

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2585t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Memory Endurance: The Enhanced Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 100,000 for program memory and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18F2585/2680/4585/4680 family introduces an optional extension to the PIC18 instruction set, which adds 8 new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced CCP1 module: In PWM mode, this module provides 1, 2 or 4 modulated outputs for controlling half-bridge and full-bridge drivers. Other features include Auto-Shutdown, for disabling PWM outputs on interrupt or other select conditions and Auto-Restart, to reactivate outputs once the condition has cleared.
- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing a time-out range from 4 ms to over 131 seconds, that is stable across operating voltage and temperature.

1.3 Details on Individual Family Members

Devices in the PIC18F2585/2680/4585/4680 family are available in 28-pin (PIC18F2X8X) and 40/44-pin (PIC18F4X8X) packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in six ways:

- 1. Flash program memory (48 Kbytes for PIC18FX585 devices, 64 Kbytes for PIC18FX680).
- 2. A/D channels (8 for PIC18F2X8X devices, 11 for PIC18F4X8X devices).
- I/O ports (3 bidirectional ports and 1 input only port on PIC18F2X8X devices, 5 bidirectional ports on PIC18F4X8X devices).
- CCP1 and Enhanced CCP1 implementation (PIC18F2X8X devices have 1 standard CCP1 module, PIC18F4X8X devices have one standard CCP1 module and one ECCP1 module).
- 5. Parallel Slave Port (present only on PIC18F4X8X devices).
- 6. PIC18F4X8X devices provide two comparators.

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F2585/2680/4585/4680 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F2585), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF2585), function over an extended VDD range of 2.0V to 5.5V.

FIGURE 1-1: PIC18F2585/2680 (28-PIN) BLOCK DIAGRAM

Note 1: RE3 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.

2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 2.0 "Oscillator Configurations" for additional information.

REGISTER 2-1:	OSCTUNE: OSCILLATOR TUNING REGISTER											
	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	INTSRC	PLLEN ⁽¹⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0				
	bit 7							bit 0				
bit 7	INTSRC: Ir	nternal Oscill:	ator Low-Fr	requency So	ource Select	bit						
	1 = 31.25 k 0 = 31 kHz	Hz device clock	ock derived derived dir	I from 8 MHz rectly from I	z INTOSC se NTRC interr	ource (divide al oscillator	∍-by-256 en	abled)				
bit 6	PLLEN: Fr	equency Mul	tiplier PLL f	for INTOSC	Enable bit ⁽¹⁾)						
	1 = PLL en 0 = PLL di៖	abled for INT	OSC (4 MI	Hz and 8 MH	Iz only)							
	Note 1:	Available on and reads a	ıly in certair s '0'. See te	n oscillator c ext for detail	configuration s.	is; otherwise	ə, this bit is	unavailable				
bit 5	Unimplem	ented: Read	as '0'									
bit 4-0	TUN4:TUN	10: Frequency	y Tuning bit	ts								
	01111 = M	laximum freq	uency									
	•	•										
	•	•										
	00001	· • •	0	·	·							
	00000 = 0	enter frequer	icy. Oscillar	tor module is	s running at	the calibrate	ed frequency	/.				
	•	• •										
	10000 = M	10000 = Minimum frequency										
	Legend:											
	R = Reada	able bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'				

'1' = Bit is set

2.6.5.1 Compensating with the EUSART

-n = Value at POR

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high. To adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low. To compensate, increment OSCTUNE to increase the clock frequency.

2.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.6.5.3 Compensating with the CCP1 Module in Capture Mode

'0' = Bit is cleared

The CCP1 module can use free running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

x = Bit is unknown

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast. To compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow. To compensate, increment the OSCTUNE register.

PIC18F2585/2680/4585/4680

REGISTER 2-2:

