

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2585-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number PDIP, SOIC	Pin Type	Buffer Type	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI	11			
RC0		I/O	ST	Digital I/O.
T10SO		0	— 87	Timer1 oscillator output.
	10	I	51	nmen/ nmers external clock input.
BC1	12	1/0	ST	Digital I/O
TIOSI		1/0	CMOS	Timer1 oscillator input.
RC2/CCP1	13			
RC2		I/O	ST	Digital I/O.
CCP1		I/O	ST	Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14			
RC3		I/O	ST	Digital I/O.
SUK		1/0	SI	Synchronous serial clock input/output for SPI mode.
	15	1/0	01	
RC4	15	I/O	ST	Digital I/O.
SDI		1	ST	SPI data in.
SDA		I/O	ST	I ² C data I/O.
RC5/SDO	16			
RC5		I/O	ST	Digital I/O.
SDO		0		SPI data out.
RC6/TX/CK	17	1/0	от	Disting 1/O
		0	51	ELISABT asynchronous transmit
СК		1/0	ST	EUSART synchronous clock (see related RX/DT).
RC7/RX/DT	18			
RC7		I/O	ST	Digital I/O.
RX		I	ST	EUSART asynchronous receive.
DT	ļ	I/O	ST	EUSART synchronous data (see related TX/CK).
RE3	<u> </u>	—	—	See MCLR/VPP/RE3 pin.
Vss	8, 19	Р	—	Ground reference for logic and I/O pins.
VDD	20	Р	—	Positive supply for logic and I/O pins.
Legend: TTL = TTL cor	npatible in	put		CMOS = CMOS compatible input or output

PIC18F2585/2680 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-2:**

ST = Schmitt Trigger input with CMOS levels

- I = Input

= Output 0

Р = Power

© 2007 Microchip Technology Inc.

If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.

If the IRCF bits are changed from all clear (thus, enabling the INTOSC output) or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST.

If the IRCF bits were previously at a non-zero value or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

Register	Applicable Devices			ces	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
TXB2D1	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	0uuu uuuu
TXB2D0	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	0uuu uuuu
TXB2DLC	2585	2680	4585	4680	-x xxxx	-u uuuu	-u uuuu
TXB2EIDL	2585	2680	4585	4680	xxxx xxxx	սսսս սսսս	սսսս սսսս
TXB2EIDH	2585	2680	4585	4680	xxxx xxxx	սսսս սսսս	սսսս սսսս
TXB2SIDL	2585	2680	4585	4680	xxxx x-xx	uuuu u-uu	-uuu uuuu
TXB2SIDH	2585	2680	4585	4680	xxx- x-xx	uuu- u-uu	uuu- u-uu
TXB2CON	2585	2680	4585	4680	0000 0-00	0000 0-00	uuuu u-uu
RXM1EIDL	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM1EIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM1SIDL	2585	2680	4585	4680	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXM1SIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM0EIDL	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM0EIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXM0SIDL	2585	2680	4585	4680	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXM0SIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF5EIDL	2585	2680	4585	4680	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXF5EIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF5SIDL	2585	2680	4585	4680	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF5SIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF4EIDL	2585	2680	4585	4680	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXF4EIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF4SIDL	2585	2680	4585	4680	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF4SIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF3EIDL	2585	2680	4585	4680	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXF3EIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF3SIDL	2585	2680	4585	4680	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF3SIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	սսսս սսսս
RXF2EIDL	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	սսսս սսսս
RXF2EIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF2SIDL	2585	2680	4585	4680	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF2SIDH	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

