0', If 'a' is '1', GPR bank	the register 'f he right throug s '0', the result is the result is pla (default). the Access Bai the BSR is use (default).	f' are rotated h the Carry is placed in W. aced back in nk is selected. d to select the ed instruction
in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				set is enablin Indexed mode whe Section 2 Bit-Orient Literal Off	led, this instruct Literal Offset A never f ≤ 95 (5) 5.2.3 "Byte-Or ed Instruction set Mode" for registe	Addressing Fh). See iented and s in Indexed details.			
Cycles:		1			More	<u>.</u>	1		
Q Cycle Ac	ctivity:				Cuelo	5.	1		
	ג1	Q2	Q3	Q4		is. volo Activity:	I		
Dec	ode	Read register 'f'	Process Data	Write to destination		Q1	Q2	Q3	Q4
						Decode	Read register 'f'	Process Data	Write to destination
Example:	1	RLNCF	REG, 1,	0			regiotor r	Data	dootination
Before R After Ir R	Instruc EG IStructic EG	tion = 1010 1 n = 0101 0	.011 0111		<u>Exan</u>	n <u>ple:</u> Before Instruc REG C After Instructi REG W	RRCF ction = 1110 = 0 on = 1110 = 0111 = 0	REG, 0, 0	0

FIGURE 27-10: CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)

TABLE 27-12: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

Param No.	Sym	Characteristic			Min	Max	Units	Conditions
50	TccL	CCPx Input Low	No prescaler		0.5 Tcy + 20	—	ns	
		Time	With prescaler	PIC18FXXXX	10	—	ns	
				PIC18LFXXXX	20	—	ns	VDD = 2.0V
51	51 TCCH CCPx Input High		No prescaler		0.5 TCY + 20	—	ns	
		Time	With prescaler	PIC18FXXXX	10	—	ns	
				PIC18LFXXXX	20	—	ns	VDD = 2.0V
52	TccP	CCPx Input Period			<u>3 Tcy + 40</u> N	_	ns	N = prescale value (1,4 or 16)
53	TccR	CR CCPx Output Fall Time		PIC18FXXXX	—	25	ns	
				PIC18LFXXXX	—	45	ns	VDD = 2.0V
54	TCCF	CCPx Output Fall Time		PIC18FXXXX	—	25	ns	
				PIC18LFXXXX	—	45	ns	VDD = 2.0V

TABLE 27-18: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600			Start condition
91	THD:STA	Start Condition	100 kHz mode	4000		ns	After this period, the first
		Hold Time	400 kHz mode	600			clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	4700		ns	
		Setup Time	400 kHz mode	600			
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600			

FIGURE 27-17: I²C[™] BUS DATA TIMING

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	e		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Foot Angle Top	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B