OSCCON: OSCILLATOR CONTROL REGISTER

	R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0		
	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0		
	bit 7							bit 0		
bit 7	IDLEN: Id	le Enable bit								
	1 = Device 0 = Device	e enters Idle e enters Slee	mode on SL p mode on s	EEP instruct	ion Iction					
bit 6	-4 IRCF2:IR	CF0: Internal	Oscillator F	requency Se	elect bits					
	111 = 8 N 110 = 4 N 101 = 2 N 100 = 1 N 011 = 500	1 = 8 MHz (INTOSC drives clock directly) $1 = 2 MHz$ $1 = 2 MHz$ $1 = 500 kHz$								
	010 = 250 001 = 125 000 = 31) kHz 5 kHz kHz (from eit	her INTOSC	/256 or INTI	RC directly) ⁽	2)				
bit 3	 OSTS: Os 1 = Oscilla 0 = Oscilla 	scillator Start- ator start-up t ator start-up t	up Time-out ime-out time ime-out time	t Status bit ⁽¹⁾ er has expire er is running) ed; primary c ; primary oso	oscillator is r cillator is not	unning t ready			
bit 2	IOFS: INT	OSC Freque	ncy Stable b	bit						
	1 = INTOS 0 = INTOS	SC frequency SC frequency	is stable ar	nd the freque	ency is provi	ded by one	of the RC m	odes		
bit 1	-0 SCS1:SC	S0: System (Clock Select	bits						
	1x = Inter 01 = Time 00 = Prim	nal oscillator r1 oscillator ary oscillator	block							
	Note 1:	Depends o	n state of th	e IESO Con	figuration bit					
	2:	Source sel	ected by the	INTSRC bit	(OSCTUNE	E<7>), see te	ext.			
	3:	Default out	put frequend	cy of INTOS	C on Reset.					

1	~ ~	<u>م</u> ا.
Lea	en	u :
	••••	•

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Register	Applicable Devices		Power-on Reset, Brown-out Reset		MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt			
B4EIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B4SIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx x-xx		uuuu u-uu	uuuu u-uu	
B4SIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B4CON ⁽⁶⁾	2585	2680	4585	4680	0000 0000		0000 0000	uuuu uuuu	
B3D7 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D6 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D5 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D4 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D3 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D2 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D1 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3D0 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3DLC ⁽⁶⁾	2585	2680	4585	4680	-xxx xxxx		-uuu uuuu	-uuu uuuu	
B3EIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3EIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3SIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx x-xx		uuuu u-uu	uuuu u-uu	
B3SIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B3CON ⁽⁶⁾	2585	2680	4585	4680	0000 0000		0000 0000	uuuu uuuu	
B2D7 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D6 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D5 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D4 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D3 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D2 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D1 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2D0 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2DLC ⁽⁶⁾	2585	2680	4585	4680	-xxx xxxx		-uuu uuuu	-uuu uuuu	
B2EIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2EIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	
B2SIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx x-xx		uuuu u-uu	uuuu u-uu	
B2SIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx		uuuu uuuu	uuuu uuuu	

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

16.4.5 FULL-BRIDGE MODE

In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin P1A is continuously active and pin P1D is modulated. In the Reverse mode, pin P1C is continuously active and pin P1B is modulated. These are illustrated in Figure 16-6. P1A, P1B, P1C and P1D outputs are multiplexed with the PORTD<4>, PORTD<5>, PORTD<6> and PORTD<7> data latches. The TRISD<4>, TRISD<5>, TRISD<6> and TRISD<7> bits must be cleared to make the P1A, P1B, P1C and P1D pins outputs.

20.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins RA0 through RA5, as well as the on-chip voltage reference (see **Section 21.0 "Comparator Voltage Reference Module**"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register. The CMCON register (Register 20-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 20-1.

REGISTER 20-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0

bit 7 C2OUT: Comparator 2 Output bit When C2INV = 0: 1 = C2 VIN+ > C2 VIN-0 = C2 VIN + < C2 VIN-When C2INV = 1: 1 = C2 VIN + < C2 VIN -0 = C2 VIN + > C2 VIN bit 6 C1OUT: Comparator 1 Output bit When C1INV = 0: 1 = C1 VIN+ > C1 VIN-0 = C1 VIN + < C1 VIN-When C1INV = 1: 1 = C1 VIN+ < C1 VIN-0 = C1 VIN + > C1 VIN bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 output inverted 0 = C2 output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 **CIS:** Comparator Input Switch bit When CM2:CM0 = 110: 1 = C1 VIN- connects to RD0/PSP0/C1IN+ C2 VIN- connects to RD2/PSP2/C2IN+ 0 = C1 VIN- connects to RD1/PSP1/C1IN-C2 VIN- connects to RD3/PSP3/C2IN-

bit 2-0 **CM2:CM0**: Comparator Mode bits Figure 20-1 shows the Comparator modes and the CM2:CM0 bit settings

Figure 20-1 shows the Comparator modes and the CM2:CM0 bit setting	js.
--	-----

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

DEDICATED CAN TRANSMIT 23.2.2 **BUFFER REGISTERS**

This section describes the dedicated CAN Transmit Buffer registers and their associated control registers.