Register	Applicable Devices			Power-on Reso Brown-out Res	et, set	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
B4EIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B4SIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx x-xx		uuuu u-uu	uuuu u-uu	
B4SIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B4CON ⁽⁶⁾	2585	2680	4585	4680	0000 0000		0000 0000	uuuu uuuu	
B3D7 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D6 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D5 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D4 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D3 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D2 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D1 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D0 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3DLC ⁽⁶⁾	2585	2680	4585	4680	-xxx xxxx		-uuu uuuu	-uuu uuuu	
B3EIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3EIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3SIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx x-xx		uuuu u-uu	uuuu u-uu	
B3SIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3CON ⁽⁶⁾	2585	2680	4585	4680	0000 0000		0000 0000	uuuu uuuu	
B2D7 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D6 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D5 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D4 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D3 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D2 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D1 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D0 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2DLC ⁽⁶⁾	2585	2680	4585	4680	-xxx xxxx		-uuu uuuu	-uuu uuuu	
B2EIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2EIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2SIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx x-xx		uuuu u-uu	uuuu u-uu	
B2SIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

PIC18F2585/2680/4585/4680

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:		
SPBRGH	EUSART Bau	id Rate Gener	ator High By	te					0000 0000	51, 231		
SPBRG	EUSART Bau	id Rate Gener	ator						0000 0000	51, 231		
RCREG	EUSART Rec	EUSART Receive Register										
TXREG	EUSART Tran		0000 0000	51, 236								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	51, 237		
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	51, 237		
EEADRH	_	_	_	_	_	_	EEPROM Add	lr Register High	00	51, 108		
EEADR	EEPROM Add	dress Registe	r						0000 0000	51, 105		
EEDATA	EEPROM Dat	ta Register							0000 0000	51, 105		
EECON2	EEPROM Co	ntrol Register	2 (not a phys	sical register)					0000 0000	51, 105		
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	51, 105		
IPR3 Mode 0	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP	1111 1111	51, 126		
IPR3 Mode 1, 2	IRXIP	WAKIP	ERRIP	TXBnIP	TXB1IP ⁽⁸⁾	TXB0IP ⁽⁸⁾	RXBnIP	FIFOWMIP	1111 1111	51, 126		
PIR3 Mode 0	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF	0000 0000	51, 120		
PIR3 Mode 1, 2	IRXIF	WAKIF	ERRIF	TXBnIF	TXB1IF ⁽⁸⁾	TXB0IF ⁽⁸⁾	RXBnIF	FIFOWMIF	0000 0000	51, 120		
PIE3 Mode 0	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE	TXB0IE	RXB1IE	RXB0IE	0000 0000	51, 123		
PIE3 Mode 1, 2	IRXIE	WAKIE	ERRIE	TXBnIE	TXB1IE ⁽⁸⁾	TXB0IE ⁽⁸⁾	RXBnIE	FIFOMWIE	0000 0000	51, 123		
IPR2	OSCFIP	CMIP ⁽⁹⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽⁹⁾	11-1 1111	51, 125		
PIR2	OSCFIF	CMIF ⁽⁹⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽⁹⁾	00-0 0000	51, 119		
PIE2	OSCFIE	CMIE ⁽⁹⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽⁹⁾	00-0 0000	52, 122		
IPR1	PSPIP ⁽³⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	52, 124		
PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	52, 118		
PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	52, 121		
OSCTUNE	INTSRC	PLLEN ⁽⁴⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0	0q-0 0000	27, 52		
TRISE ⁽³⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	52, 141		
TRISD ⁽³⁾	Data Direction	n Control Regi	ster for POR	TD					1111 1111	52, 138		
TRISC	Data Direction	n Control Regi	ster for POR	тс					1111 1111	52, 135		
TRISB	Data Direction	n Control Regi	ster for POR	ТВ					1111 1111	52, 132		
TRISA	TRISA7 ⁽⁶⁾	TRISA6 ⁽⁶⁾	Data Directi	on Control Re	gister for POF	TA			1111 1111	52, 129		
LATE ⁽³⁾	-	_	_	—	_	LATE2	LATE1	LATE0	xxx	52, 141		
LATD ⁽³⁾	Read PORTD	Data Latch, V	Write PORTD	Data Latch					XXXX XXXX	52, 138		
LATC	Read PORTC	Data Latch, V	Write PORTC	Data Latch					xxxx xxxx	52, 135		
LATB	Read PORTB	B Data Latch, V	Vrite PORTB	Data Latch					xxxx xxxx	52, 132		
LATA	LATA7 ⁽⁶⁾	LATA6 ⁽⁶⁾	Read PORT	A Data Latch,	Write PORTA	Data Latch			xxxx xxxx	52, 129		

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2585/2680/4585/4680) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X8X devices and are read as '0'. Reset values are shown for PIC18F4X8X devices; individual unimplemented bits should be interpreted as '--'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.
 6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.

