

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4680-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Memory Endurance: The Enhanced Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 100,000 for program memory and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18F2585/2680/4585/4680 family introduces an optional extension to the PIC18 instruction set, which adds 8 new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced CCP1 module: In PWM mode, this module provides 1, 2 or 4 modulated outputs for controlling half-bridge and full-bridge drivers. Other features include Auto-Shutdown, for disabling PWM outputs on interrupt or other select conditions and Auto-Restart, to reactivate outputs once the condition has cleared.
- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing a time-out range from 4 ms to over 131 seconds, that is stable across operating voltage and temperature.

1.3 Details on Individual Family Members

Devices in the PIC18F2585/2680/4585/4680 family are available in 28-pin (PIC18F2X8X) and 40/44-pin (PIC18F4X8X) packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in six ways:

- 1. Flash program memory (48 Kbytes for PIC18FX585 devices, 64 Kbytes for PIC18FX680).
- 2. A/D channels (8 for PIC18F2X8X devices, 11 for PIC18F4X8X devices).
- I/O ports (3 bidirectional ports and 1 input only port on PIC18F2X8X devices, 5 bidirectional ports on PIC18F4X8X devices).
- CCP1 and Enhanced CCP1 implementation (PIC18F2X8X devices have 1 standard CCP1 module, PIC18F4X8X devices have one standard CCP1 module and one ECCP1 module).
- 5. Parallel Slave Port (present only on PIC18F4X8X devices).
- 6. PIC18F4X8X devices provide two comparators.

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F2585/2680/4585/4680 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F2585), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF2585), function over an extended VDD range of 2.0V to 5.5V.

Din Nome	Pi	n Num	ber	Pin	Buffer	Deparimiter			
	PDIP	QFN	TQFP	Туре	Туре	Description			
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.			
RB0/INT0/FLT0/AN10 RB0 INT0 FLT0 AN10	33	9	8	I/O I I	TTL ST ST Analog	Digital I/O. External interrupt 0. Enhanced PWM Fault input (ECCP1 module). Analog input 10.			
RB1/INT1/AN8 RB1 INT1 AN8	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External interrupt 1. Analog input 8.			
RB2/INT2/CANTX RB2 INT2 CANTX	35	11	10	I/O I O	TTL ST TTL	Digital I/O. External interrupt 2. CAN bus TX.			
RB3/CANRX RB3 CANRX	36	12	11	I/O I	TTL TTL	Digital I/O. CAN bus RX.			
RB4/KBI0/AN9 RB4 KBI0 AN9	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog input 9.			
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.			
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.			
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.			
Legend: TTL = TTL ST = Schr O = Outr	Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output D = Power								

TABLE 1-3: PIC18F4585/4680 PINOUT I/O DESCRIPTIONS (CONTINUED)

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode where the primary clock source is not stopped; and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these instances, the primary clock source either does not require an oscillator start-up delay, since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes). However, a fixed delay of interval TCSD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

TABLE 3-2:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Clock Source Before Wake-up	Clock Source After Wake-up	Exit Delay	Clock Ready Status Bit (OSCCON)	
	LP, XT, HS			
	HSPLL		OSTS	
Primary Device Clock (PBL IDLE mode)	EC, RC	TCSD ⁽²⁾		
	INTRC ⁽¹⁾		—	
	INTOSC ⁽³⁾		IOFS	
	LP, XT, HS	Tost ⁽⁴⁾		
-	HSPLL	Tost + t _{rc} (4)	OSTS	
T1OSC or INTRC ⁽¹⁾	EC, RC	тоор(2)]	
	INTRC ⁽¹⁾	ICSD-7	_	
	INTOSC ⁽²⁾	TIOBST ⁽⁵⁾	IOFS	
	LP, XT, HS	Tost ⁽⁵⁾		
	HSPLL	Tost + t _{rc} (4)	OSTS	
INTOSC ⁽³⁾	EC, RC	тоор(2)		
	INTRC ⁽¹⁾	ICSD-7	—	
	INTOSC ⁽²⁾	None	IOFS	
	LP, XT, HS	Tost ⁽⁴⁾		
	HSPLL	Tost + t _{rc} (4)	OSTS	
None (Sloop mode)	EC, RC	Taga(2)		
	INTRC ⁽¹⁾	ICSD'-'	—	
	INTOSC ⁽²⁾	TIOBST ⁽⁵⁾	IOFS	

Note 1: In this instance, refers specifically to the 31 kHz INTRC clock source.