EGISTER 23	-5: TXBn	CON: TRA	NSMIT BUF	FER n CO	NTROL RE	GISTERS [0 ≤ n ≤ 2]					
Mode 0	R/C-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0				
Mode 0	TXBIF	TXABT ⁽¹⁾	TXLARB ⁽¹⁾	TXERR ⁽¹⁾	TXREQ ⁽²⁾	_	TXPRI1 ⁽³⁾	TXPRI0 ⁽³⁾				
	R/C-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0				
Mode 1, 2	TXBIF	TXABT ⁽¹⁾	TXLARB ⁽¹⁾	TXERR ⁽¹⁾	TXREQ ⁽²⁾	_	TXPRI1 ⁽³⁾	TXPRI0 ⁽³⁾				
	bit 7 bit 0											
bit 7	t 7 TXBIF: Transmit Buffer Interrupt Flag bit											
	1 = Transm 0 = Transm	iit buffer has iit buffer has	completed tr not complete	ansmission o ed transmissi	of message a on of a mess	nd may be re age	eloaded					
bit 6	TXABT: Tra	ansmission A	borted Statu	s bit ⁽¹⁾								
	1 = Messag	ge was abort	ed									
	0 = Messag	ge was not al	ported									
bit 5	TXLARB:	Fransmission	Lost Arbitrat	tion Status bi	t(1)							
	 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 											
bit 4	TXERR: Tr	ansmission E	Error Detecte	d Status bit ⁽¹)							
	1 = A bus e 0 = A bus e	error occurred	d while the m	lessage was ne message v	being sent was being se	nt						
bit 3	TXREQ: Tr	ansmit Requ	est Status bi	_t (2)								
	1 = Reques	sts sending a atically cleare	message. C	lears the TX nessage is s	ABT, TXLARI uccessfully s	B and TXER ent	R bits.					
bit 2	Unimplem	ented: Read	as '0'	C								
bit 1-0	TXPRI1:TX	PRIO: Trans	mit Priority bi	its ⁽³⁾								
	11 = Priorit	y Level 3 (hi	ghest priority)								
	10 = Priorit	y Level 2										
	01 = Priorit	y Level 1 v Level 0 (lov	vest priority)									
	Note 1:	This bit is a	utomatically of	cleared when	TXREQ is s	et.						
	 2: While TXREQ is set, Transmit Buffer registers remain read-only. Clearing this bit in software while the bit is set will request a message abort. 											
	3:	These bits d the CAN me	efine the ord essage identit	er in which tr fier.	ansmit buffer	s will be tran	sferred. They	do not alter				
	Legend:											
	C = Clearal	ole bit F	R = Readable	ebit W⊨V	Vritable bit	U = Unim	plemented hi	t, read as '0'				

-n = Value at POR

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

REGISTER 23-24: BnSIDH: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS, HIGH BYTE IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7							bit 0

bit 7-0 **SID10:SID3:** Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-25: BnSIDH: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS,

HIGH BYTE IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL0 < n >) = 1]^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **SID10:SID3:** Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

Legend:						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0		
	bit 7							bit 0		
bit 7-6	FIL11_1:FIL	.11_0: Filter 1	1 Select bits	s 1 and 0						
	11 = No mas	sk								
	10 = Filter 1	5 anco Mask 1								
	00 = Accept	ance Mask 0								
bit 5-4	FIL10_1:FIL	.10_0: Filter 1	0 Select bit	s 1 and 0						
	11 = No mas	sk								
	10 = Filter 1	5 anan Maak 1								
	01 = Accept	ance Mask T								
hit 3-2		0. Filter 9 S	elect hits 1 :	and 0						
Dit O Z	11 = No mas	_ 0. 1 iitor 0 0 sk								
	10 = Filter 15									
	01 = Acceptance Mask 1									
	00 = Accept	ance Mask 0								
bit 1-0	FIL8_1:FIL8	6_0: Filter 8 S	elect bits 1 a	and 0						
	11 = No mask									
	10 = Filter I	o ance Mask 1								
	00 = Acceptance Mask 0									
	Note 1: This register is available in Mode 1 and 2 only.									
		-			-					