When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X8X devices only.

5.4 Data Addressing Modes

Note:	The execution of some instructions in the								
	core PIC18 instruction set are changed								
	when the PIC18 extended instruction								
	set is enabled. See Section 5.6 "Data								
	Memory and the Extended Instruction								
	Set" for more information.								

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 5.6.1** "**Indexed Addressing with Literal Offset**".

5.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW which, respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

5.4.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of direct addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 5.3.3 "General **Purpose Register File**") or a location in the Access Bank (Section 5.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 5.3.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In those cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

5.4.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for indirect addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;
NEXT	CLRF	POSTINC0	; Clear INDF
			; register then
			; inc pointer
	BTFSS	FSROH, 1	; All done with
			; Bank1?
	BRA	NEXT	; NO, clear next
CONTINU	JE		; YES, continue
1			

Pin Name	Function	I/O	TRIS	Buffer	Description				
RB0/INT0/FLT0/AN10	RB0	OUT	0	DIG	LATB<0> data output.				
		IN	1	TTL	PORTB<0> data input. Weak pull-up available only in this mode.				
	INT0	IN	1	ST	External interrupt 0 input.				
	FLT0	IN	1	ST	Enhanced PWM Fault input.				
	AN10	IN	1	ANA	A/D input channel 10. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
RB1/INT1/AN8	RB1	OUT	0	DIG	LATB<1> data output.				
		IN	1	TTL	PORTB<1> data input. Weak pull-up available only in this mode.				
	INT1	IN	1	ST	External interrupt 1 input.				
	AN8	IN	1	ANA	A/D input channel 8. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
RB2/INT2/CANTX	RB2	OUT	x	DIG	LATB<2> data output.				
		IN	1	TTL	PORTB<2> data input. Weak pull-up available only in this mode.				
	INT2	IN	1	ST	External interrupt 2 input.				
	CANTX	OUT	1	DIG	CAN transmit signal output. The CAN interface overrides the TRIS<2> control when enabled.				
RB3/CANRX	RB3	OUT	0	DIG	LATB<3> data output.				
		IN	1	TTL	PORTB<3> data input. Weak pull-up available only in this mode.				
	CANRX	IN	1	ST	CAN receive signal input. Pin must be configured as a digital input b setting TRISB<3>.				
RB4/KBI0/AN9	RB4	OUT	0	DIG	LATB<4> data output.				
		IN	1	TTL	PORTB<4> data input. Weak pull-up available only in this mode.				
	KBI0	IN	1	TTL	Interrupt-on-pin change.				
	AN9	IN	1	ANA	A/D input channel 9. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
RB5/KBI1/PGM	RB5	OUT	0	DIG	LATB<5> data output.				
		IN	1	TTL	PORTB<5> data input. Weak pull-up available only in this mode.				
	KBI1	IN	1	TTL	Interrupt-on-pin change.				
	PGM	IN	х	ST	Low-Voltage Programming mode entry (ICSP™). Enabling this function overrides digital output.				
RB6/KBI2/PGC	RB6	OUT	0	DIG	LATB<6> data output.				
		IN	1	TTL	PORTB<6> data input. Weak pull-up available only in this mode.				
	KBI2	IN	1	TTL	Interrupt-on-pin change.				
	PGC	IN	x	ST	Low-Voltage Programming mode entry (ICSP) clock input.				
RB7/KBI3/PGD	RB7	OUT	0	DIG	LATB<7> data output.				
		IN	1	TTL	PORTB<7> data input. Weak pull-up available only in this mode.				
	KBI3	IN	1	TTL	Interrupt-on-pin change.				
	PGD	OUT	x	DIG	Low-Voltage Programming mode entry (ICSP) clock output.				
		IN	x	ST	Low-Voltage Programming mode entry (ICSP) clock input.				