2: TCSD (parameter 38) is a required delay when waking from Sleep and all Idle modes and runs concurrently with any other required delays (see Section 3.4 "Idle Modes").

- 3: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.
- 4: TOST is the Oscillator Start-up Timer (parameter 32). t_{rc} is the PLL Lock-out Timer (parameter F12); it is also designated as TPLL.
- 5: Execution continues during TIOBST (parameter 39), the INTOSC stabilization period.

5.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register to the PCU. This register are performed through the PCLATU register are performed through the PCU.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 5.1.4.1 "Computed GOTO**").

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL and GOTO program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

5.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the top-of-stack Special File Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full or has overflowed or has underflowed.

5.1.2.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 5-2). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption.

5.2 PIC18 Instruction Cycle

5.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the Program Counter (PC) is incremented on every Q1; the instruction is fetched from the program memory and latched into the Instruction Register (IR) during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-3.

5.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-3).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 5-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 5-3: INSTRUCTION PIPELINE FLOW

TABLE 5-1:SPECIAL FUNCTION REGISTER MAP FOR
PIC18F2585/2680/4585/4680 DEVICES (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
F7Fh	_	F5Fh	CANCON_RO0	F3Fh	CANCON_RO2	F1Fh	RXM1EIDL
F7Eh	_	F5Eh	CANSTAT_RO0	F3Eh	CANSTAT_RO2	F1Eh	RXM1EIDH
F7Dh	—	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	—	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	—	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	—	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	—	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	—	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	ECANCON	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	CANCON_RO1	F2Fh	CANCON_RO3	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTAT_RO1	F2Eh	CANSTAT_RO3	F0Eh	RXF3EIDH
F6Dh	RXB0D7	F4DH	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

TABLE 5-1:SPECIAL FUNCTION REGISTER MAP FOR
PIC18F2585/2680/4585/4680 DEVICES (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
EFFh	_	EDFh	_	EBFh	—	E9Fh	_
EFEh	_	EDEh		EBEh		E9Eh	
EFDh	_	EDDh	_	EBDh	—	E9Dh	_
EFCh	_	EDCh	_	EBCh	—	E9Ch	_
EFBh	—	EDBh	_	EBBh	—	E9Bh	_
EFAh	—	EDAh	—	EBAh	—	E9Ah	—
EF9h	_	ED9h	_	EB9h	—	E99h	_
EF8h	_	ED8h	_	EB8h	_	E98h	_
EF7h	_	ED7h	_	EB7h	—	E97h	_
EF6h	—	ED6h	-	EB6h	-	E96h	—
EF5h	_	ED5h	—	EB5h	—	E95h	—
EF4h	_	ED4h	_	EB4h	—	E94h	_
EF3h	_	ED3h	_	EB3h	—	E93h	_
EF2h	_	ED2h	_	EB2h	_	E92h	_
EF1h	_	ED1h	_	EB1h	—	E91h	_
EF0h	_	ED0h	_	EB0h	—	E90h	_
EEFh	_	ECFh	_	EAFh	_	E8Fh	_
EEEh	—	ECEh	—	EAEh	—	E8Eh	—
EEDh	—	ECDh	—	EADh	—	E8Dh	—
EECh	—	ECCh	_	EACh	—	E8Ch	_
EEBh	_	ECBh	_	EABh	—	E8Bh	_
EEAh	_	ECAh	_	EAAh	—	E8Ah	_
EE9h	—	EC9h	_	EA9h	—	E89h	_
EE8h	_	EC8h	_	EA8h	—	E88h	—
EE7h	_	EC7h	_	EA7h	—	E87h	_
EE6h	_	EC6h	_	EA6h	_	E86h	_
EE5h	_	EC5h	_	EA5h	—	E85h	_
EE4h	_	EC4h	_	EA4h	—	E84h	_
EE3h	_	EC3h	_	EA3h	_	E83h	_
EE2h	—	EC2h	_	EA2h	_	E82h	_
EE1h	—	EC1h	_	EA1h	_	E81h	_
EE0h	_	EC0h		EA0h	_	E80h	