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

REGISTER 23-50: MSEL2: MASK SELECT REGISTER 2⁽¹⁾

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
DFFh	(4)	DDFh	(4)	DBFh	(4)	D9Fh	(4)
DFEh	(4)	DDEh	(4)	DBEh	(4)	D9Eh	(4)
DFDh	(4)	DDDh	(4)	DBDh	(4)	D9Dh	(4)
DFCh	TXBIE	DDCh	(4)	DBCh	(4)	D9Ch	(4)
DFBh	(4)	DDBh	(4)	DBBh	(4)	D9Bh	(4)
DFAh	BIE0	DDAh	(4)	DBAh	(4)	D9Ah	(4)
DF9h	(4)	DD9h	(4)	DB9h	(4)	D99h	(4)
DF8h	BSEL0	DD8h	SDFLC	DB8h	(4)	D98h	(4)
DF7h	(4)	DD7h	(4)	DB7h	(4)	D97h	(4)
DF6h	(4)	DD6h	(4)	DB6h	(4)	D96h	(4)
DF5h	(4)	DD5h	RXFCON1	DB5h	(4)	D95h	(4)
DF4h	(4)	DD4h	RXFCON0	DB4h	(4)	D94h	(4)
DF3h	MSEL3	DD3h	(4)	DB3h	(4)	D93h	RXF15EIDL
DF2h	MSEL2	DD2h	(4)	DB2h	(4)	D92h	RXF15EIDH
DF1h	MSEL1	DD1h	(4)	DB1h	(4)	D91h	RXF15SIDL
DF0h	MSEL0	DD0h	(4)	DB0h	(4)	D90h	RXF15SIDH
DEFh	(4)	DCFh	(4)	DAFh	(4)	D8Fh	(4)
DEEh	(4)	DCEh	(4)	DAEh	(4)	D8Eh	(4)
DEDh	(4)	DCDh	(4)	DADh	(4)	D8Dh	(4)
DECh	(4)	DCCh	(4)	DACh	(4)	D8Ch	(4)
DEBh	(4)	DCBh	(4)	DABh	(4)	D8Bh	RXF14EIDL
DEAh	(4)	DCAh	(4)	DAAh	(4)	D8Ah	RXF14EIDH
DE9h	(4)	DC9h	(4)	DA9h	(4)	D89h	RXF14SIDL
DE8h	(4)	DC8h	(4)	DA8h	(4)	D88h	RXF14SIDH
DE7h	RXFBCON7	DC7h	(4)	DA7h	(4)	D87h	RXF13EIDL
DE6h	RXFBCON6	DC6h	(4)	DA6h	(4)	D86h	RXF13EIDH
DE5h	RXFBCON5	DC5h	(4)	DA5h	(4)	D85h	RXF13SIDL
DE4h	RXFBCON4	DC4h	(4)	DA4h	(4)	D84h	RXF13SIDH
DE3h	RXFBCON3	DC3h	(4)	DA3h	(4)	D83h	RXF12EIDL
DE2h	RXFBCON2	DC2h	(4)	DA2h	(4)	D82h	RXF12EIDH
DE1h	RXFBCON1	DC1h	(4)	DA1h	(4)	D81h	RXF12SIDL
DE0h	RXFBCON0	DC0h	(4)	DA0h	(4)	D80h	RXF12SIDH

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

23.3.4 LISTEN ONLY MODE

Listen Only mode provides a means for the PIC18F2585/2680/4585/4680 devices to receive all messages, including messages with errors. This mode can be used for bus monitor applications or for detecting the baud rate in 'hot plugging' situations. For Auto-Baud Detection, it is necessary that there are at least two other nodes which are communicating with each other. The baud rate can be detected empirically by testing different values until valid messages are received. The Listen Only mode is a silent mode, meaning no messages will be transmitted while in this state, including error flags or Acknowledge signals. The filters and masks can be used to allow only particular messages to be loaded into the receive registers or the filter masks can be set to all zeros to allow a message with any identifier to pass. The error counters are reset and deactivated in this state. The Listen Only mode is activated by setting the mode request bits in the CANCON register.

23.3.5 LOOPBACK MODE

This mode will allow internal transmission of messages from the transmit buffers to the receive buffers without actually transmitting messages on the CAN bus. This mode can be used in system development and testing. In this mode, the ACK bit is ignored and the device will allow incoming messages from itself, just as if they were coming from another node. The Loopback mode is a silent mode, meaning no messages will be transmitted while in this state, including error flags or Acknowledge signals. The TXCAN pin will revert to port I/O while the device is in this mode. The filters and masks can be used to allow only particular messages to be loaded into the receive registers. The masks can be set to all zeros to provide a mode that accepts all messages. The Loopback mode is activated by setting the mode request bits in the CANCON register.

23.3.6 ERROR RECOGNITION MODE

The module can be set to ignore all errors and receive any message. In functional Mode 0, the Error Recognition mode is activated by setting the RXM<1:0> bits in the RXBnCON registers to '11'. In this mode, the data which is in the message assembly buffer until the error time, is copied in the receive buffer and can be read via the CPU interface.