TABLE 10-3: PORTB I/O SUMMARY

Legend: PWR = Power Supply; OUT = Output; IN = Input; ANA = Analog Signal; DIG = Digital Output; ST = Schmitt Buffer Input; TTL – TTL Buffer Input

14.0 TIMER3 MODULE

The Timer3 module timer/counter incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Module Reset on CCP1 special event trigger

A simplified block diagram of the Timer3 module is shown in Figure 14-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 14-2.

The Timer3 module is controlled through the T3CON register (Register 14-1). It also selects the clock source options for the CCP1 modules (see **Section 15.1.1** "**CCP1 Modules and Timer Resources**" for more information).

REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3ECCP1 ⁽¹⁾	T3CKPS1	T3CKPS0	T3CCP1 ⁽¹⁾	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write Mode Enable bit							
	 1 = Enables register read/write of Timer3 in one 16-bit operation 0 = Enables register read/write of Timer3 in two 8-bit operations 							
bit 6,3	T3ECCP1:T3CCP1: Timer3 and Timer1 to ECCP1/CCP1 Enable bits ⁽¹⁾ 1x = Timer3 is the capture/compare clock source for both CCP1 and ECCP1 modules 01 = Timer3 is the capture/compare clock source for ECCP1; Timer1 is the capture/compare clock source for CCP1 00 = Timer1 is the capture/compare clock source for both CCP1 and ECCP1 modules							
	Note 1: These bits are available on PIC18F4X8X devices only.							
bit 5-4	T3CKPS1:T3CKPS0 : Timer3 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value							
bit 2	T3SYNC: Timer3 External Clock Input Synchronization Control bit (Not usable if the device clock comes from Timer1/Timer3.) When TMR3CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR3CS = 0: This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.							
bit 1	 TMR3CS: Timer3 Clock Source Select bit 1 = External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first falling edge) 0 = Internal clock (FOSC/4) 							
bit 0	TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3							
	Legend'							

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC18F2585/2680/4585/4680

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page			
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49			
RCON	IPEN	SBOREN	—	RI	TO	PD	POR	BOR	50			
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52			
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52			
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52			
IPR2	OSCFIP	CMIP ⁽³⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP(3)	51			
PIR2	OSCFIF	CMIF ⁽³⁾	—	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽³⁾	51			
PIE2	OSCFIE	CMIE ⁽³⁾	—	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽³⁾	52			
TRISB	PORTB Dat	a Direction R	egister						52			
TRISC	PORTC Dat	PORTC Data Direction Register										
TRISD ⁽¹⁾	PORTD Dat	ta Direction R	egister						52			
TMR1L	Holding Reg	gister for the L	_east Signific	cant Byte of t	the 16-bit TN	IR1 Registe	r		50			
TMR1H	Holding Reg	gister for the N	Most Signific	ant Byte of tl	he 16-bit TM	R1 Register			50			
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	50			
TMR2	Timer2 Mod	lule Register							50			
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	50			
PR2	Timer2 Peri	od Register							50			
TMR3L	Holding Reg	gister for the L	_east Signific	cant Byte of t	the 16-bit TN	IR3 Registe	r		51			
TMR3H	Holding Reg	gister for the N	Most Signific	ant Byte of tl	he 16-bit TM	R3 Register			51			
T3CON	RD16	T3ECCP1 ⁽¹⁾	T3CKPS1	T3CKPS0	T3CCP1 ⁽¹⁾	T3SYNC	TMR3CS	TMR3ON	51			
ECCPR1L ⁽²⁾	Enhanced C	Capture/Comp	are/PWM R	egister 1 (LS	B)				51			
ECCPR1H ⁽²⁾	Enhanced C	Capture/Comp	oare/PWM R	egister 1 (M	SB)				51			
ECCP1CON ⁽²⁾	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	51			
ECCP1AS ⁽²⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽²⁾	PSSBD0 ⁽²⁾	51			
ECCP1DEL ⁽²⁾	PRSEN	PDC6 ⁽²⁾	PDC5 ⁽²⁾	PDC4 ⁽²⁾	PDC3 ⁽²⁾	PDC2 ⁽²⁾	PDC1 ⁽²⁾	PDC0 ⁽²⁾	51			

TABLE 16-3: REGISTERS ASSOCIATED WITH ECCP1 MODULE AND TIMER1 TO TIMER3

Legend: — = unimplemented, read as '0'. Shaded cells are not used during ECCP1 operation.