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

PIC18F2585/2680/4585/4680

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
SPBRGH	EUSART Bau	id Rate Gener	ator High By	te					0000 0000	51, 231
SPBRG	EUSART Bau	id Rate Gener	ator						0000 0000	51, 231
RCREG	EUSART Rec	eive Register							0000 0000	51, 238
TXREG	EUSART Tran	nsmit Register							0000 0000	51, 236
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	51, 237
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	51, 237
EEADRH	_	_	_	_	_	_	EEPROM Add	lr Register High	00	51, 108
EEADR	EEPROM Add	dress Registe	r						0000 0000	51, 105
EEDATA	EEPROM Dat	ta Register							0000 0000	51, 105
EECON2	EEPROM Co	ntrol Register	2 (not a phys	sical register)					0000 0000	51, 105
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	51, 105
IPR3 Mode 0	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP	1111 1111	51, 126
IPR3 Mode 1, 2	IRXIP	WAKIP	ERRIP	TXBnIP	TXB1IP ⁽⁸⁾	TXB0IP ⁽⁸⁾	RXBnIP	FIFOWMIP	1111 1111	51, 126
PIR3 Mode 0	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF	0000 0000	51, 120
PIR3 Mode 1, 2	IRXIF	WAKIF	ERRIF	TXBnIF	TXB1IF ⁽⁸⁾	TXB0IF ⁽⁸⁾	RXBnIF	FIFOWMIF	0000 0000	51, 120
PIE3 Mode 0	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE	TXB0IE	RXB1IE	RXB0IE	0000 0000	51, 123
PIE3 Mode 1, 2	IRXIE	WAKIE	ERRIE	TXBnIE	TXB1IE ⁽⁸⁾	TXB0IE ⁽⁸⁾	RXBnIE	FIFOMWIE	0000 0000	51, 123
IPR2	OSCFIP	CMIP ⁽⁹⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽⁹⁾	11-1 1111	51, 125
PIR2	OSCFIF	CMIF ⁽⁹⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽⁹⁾	00-0 0000	51, 119
PIE2	OSCFIE	CMIE ⁽⁹⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽⁹⁾	00-0 0000	52, 122
IPR1	PSPIP ⁽³⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	52, 124
PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	52, 118
PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	52, 121
OSCTUNE	INTSRC	PLLEN ⁽⁴⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0	0q-0 0000	27, 52
TRISE ⁽³⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	52, 141
TRISD ⁽³⁾	Data Direction	n Control Regi	ster for POR	TD					1111 1111	52, 138
TRISC	Data Direction	n Control Regi	ster for POR	тс					1111 1111	52, 135
TRISB	Data Direction	n Control Regi	ster for POR	ТВ					1111 1111	52, 132
TRISA	TRISA7 ⁽⁶⁾	TRISA6 ⁽⁶⁾	Data Directi	on Control Re	gister for POF	TA			1111 1111	52, 129
LATE ⁽³⁾	-	_	_	—	_	LATE2	LATE1	LATE0	xxx	52, 141
LATD ⁽³⁾	Read PORTD	Data Latch, V	Write PORTD	Data Latch					xxxx xxxx	52, 138
LATC	Read PORTC	Data Latch, V	Write PORTC	Data Latch					xxxx xxxx	52, 135
LATB	Read PORTB	B Data Latch, V	Vrite PORTB	Data Latch					xxxx xxxx	52, 132
LATA	LATA7 ⁽⁶⁾	LATA6 ⁽⁶⁾	Read PORT	A Data Latch,	Write PORTA	Data Latch			xxxx xxxx	52, 129

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2585/2680/4585/4680) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X8X devices and are read as '0'. Reset values are shown for PIC18F4X8X devices; individual unimplemented bits should be interpreted as '--'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.
6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.