23.4 ECAN Module Functional Modes

In addition to CAN modes of operation, the ECAN module offers a total of 3 functional modes. Each of these modes are identified as Mode 0, Mode 1 and Mode 2.

23.4.1 MODE 0 – LEGACY MODE

Mode 0 is designed to be fully compatible with CAN modules used in PIC18CXX8 and PIC18FXX8 devices. This is the default mode of operation on all Reset conditions. As a result, module code written for the PIC18XX8 CAN module may be used on the ECAN module without any code changes.

The following is the list of resources available in Mode 0:

- Three transmit buffers: TXB0, TXB1 and TXB2
- Two receive buffers: RXB0 and RXB1
- Two acceptance masks, one for each receive buffer: RXM0, RXM1
- Six acceptance filters, 2 for RXB0 and 4 for RXB1: RXF0, RXF1, RXF2, RXF3, RXF4, RXF5

23.4.2 MODE 1 – ENHANCED LEGACY MODE

Mode 1 is similar to Mode 0, with the exception that more resources are available in Mode 1. There are 16 acceptance filters and two acceptance mask registers. Acceptance Filter 15 can be used as either an acceptance filter or an acceptance mask register. In addition to three transmit and two receive buffers, there are six more message buffers. One or more of these additional buffers can be programmed as transmit or receive buffers. These additional buffers can also be programmed to automatically handle RTR messages.

Fourteen of sixteen acceptance filter registers can be dynamically associated to any receive buffer and acceptance mask register. One can use this capability to associate more than one filter to any one buffer.

When a receive buffer is programmed to use standard identifier messages, part of the full acceptance filter register can be used as a data byte filter. The length of the data byte filter is programmable from 0 to 18 bits. This functionality simplifies implementation of high-level protocols, such as the DeviceNet protocol.

The following is the list of resources available in Mode 1:

- Three transmit buffers: TXB0, TXB1 and TXB2
- Two receive buffers: RXB0 and RXB1
- Six buffers programmable as TX or RX: B0-B5
- Automatic RTR handling on B0-B5
- Sixteen dynamically assigned acceptance filters: RXF0-RXF15
- Two dedicated acceptance mask registers; RXF15 programmable as third mask: RXM0-RXM1, RXF15
- Programmable data filter on standard identifier messages: SDFLC

23.9.2 TIME QUANTA

As already mentioned, the Time Quanta is a fixed unit derived from the oscillator period and baud rate prescaler. Its relationship to TBIT and the Nominal Bit Rate is shown in Example 23-6.

EXAMPLE 23-6: CALCULATING TQ, NOMINAL BIT RATE AND NOMINAL BIT TIME

 $TQ (\mu s) = (2 * (BRP + 1))/FOSC (MHz)$

TBIT $(\mu s) = TQ (\mu s) *$ number of TQ per bit interval

Nominal Bit Rate (bits/s) = 1/TBIT

This frequency (Fosc) refers to the effective frequency used. If, for example, a 10 MHz external signal is used along with a PLL, then the effective frequency will be 4 x 10 MHz which equals 40 MHz.

CASE 1:

For Fosc = 16 MHz, BRP<5:0> = 00h and Nominal Bit Time = 8 To:

Tq = $(2 * 1)/16 = 0.125 \ \mu s \ (125 \ ns)$ TBIT = $8 * 0.125 = 1 \ \mu s \ (10^{-6} s)$ Nominal Bit Rate = $1/10^{-6} = 10^{6} \ \text{bits/s} \ (1 \ \text{Mb/s})$

CASE 2:

For Fosc = 20 MHz, BRP<5:0> = 01h and Nominal Bit Time = 8 TQ: $TQ = (2 * 2)/20 = 0.2 \ \mu s \ (200 \ ns)$ TBIT = 8 * 0.2 = 1.6 \ \mu s \ (1.6 * 10⁻⁶s) Nominal Bit Rate = 1/1.6 * 10⁻⁶s = 625,000 bits/s (625 Kb/s)

CASE 3:

For FOSC = 25 MHz, BRP<5:0> = 3Fh and Nominal Bit Time = 25 TQ: $TQ = (2 * 64)/25 = 5.12 \ \mu s$ $TBIT = 25 * 5.12 = 128 \ \mu s (1.28 * 10^{-4} s)$ Nominal Bit Rate = 1/1.28 * 10⁻⁴ = 7813 bits/s (7.8 Kb/s)

The frequencies of the oscillators in the different nodes must be coordinated in order to provide a system wide specified nominal bit time. This means that all oscillators must have a Tosc that is an integral divisor of To. It should also be noted that although the number of To is programmable from 4 to 25, the usable minimum is 8 To. There is no assurance that a bit time of less than 8 To in length will operate correctly.