Note 1: These bits are available on PIC18F4X8X devices only.

2: These bits or registers are unimplemented in PIC18F2X8X devices; always maintain these bit clear.

3: These bits are available on PIC18F4X8X and reserved on PIC18F2X8X devices.

PIC18F2585/2680/4585/4680

17.4.4 CLOCK STRETCHING

Both 7 and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

17.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, <u>on the falling edge of the</u> ninth clock at the end of the ACK sequence if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 17-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

17.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

17.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 17-9).

Note 1:	If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of
	the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
2:	The CKP bit can be set in software regardless of the state of the BF bit.

17.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the highorder bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-bit Slave Transmit mode (see Figure 17-11).

17.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 17-18).

17.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 17-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 17-32).

FIGURE 17-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 17-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

18.2 EUSART Asynchronous Mode

The Asynchronous mode of operation is selected by clearing the SYNC bit (TXSTA<4>). In this mode, the EUSART uses standard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip dedicated 8-bit/16-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate depending on the BRGH and BRG16 bits (TXSTA<2> and BAUDCON<3>). Parity is not supported by the hardware, but can be implemented in software and stored as the 9th data bit.

When operating in Asynchronous mode, the EUSART module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver
- Auto-Wake-up on Sync Break Character
- 12-bit Break Character Transmit
- Auto-Baud Rate Detection

18.2.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 18-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and the TXIF flag bit (PIR1<4>) is set. This interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF will be set regardless of the state of TXIE; it cannot be cleared in software. TXIF is also not cleared immediately upon loading TXREG, but becomes valid in the second instruction cycle following the load instruction. Polling TXIF immediately following a load of TXREG will return invalid results.

While TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty.

- **Note 1:** The TSR register is not mapped in data memory so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set.

To set up an Asynchronous Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-3: EUSART TRANSMIT BLOCK DIAGRAM

51LN 19-5.	ADCONZ.	A/D CONT	NOL NLG								
	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0			
	bit 7							bit 0			
bit 7	ADFM: A/D	OResult For	mat Select k	pit							
	1 = Right ju 0 = Left jus	ustified stified									
bit 6	Unimplem	ented: Read	d as '0'								
bit 5-3	ACQT2:AC	CQTO: A/D A	cquisition T	ime Select b	oits						
	111 = 20 T	ĀD									
	110 = 16 T	AD									
	101 = 12 TAD										
	100 = 8 TAD										
	011 = 6 IAD										
	010 = 4 TA	D									
	000 = 0 TA	(1)									
bit 2-0	ADCS2: ADCS0: A/D Conversion Clock Select bits										
	111 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾										
	110 = FOSC/64										
	101 = Fosc/16										
	100 = FOSC/4										
	$0 \perp 1 = FRC (Clock derived from A/D RC oscillator)'' 0 \perp 0 = Fosc/32$										
	001 = Fosc/8										
	000 = Fosc/2										
	Note 1:	If the A/D I added befo before star	FRC clock so re the A/D c ing a conve	ource is sele lock starts. T rsion.	ected, a dela This allows th	ay of one Tone Tone SLEEP ins	CY (instructio struction to b	on cycle) is e executed			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2

21.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram is of the module shown in Figure 21-1. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

21.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 21-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be

used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

 $\frac{\text{If CVRR} = 1:}{\text{CVREF} = ((\text{CVR3:CVR0})/24) \times \text{CVRSRC}}$ $\frac{\text{If CVRR} = 0:}{\text{CVREF} = (\text{CVDD x 1/4}) + (((\text{CVR3:CVR0})/32) \times \text{CVRSRC})}$

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 27-3 in Section 27.0 "Electrical Characteristics").

REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	CVREN	CVROE ⁽¹⁾	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0			
	bit 7							bit 0			
bit 7	it 7 CVREN : Comparator Voltage Reference Enable bit										
	1 = CVREF	circuit power	red on								
	0 = CVREF	circuit power	red down								
bit 6	CVROE: C	Comparator V	REF Output	Enable bit ⁽¹)						
	1 = CVREF	voltage level	is also out	tput on the F	RA0/AN0/CV	/REF pin					
	0 = CVREF	voltage is die	sconnected	from the R	40/AN0/CVF	REF pin					
	Note 1:	CVROE over be configure	errides the ed as an inj	TRISA<0> b put by settin	oit setting. If g TRISA<2>	enabled for > to '1'.	output, RA	2 must also			
bit 5	CVRR: Co	omparator VRE	F Range S	Selection bit							
	1 = 0.00 C	VRSRC to 0.7	5 CVRSRC,	with CVRSR	c/24 step si	ze					
bit 4	0 = 0.25 C	Comparator V	SEE Source	Selection b	t	26					
	1 - Comp	arator referen		CVRSRC - (N Vreft) — (V						
	0 = Comparator reference source, CVRSRC = VDD – VSS										
bit 3-0	CVR3:CVI	R0: Compara	tor VREF Va	alue Selectic	on bits ($0 \le ($	CVR3:CVR	0) ≤ 15)				
	When CVF	$\frac{R}{R} = 1$									
	$\frac{\text{Wnen CVRR} = 0:}{\text{CVRFF} = (\text{CVRSRC/4}) + ((\text{CVR3:CVR0})/32) \bullet (\text{CVRSRC})}$										
	(- / / (-	/						
	Laward										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

23.2 CAN Module Registers

Note: Not all CAN registers are available in the access bank.

There are many control and data registers associated with the CAN module. For convenience, their descriptions have been grouped into the following sections:

- Control and Status Registers
- Dedicated Transmit Buffer Registers
- Dedicated Receive Buffer Registers
- Programmable TX/RX and Auto RTR Buffers
- Baud Rate Control Registers
- I/O Control Register
- Interrupt Status and Control Registers

Detailed descriptions of each register and their usage are described in the following sections.

23.2.1 CAN CONTROL AND STATUS REGISTERS

The registers described in this section control the overall operation of the CAN module and show its operational status.

	U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x				
	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0				
	bit 7					•		bit 0				
bit 7	Unimplem	ented: Read	d as '0'									
bit 6	RXRTR: Receiver Remote Transmission Request bit											
	1 = Remote 0 = No rem	e transfer ree ote transfer	quest request									
bit 5	RB1: Rese	rved bit 1										
	Reserved b	y CAN Spe	c and read a	IS '0'.								
bit 4	RB0: Rese	rved bit 0										
	Reserved b	y CAN Spe	c and read a	IS '0'.								
bit 3-0	DLC3:DLC	0: Data Len	gth Code bit	s								
	1111 = Inva	alid										
	1110 = Inva	alid										
	1101 = Inva	alid										
	1100 = Inv a	alid										
	1011 = Inva	alid										
	1010 = Inva	alid										
	1001 = Inv a	alid										
	1000 = Dat	ta length = 8	bytes									
	0111 = Dat	ta length = 7	' bytes									
	0110 = Dat	ta length = 6	bytes									
	0101 = Dat	ta length = 5	bytes									
	0100 = Dat	ta length = 4	bytes									
	0011 = Dat	ta length = 3	bytes									
0010 = Data length = 2 bytes												
	0001 = Da t	ta length = 1	bytes									
	0000 = Dat	ta length = 0	bytes									

$\label{eq:register} \textbf{REGISTER 23-19:} \quad \textbf{RXBnDLC: RECEIVE BUFFER n DATA LENGTH CODE REGISTERS [} 0 \leq n \leq 1 \textbf{]}$