When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X8X devices only.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TXB1SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	54, 283
TXB1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	54, 283
TXB1CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0-00	54, 282
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	xxxx xxxx	54, 284
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	xxxx xxxx	54, 284
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	xxxx xxxx	54, 284
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	xxxx xxxx	54, 284
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	xxxx xxxx	54, 284
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	xxxx xxxx	54, 284
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	XXXX XXXX	55, 284
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	XXXX XXXX	55, 284
TXB2DLC	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	-x xxxx	55, 285
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	55, 284
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 283
TXB2SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx x-xx	55, 283
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxx- x-xx	55, 283
TXB2CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0-00	55, 282
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	55, 304
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 304
RXM1SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 304
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 304
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	55, 304
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	55, 304
RXM0SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 304
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	55, 303
RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF5SIDL	SID2	SID1	SID0	—	EXIDEN		EID17	EID16	xxx- x-xx	55, 302
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	55, 302
RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	55, 303
RXF4SIDL	SID2	SID1	SID0	—	EXIDEN		EID17	EID16	xxx- x-xx	55, 302
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302
RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	55, 303
RXF3SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 302
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302
RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	55, 303
RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	55, 303
RXF2SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	55, 302
RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	55, 302

TABLE 5-2: REGISTER FILE SUMMARY (PIC18F2585/2680/4585/4680) (CONTINUEL

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition **Note 1:** Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X8X devices and are read as '0'. Reset values are shown for PIC18F4X8X devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X8X devices only.

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADRH:EEADR register pair, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 7-1.

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADRH:EEADR register pair and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

EXAMPLE 7-1: DATA EEPROM READ

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADRH:EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

MOVLW	DATA_EE_ADDRH	;
MOVWF	EEADRH	; Upper bits of Data Memory Address to read
MOVLW	DATA_EE_ADDR	;
MOVWF	EEADR	; Lower bits of Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access EEPROM
BSF	EECON1, RD	; EEPROM Read
MOVF	EEDATA, W	; W = EEDATA

EXAMPLE 7-2: DATA EEPROM WRITE

	MOVLW	DATA_EE_ADDRH	i
	MOVWF	EEADRH	; Upper bits of Data Memory Address to write
	MOVLW	DATA_EE_ADDR	;
	MOVWF	EEADR	; Lower bits of Data Memory Address to write
	MOVLW	DATA_EE_DATA	;
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	i
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0AAh	i
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BSF	INTCON, GIE	; Enable Interrupts
			; User code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

16.4.6 PROGRAMMABLE DEAD-BAND DELAY

Note:	Programmable	dead-band	delay	is	not
	implemented in	PIC18F2X82	X devic	es	with
	standard CCP1	modules.			

In half-bridge applications where all power switches are modulated at the PWM frequency at all times, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) may flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In the Half-Bridge Output mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 16-4 for illustration. Bits PDC6:PDC0 of the ECCP1DEL register (Register 16-2) set the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc). These bits are not available on PIC18F2X8X devices, as the standard CCP1 module does not support half-bridge operation.