23.9.3 SYNCHRONIZATION SEGMENT

This part of the bit time is used to synchronize the various CAN nodes on the bus. The edge of the input signal is expected to occur during the sync segment. The duration is 1 Tq.

23.9.4 PROPAGATION SEGMENT

This part of the bit time is used to compensate for physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The length of the Propagation Segment can be programmed from 1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.

23.9.5 PHASE BUFFER SEGMENTS

The phase buffer segments are used to optimally locate the sampling point of the received bit within the nominal bit time. The sampling point occurs between Phase Segment 1 and Phase Segment 2. These segments can be lengthened or shortened by the resynchronization process. The end of Phase Segment 1 determines the sampling point within a bit time. Phase Segment 1 is programmable from 1 To to 8 To in duration. Phase Segment 2 provides delay before the next transmitted data transition and is also programmable from 1 TQ to 8 TQ in duration. However, due to IPT requirements, the actual minimum length of Phase Segment 2 is 2 To, or it may be defined to be equal to the greater of Phase Segment 1 or the Information Processing Time (IPT). The sampling point should be as late as possible or approximately 80% of the bit time.

23.9.6 SAMPLE POINT

The sample point is the point of time at which the bus level is read and the value of the received bit is determined. The sampling point occurs at the end of Phase Segment 1. If the bit timing is slow and contains many To, it is possible to specify multiple sampling of the bus line at the sample point. The value of the received bit is determined to be the value of the majority decision of three values. The three samples are taken at the sample point and twice before, with a time of To/2 between each sample.

23.9.7 INFORMATION PROCESSING TIME

The Information Processing Time (IPT) is the time segment starting at the sample point that is reserved for calculation of the subsequent bit level. The CAN specification defines this time to be less than or equal to 2 TQ. The PIC18F2585/2680/4585/4680 devices define this time to be 2 TQ. Thus, Phase Segment 2 must be at least 2 TQ long.

REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
—	—	—	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN
bit 7							bit 0

- bit 7-5 Unimplemented: Read as '0'
- WDTPS3:WDTPS0: Watchdog Timer Postscale Select bits bit 4-1

1111 = 1:32,768
1110 = 1:16,384
1101 = 1:8,192
1100 = 1:4,096
1011 = 1:2,048
1010 = 1:1,024
1001 = 1:512
1000 = 1:256
0111 = 1:128
0110 = 1:64
0101 = 1:32
0100 = 1:16
0011 = 1:8
0010 = 1:4
0001 = 1:2
0000 = 1:1
WDTEN: Watchdog Timer Enable bit

```
bit 0
```

1 = WDT enabled

0 = WDT disabled (control is placed on the SWDTEN bit)

Legena:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	is unprogrammed	u = Unchanged from programmed state

REGISTER 24-12: DEVICE ID REGISTER 1 FOR PIC18F2585/2680/4585/4680 DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

bit 7-5 **DEV2:DEV0:** Device ID bits

111 = PIC18F2585

110 = PIC18F2680 101 = PIC18F4585

100 = PIC18F4680

bit 4-0 **REV4:REV0:** Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	is unprogrammed	u = Unchanged from programmed state

REGISTER 24-13: DEVICE ID REGISTER 2 FOR PIC18F2585/2680/4585/4680 DEVICES

	R	R	R	R	R	R	R	R
	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7 bit								

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

0000 1110 = PIC18F2585/2680/4585/4680 devices

Note: These values for DEV10:DEV3 may be shared with other devices. The specific device is always identified by using the entire DEV10:DEV0 bit sequence.

Legend:		
R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	e is unprogrammed	u = Unchanged from programmed state

PIC18F2585/2680/4585/4680

MULLW	Multiply	Multiply Literal with W				
Syntax:	MULLW	k			Syntax:	
Operands:	Operan					
Operation:	(W) x k \rightarrow	PRODH:	PRODL			
Status Affected:	None				Operati	
Encoding:	0000	1101	kkkk	kkkk	Status A	
Description: Words:	An unsign out betwee 8-bit literal placed in t pair. PROI W is unch None of th Note that r possible in is possible	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected.				
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4	1	
Decode	literal 'k'	Data	ss a re P	egisters RODH: PRODL		
Example:	MULLW	0C4h				
Before Instruc	tion _	-				
W PRODH	= Ei = ?	2h			Words:	
PRODL After Instructio W	= ? on = E	2h			Q Cycl	
PRODE	= A = 08	Bh			Г	