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

REGISTER 23-20: RXBnDm: RECEIVE BUFFER n DATA FIELD BYTE m REGISTERS

$[0 \le n \le 1, 0 \le m \le 7]$										
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
RXBnDm7	RXBnDm6	RXBnDm5	RXBnDm4	RXBnDm3	RXBnDm2	RXBnDm1	RXBnDm0			
bit 7							bit 0			

bit 7-0 **RXBnDm7:RXBnDm0:** Receive Buffer n Data Field Byte m bits (where $0 \le n < 1$ and 0 < m < 7) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers: RXB0D0 to RXB0D7.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC18F2585/2680/4585/4680

CON	ΛF	Complem	ent f		CPF	SEQ	Compare	f with W, Sk	tip if f = W	
Synta	ax:	COMF f	{,d {,a}}		Synt	ax:	CPFSEQ	f {,a}		
Oper	ands:	0 ≤ f ≤ 255 d ∈ [0,1]			Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in \ [0,1] \end{array}$			
neq	ation:	$a \in [0,1]$ $(\overline{f}) \rightarrow des$	st		Ope	ration:	(f) – (W), skip if (f) =	(W)		
Statu	is Affected:	N. Z			_		(unsigned o	comparison)		
Enco	dina:	0001	11da ff	FF FFFF	Statu	us Affected:	None			
Description:		The conten	ts of register 'f	' aro		oding:	0110	001a ffi	ff ffff	
Description:		stored in W stored back	nted. If 'd' is '1' /. If 'd' is '0', th < in register 'f' the Access Ba	, the result is e result is (default).	Des	cription:	Compares location 'f' t performing lf 'f' = W, th	the contents of to the contents an unsigned s then the fetched	of W by ubtraction.	
		If 'a' is '1', t GPR bank	he BSR is use (default).	d to select the			discarded and a NOP is executed instead, making this a two-cycle instruction			
		If 'a' is '0' a set is enab in Indexed mode wher	nd the extende led, this instruc Literal Offset A never f \leq 95 (51	ed instruction ction operates Addressing Fh). See			If 'a' is 'o', t If 'a' is 'o', t GPR bank	he Access Bar he BSR is use (default).	nk is selected. d to select the	
		Section 25 Bit-Oriente Literal Offs	2.3 "Byte-Or ed Instruction set Mode" for	iented and s in Indexed details.			set is enabl in Indexed mode wher	led, this instruct Literal Offset A never f \leq 95 (51	ad Instruction otion operates Addressing Fh). See	
Word	ls:	1					Section 25	.2.3 "Byte-Ori	iented and	
Cycle	es:	1					Bit-Oriente	ed Instruction	s in Indexed	
QC	ycle Activity:				Wor	ds:	1		uctans.	
	Q1	Q2	Q3	Q4	- Cvcl	es:	1(2)			
	Decode	Read	Process	Write to	- ,		Note: 3 cy	cles if skip and	d followed	
		register i	Dala	destination			by a	a 2-word instru	ction.	
Evan	nnle:	COME			QC	cycle Activity:				
	npie.	COMP	REG, 0, 0			Q1	Q2	Q3	Q4	
	Before Instruc RFG	= 13h				Decode	Read	Process	No	
	After Instructio	on			lf el	(in:	register t	Data	operation	
	REG	= 13h			11 31	ωp. Ο1	02	03	04	
	vv	= ECh				No	No	No	No	
						operation	operation	operation	operation	
					lf sl	kip and followe	d by 2-word in	struction:	· · ·	
						Q1	Q2	Q3	Q4	
						No	No	No	No	
						operation	operation	operation	operation	
						operation	operation	operation	operation	
					<u>Exa</u>	nple:	HERE	CPFSEQ REG	, 0	
							EQUAL	:		
						Before Instruct PC Addreed	tion ess = HE = ?	RE		
						REG After Instructio	= ?			

=

29.1 Package Marking Information (Continued)

44-Lead TQFP

Example

44-Lead QFN

Example