16.4.7 ENHANCED PWM AUTO-SHUTDOWN

When the CCP1 is programmed for any of the Enhanced PWM modes, the active output pins may be configured for auto-shutdown. Auto-shutdown immediately places the Enhanced PWM output pins into a defined shutdown state when a shutdown event occurs. A shutdown event can be caused by either of the comparator modules, a low level on the RB0/INT0/FLT0/AN10 pin, or any combination of these three sources. The comparators may be used to monitor a voltage input proportional to a current being monitored in the bridge circuit. If the voltage exceeds a threshold, the comparator switches state and triggers a shutdown. Alternatively, a digital signal on the INT0 pin can also trigger a shutdown. The auto-shutdown feature can be disabled by not selecting any auto-shutdown sources. The auto-shutdown sources to be used are selected using the ECCPAS2:ECCPAS0 bits (bits<6:4> of the ECCP1AS register).

When a shutdown occurs, the output pins are asynchronously placed in their shutdown states, specified by the PSSAC1:PSSAC0 and PSS1BD1:PSS1BD0 bits (ECCPAS3:ECCPAS0). Each pin pair (P1A/P1C and P1B/P1D) may be set to drive high, drive low or be tri-stated (not driving). The ECCPASE bit (ECCP1AS<7>) is also set to hold the Enhanced PWM outputs in their shutdown states.

The ECCPASE bit is set by hardware when a shutdown event occurs. If automatic restarts are not enabled, the ECCPASE bit is cleared by firmware when the cause of the shutdown clears. If automatic restarts are enabled, the ECCPASE bit is automatically cleared when the cause of the auto-shutdown has cleared.

If the ECCPASE bit is set when a PWM period begins, the PWM outputs remain in their shutdown state for that entire PWM period. When the ECCPASE bit is cleared, the PWM outputs will return to normal operation at the beginning of the next PWM period.

Note: Writing to the ECCPASE bit is disabled while a shutdown condition is active.

REGISTER 16-2: ECCP1DEL: PWM CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PRSEN	PDC6 ⁽¹⁾	PDC5 ⁽¹⁾	PDC4 ⁽¹⁾	PDC3 ⁽¹⁾	PDC2 ⁽¹⁾	PDC1 ⁽¹⁾	PDC0 ⁽¹⁾
bit 7							bit 0

bit 7 **PRSEN:** PWM Restart Enable bit 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically

0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM

bit 6-0 PDC6:PDC0: PWM Delay Count bits⁽¹⁾

Delay time, in number of Fosc/4 (4 * Tosc) cycles, between the scheduled and actual time for a PWM signal to transition to active.

Note 1: Reserved on PIC18F2X8X devices; maintain these bits clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC18F2585/2680/4585/4680

BRG Value	XXXXh	0000h	<u>, , , , , , , , , , , , , , , , , , , </u>	001Ch
		i i	_ Edge #1 _ Edge #2 _ Edge #3 _ Edge #4	– Edge #5
RX pin		Start	Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	Stop Bit
		I		
BRG Clock		, ההההההההה		
		i		1
	Set by User -	ı 	· · · · · · · · · · · · · · · · · · ·	Auto-Cleared
ABDEN DI] 1		<u> </u>
BCIE bit		1 1		,
(Interrupt)		<u>.</u> I		
Bead		ı		· · · · · ·
RCREG		I		
		I	· · · · · · · · · · · · · · · · · · ·	
SPBRG		•	XXXXh	χ <u>1Ch</u>
SPBRGH			XXXXh	00h
SPBRGH			XXXXh	χ <u>00h</u>

FIGURE 18-1: AUTOMATIC BAUD RATE CALCULATION

FIGURE 18-2: BRG OVERFLOW SEQUENCE

18.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

18.4.1 EUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
TXREG	EUSART T	ransmit Regi	ister						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART B	aud Rate Ge	enerator Reg	gister High I	Byte				51
SPBRG	EUSART B	Baud Rate Ge	enerator Re	gister Low E	Byte				51

TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Reserved in PIC18F2X8X devices; always maintain these bits clear.

20.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 20-1. Bits CM2:CM0 of the CMCON register are used to select these modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Section 27.0 "Electrical Characteristics".