MUL	WF	Multiply	Multiply W with f						
Synta	ax:	MULWF	f {,a}						
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	$0 \le f \le 255$ a \equiv [0,1]						
Oper	ation:	(W) x (f) –	> PRODH:PR	ODL					
Statu	s Affected:	None							
Enco	ding:	0000	001a ff	ff ffff					
Desc	ription:	An unsign out betwee register file result is st register pa high byte. unchange	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged						
		None of th	e Status flags	are affected.					
		Note that r possible ir result is po If 'a' is 'o', selected J	neither overflo n this operation ossible but no the Access B f 'a' is '1' the	w nor carry is n. A zero t detected. ank is BSR is used					
		to select th	ne GPR bank	(default).					
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Litera Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offse								
Word	ls:	1							
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL					
<u>Exan</u>	nple:	MULWF	REG, 1						
$\begin{array}{rcl} \text{Before Instruction} & & & & = & C4h \\ & & \text{REG} & = & B5h \\ & & \text{PRODH} & = & ? \\ & & \text{PRODL} & = & ? \\ & & \text{After Instruction} & & & \\ & & W & = & C4h \\ & & \text{REG} & = & B5h \\ & & & \text{PRODH} & = & 8Ah \\ & & & \text{PRODH} & = & 94h \\ \end{array}$									

PIC18F2585/2680/4585/4680

RET	FIE	Return fro	om Interrup	t	RET	RETLW Return Literal to W					
Synta	ax:	RETFIE {	5}		Synt	ax:	RETLW k				
Oper	Operands: $s \in [0,1]$		Ope	rands:	$0 \le k \le 255$	$0 \le k \le 255$					
Operation:		$(TOS) \rightarrow P$ 1 \rightarrow GIE/G if s = 1	(TOS) \rightarrow PC, 1 \rightarrow GIE/GIEH or PEIE/GIEL, if s = 1			ration:	$k \rightarrow W$, (TOS) $\rightarrow P$ PCLATU, F	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged			
		$(WS) \rightarrow W,$			Statu	is Affected:	None				
		$(BSRS) \rightarrow$	BSR,		Enco	oding:	0000	1100 kk	kk kkkk		
		PCLATU, F	PCLATU, PCLATH are unchanged.			cription:	W is loaded	d with the eigh	t-bit literal 'k'.		
Statu	is Affected:	GIE/GIEH,	PEIE/GIEL.				The progra	m counter is lo	baded from the		
Enco Desc	oding: cription:	0000 Return from	0000 0000 0001 000s Return from Interrupt. Stack is popped				top of the stack (the return address). The high address latch (PCLATH) remains unchanged.				
		and Top-of-	and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority.			ds:	1	1			
		the PC. Inte setting eith				es:	2				
		global inter	global interrupt enable bit. If 's' = 1, the		QC	ycle Activity:					
		contents of the shadow registers, WS,			Q1	Q2	Q3	Q4			
		their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default)				Decode	Read literal 'k'	Process Data	POP PC from stack, Write to W		
Word	ls:	1			No	No	No	No			
Cvcle	es:	2				operation	operation	operation	operation		
QC	vcle Activitv:				Eva	nnlo:					
	Q1	Q2	Q3	Q4		CALL TABL	E ; W cont	ains table			
	Decode	No operation	No operation	POP PC from stack Set GIEH or GIEL	; offset value ; W now has ; table value ;						
	No operation	No operation	No operation	No operation	TAB.	LE ADDWF PCL RETLW k0	; W = offset ; Begin table				
Exan	nple:	RETFIE	1			KEILW KI	;				
	After Interrupt PC W BSR		= TOS = WS = BSRS	166		: RETLW kn Before Instruc W	; End of ction = 07h	table			
	GIE/GIE	H, PEIE/GIEL	= 5 ATC = 1	100		After Instruction	on = value o	f kn			