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

REGISTER 23-3:	ECANCO	N: ENHANC	ED CAN C	ONTROL	REGISTE	R			
	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
	MDSEL1 ⁽¹⁾	MDSEL0 ⁽¹⁾	FIFOWM ⁽²⁾	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0	
	bit 7							bit 0	
bit 7-6	MDSEL1:	MDSEL0: Mod	de Select bits	_S (1)					
	00 = Lega 01 = Enha 10 = Enha 11 = Rese	cy mode (Moo nced Legacy nced FIFO mo rved	de 0, default) mode (Mode ode (Mode 2)	1))					
bit 5	FIFOWM:	FIFO High Wa	ater Mark bit ⁽	(2)					
	1 = Will ca 0 = Will ca	use FIFO inte use FIFO inte	errupt when o errupt when fo	ne receive our receive	buffer rema buffers rem	ins ⁽³⁾ ain			
bit 4-0	EWIN4:EV	VINO: Enhanc	ed Window A	Address bit	S				
	These bits map the group of 16 banked CAN SFRs into access bank addresses 0F60-0F6Dh. Exact group of registers to map is determined by binary value of these bits.								
	<u>Mode 0:</u> Unimplem	ented: Read	as '0'						
	Mode 1, 2. 00000 = A 0001 = A 0001 = T 0010 = T 0010 = T 0010 = T 0010 = A 0010 = T 0010 = A 0010 = A 0010 = A 0101 = A 0101 = A 0101 = A 01001 = A 01010 = F 10010 = T 10010 = T 10100 = T 10110 = T 10111 = T 10100 = 11	acceptance Fil acceptance Fil accept	ters 0, 1, 2 a ters 3, 4, 5 a ter Masks, E r 0 r 1 r 2 ters 6, 7, 8 ters 9, 10, 11 ters 12, 13, - ters 15 ed T1 0 - 1 - 2 - 3 - 4 - 5 - ed	nd BRGC0 nd BRGC0 rror and In	DN2, 3 DN1, CIOCC terrupt Cont	DN rol			
	Note 1:	These bits change to C	can only be onfiguration	changed mode.	in Configura	ation mode.	See Regis	ter 23-1 to	
	2:	This bit is us	ed in Mode 2	2 only.					
	3:	FIFO length	of 4 or less v	vill cause t	his bit to be	set.			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x	= Bit is unknown

	U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
		RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0			
	bit 7							bit 0			
bit 7	Unimplem	ented: Read	d as '0'								
bit 6	RXRTR: Receiver Remote Transmission Request bit										
	1 = Remote 0 = No rem	e transfer ree ote transfer	quest request								
bit 5	RB1: Rese	rved bit 1									
	Reserved b	y CAN Spe	c and read a	IS '0'.							
bit 4	RB0: Rese	rved bit 0									
	Reserved b	y CAN Spe	c and read a	IS '0'.							
bit 3-0	DLC3:DLC0: Data Length Code bits										
	1111 = Invalid										
	1110 = Inv a	alid									
	1101 = Inva	alid									
	1100 = Inv a	alid									
	1011 = Inva	alid									
	1010 = Inva	alid									
	1001 = Inva	alid									
	1000 = Dat	ta length = 8	bytes								
	0111 = Dat	ta length = 7	' bytes								
	0110 = Dat	ta length = 6	bytes								
	0101 = Dat	ta length = 5	bytes								
	0100 = Dat	ta length = 4	bytes								
	0011 = Dat	ta length = 3	bytes								
	0010 = Da t	ta length = 2	bytes								
	0001 = Dat	ta length = 1	bytes								
	0000 = Dat	ta length = 0	bytes								

$\label{eq:register} \textbf{REGISTER 23-19:} \quad \textbf{RXBnDLC: RECEIVE BUFFER n DATA LENGTH CODE REGISTERS [} 0 \leq n \leq 1 \textbf{]}$