27.3 DC Characteristics: PIC18F2585/2680/4585/4680 (Industrial) PIC18LF2585/2680/4585/4680 (Industrial)

DC CHA	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	Vi∟	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	0.15 Vdd	V	Vdd < 4.5V	
D030A			—	0.8	V	$4.5V \le VDD \le 5.5V$	
D031 D031A		with Schmitt Trigger buffer RC3 and RC4	Vss Vss Vss	0.2 VDD 0.3 VDD	V V	I ² C [™] enabled	
00310		MCLB	VSS		v	Sividus eriabled	
D032			V SS		v	US USDI L modos	
D033A			VSS		v	BC EC modes(1)	
DOSSA		0501	Vee	0.2 000	v	XT I P modes	
D034			Vee	0.3	v	XI, EI MODES	
	Viн	Input High Voltage	V33 0.0				
	•	I/O ports:					
D040		with TTL buffer	0.25 VDD + 0.8V	Vdd	v	VDD < 4.5V	
D040A			2.0	Vdd	v	$4.5V \le VDD \le 5.5V$	
D041		with Schmitt Trigger buffer	0.8 Vdd	Vdd	v		
D041A		RC3 and RC4	0.7 Vdd	Vdd	V	I ² C™ enabled	
D041B			2.1	Vdd	V	SMBus enabled	
D042		MCLR	0.8 Vdd	Vdd	V		
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes	
D043A		OSC1	0.8 Vdd	Vdd	V	EC mode	
D043B		OSC1	0.9 Vdd	Vdd	V	RC mode ⁽¹⁾	
D043C		OSC1	1.6	Vdd	V	XT, LP modes	
D044		T13CKI	1.6	Vdd	V		
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	—	±1	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance	
D061		MCLR	—	±5	μA	$Vss \leq V PIN \leq V DD$	
D063		OSC1	—	±5	μA	$Vss \leq V PIN \leq V DD$	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB weak pull-up current	50	400	μΑ	VDD = 5V, VPIN = VSS	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Parameter is characterized but not tested.

27.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	1	MHz	XT, RC Oscillator modes
			DC	25	MHz	HS Oscillator mode
			DC	31.25	kHz	LP Oscillator mode
			DC	40	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	25	MHz	HS Oscillator mode
			4	10	MHz	HSPLL Oscillator mode
			5	200	kHz	LP Oscillator mode
1	Tosc	External CLKI Period ⁽¹⁾	1000	—	ns	XT, RC Oscillator modes
			40	—	ns	HS Oscillator mode
			32	—	μs	LP Oscillator mode
			25	—	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	250	—	ns	RC Oscillator mode
			250	1	μs	XT Oscillator mode
			40	250	ns	HS Oscillator mode
			100	250	ns	HSPLL Oscillator mode
			5	200	μs	LP Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	100	—	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	30	—	ns	XT Oscillator mode
	TosH	High or Low Time	2.5	—	μs	LP Oscillator mode
			10	—	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	—	20	ns	XT Oscillator mode
	TosF	Rise or Fall Time	—	50	ns	LP Oscillator mode
			—	7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

© 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680

IABLE	27-11:	IMERU AND TIMERT EXTERNAL CLOCK REQUIREMENTS							
Param	Svm	Characteristic	Min	Мах	Unit				

Param No.	Sym		Characteristic		Min	Max	Units	Conditions
40	T⊤0H	T0CKI High P	ulse Width	No prescaler	0.5 Tcy + 20	—	ns	
				With prescaler	10		ns	
41	TT0L	T0CKI Low Pu	Ilse Width	No prescaler	0.5 TCY + 20		ns	
				With prescaler	10		ns	
42	TT0P	T0CKI Period		No prescaler	Tcy + 10		ns	
				With prescaler	Greater of: 20 ns or (TcY + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)
45	T⊤1H	T13CKI High	Synchronous, no prescaler		0.5 TCY + 20	_	ns	
		Time	Synchronous, with prescaler	PIC18FXXXX	10		ns	
				PIC18LFXXXX	25		ns	VDD = 2.0V
			Asynchronous	PIC18FXXXX	30		ns	
				PIC18LFXXXX	50		ns	VDD = 2.0V
46	TT1L	T1L T13CKI Low Time	Synchronous, r	no prescaler	0.5 TCY + 5		ns	
			Synchronous, with prescaler Asynchronous	PIC18FXXXX	10		ns	
				PIC18LFXXXX	25		ns	VDD = 2.0V
				PIC18FXXXX	30		ns	
				PIC18LFXXXX	50		ns	VDD = 2.0V
47	T⊤1P	TT1P T13CKI Input Period	Synchronous		Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value $(1, 2, 4, 8)$
			Asynchronous	ynchronous		—	ns	
	FT1	T13CKI Oscilla	tor Input Frequer	ncy Range	DC	50	kHz	
48	TCKE2TMRI	Delay from Ex Timer Increme	ternal T13CKI C ent	rernal T13CKI Clock Edge to nt		7 Tosc	—	