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared $x = Bit$ is unknown

REGISTER 23-20: RXBnDm: RECEIVE BUFFER n DATA FIELD BYTE m REGISTERS

$[0 \le n \le 1, 0 \le m \le 7]$								
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
RXBnDm7	RXBnDm6	RXBnDm5	RXBnDm4	RXBnDm3	RXBnDm2	RXBnDm1	RXBnDm0	
bit 7							bit 0	

bit 7-0 **RXBnDm7:RXBnDm0:** Receive Buffer n Data Field Byte m bits (where $0 \le n < 1$ and 0 < m < 7) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers: RXB0D0 to RXB0D7.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 24-6:	CONFIG5	CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)									
	U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1			
	—	—	_	—	CP3 ⁽¹⁾	CP2	CP1	CP0			
	bit 7							bit 0			
bit 7-4											
bit 3	CP3: Code	CP3: Code Protection bit ⁽¹⁾ 1 = Block 3 (00C000-00FFFFh) not code-protected 0 = Block 3 (00C000-00FFFFh) code-protected									
	1 = Block 3 0 = Block 3										
	Note 1: Unimplemented in PIC18FX585 devices; maintain this bit set.										
bit 2	CP2: Code	Protection	bit								
	1 = Block 2 0 = Block 2	2 (008000-0 2 (008000-0	0BFFFh) not 0BFFFh) coc	code-protected	cted						
bit 1	CP1: Code	Protection	bit								
	1 = Block 1 0 = Block 1	(004000-0 (004000-0	07FFFh) not 07FFFh) cod	code-protec le-protected	ted						
bit 0	CP0: Code	Protection	bit								
	1 = Block C) (000800-0	03FFFh) not	code-protec	cted						
	0 = Block C) (000800-0	03FFFh) cod	e-protected							
	Legend:										
	R = Reada	able bit	C = Clear	able bit	U = Unir	nplemented	bit, read as	'0'			
	-n = Value	-n = Value when device is unprogrammed u = Unchanged from programmed state									

REGISTER 24-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

	R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0		
	CPD	CPB	—	—	—	_	—	—		
	bit 7							bit 0		
bit 7	CPD: Data	EEPROM C	ode Protec	tion bit						
	1 = Data El	EPROM not	code-proteo	cted						
	0 = Data El	EPROM coc	le-protected							
bit 6	CPB: Boot	Block Code	Protection I	bit						
	1 = Boot bl	ock (000000	-0007FFh)	not code-pro	otected					
	0 = Boot bl	ock (000000	-0007FFh)	code-protec	ted					
bit 5-0	Unimplem	ented: Read	d as '0'							
	Legend:									
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as	'0'		

-n = Value when device is unprogrammed

u = Unchanged from programmed state

PIC18F2585/2680/4585/4680

INCFSZ	Increment f, Skip if 0								
Syntax:	INCFSZ f	INCFSZ f {,d {,a}}							
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:	(f) + 1 \rightarrow de skip if resul	(f) + 1 \rightarrow dest, skip if result = 0							
Status Affected:	None			Status A					
Encoding:	0011	11da ff:	ff ffff	Encodin					
Description:	The conten incremente placed in W placed back If the result which is alr and a NOP i it a two-cyc If 'a' is '0', t If 'a' is '0', t GPR bank If 'a' is '0' a set is enabl in Indexed mode when Section 25	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the ASR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and							
	Bit-Oriente	ed Instruction set Mode" for	s in Indexed details.						
Words:	Nords: 1								
Cycles:	1(2) Note: 3 c bv	cycles if skip a a 2-word instr	nd followed	Cycles:					
Q Cvcle Activity:	- ,			Q Cycle					
Q1	Q2	Q3	Q4	a oyola					
Decode	Read register 'f'	Process Data	Write to destination	[
If skip:				lf skip:					
Q1	Q2	Q3	Q4						
No	No	No	No						
operation	operation	operation	operation	0					
If skip and followe	d by 2-word in	struction:		lf skip a					
Q1	Q2	Q3	Q4						
No	No	No	No						
No	No	No	No	0					
operation	operation	operation	operation	0					
Example:	HERE NZERO ZERO	INCFSZ CN	PT, 1, 0	Example					
Before Instruc PC	tion = Address	(HERE)		Bef					
After Instructio CNT If CNT PC	on = CNT + 1 = 0; = Address	l s (zero)		Afte					
If CNT PC	≠ 0; = Address	(NZERO)							

FSNZ	NZ Increment f, Skip if Not 0			
ntax:	INFSNZ f	{,d {,a}}		
erands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]			
eration:	(f) + 1 \rightarrow dest, skip if result $\neq 0$			
tus Affected:	None			
coding:	0100	10da fff	f ffff	
scription:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).			
	If the result instruction v discarded a instead, ma instruction.	IS not '0', the i which is alread Ind a NOP is ex king it a two-c	next ly fetched is cecuted ycle	
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default)			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates			
	mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed			
vrdo.		Set Mode for	details.	
	1(0)			
cies:	I(2)	voloo if akin a	ad followed	
	bv	a 2-word instr	uction.	
Cvcle Activity:	,			
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process Data	Write to destination	
skip:	-			
Q1	Q2	Q3	Q4	
No	No	No	No	
operation	operation	operation	operation	
skip and followed	d by 2-word in: Q2	struction: Q3	Q4	
No	No	No	No	
operation	operation	operation	operation	
NO	N0 operation	N0 operation	N0 operation	
ample:	HERE I ZERO NZERO	INFSNZ REG	, 1, 0	
Before Instruc	tion			
PC After Instructio	= Address	(HERE)		
REG If REG	/'' = REG + ⁻ ≠ 0;	1		
PC	= Áddress	(NZERO)		
PC	= 0; = Address	(ZERO)		

FIGURE 27-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү	—	ns	
71	TscH	SCK Input High Time	Continuous	1.25 TCY + 30	—	ns	
71A			Single Byte	40	—	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 TCY + 30	—	ns	
72A			Single Byte	40	—	ns	(Note 1)
73	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input to SCK Edge		100	—	ns	
73A	Тв2в	Last Clock Edge of Byte1 to the First Clock Edge of Byte 2		1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDI Data Input to SCK Edge		100	—	ns	
75 TdoR	SDO Data Output Rise Time	PIC18FXXXX		25	ns		
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance		10	50	ns	
80 TscH2do TscL2do	TSCH2DOV,	2DOV, SDO Data Output Valid after SCK Edge	PIC18FXXXX		50	ns	
	TSCL2DOV		PIC18LFXXXX		100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 TCY + 40	—	ns	

TABLE 27-16: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Param. No.	Symbol	Characte	ristic	Min	Max	Units	Conditions
100 T⊦	Тнідн	Clock High Time	100 kHz mode	4.0	0 — µs	μs	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	PIC18FXXXX must operate at a minimum of 10 MHz
			SSP module	1.5 TCY	_		
101 TLOW	Clock Low Time	100 kHz mode	4.7	—	μs	PIC18FXXXX must operate at a minimum of 1.5 MHz	
		400 kHz mode	1.3	—	μs	PIC18FXXXX must operate at a minimum of 10 MHz	
		SSP module	1.5 TCY	—			
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μs	Start condition
91	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated
106	THD:DAT	Data Input Hold	100 kHz mode	0	—	ns	
		Time	400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data Input Setup	100 kHz mode	250	—	ns	(Note 2)
		Time	400 kHz mode	100	—	ns	
92	92 Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μs	
			400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output Valid from	100 kHz mode		3500	ns	(Note 1)
		Clock	400 kHz mode		—	ns	
110	TBUF	UF Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μs	betore a new transmission can start
D102	Св	Bus Capacitive Load	ding	—	400	pF	

TABLE 27-19:	I ² C [™] BUS DATA REQUIREMENTS	(SLAVE MODE)
--------------	---	--------------

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line,

TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.