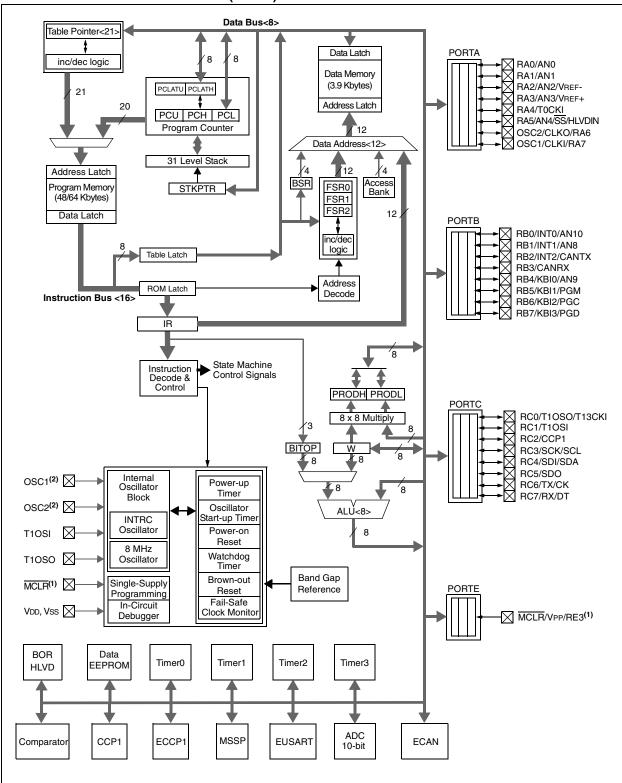


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2680-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC18F2585/2680 (28-PIN) BLOCK DIAGRAM

Note 1: RE3 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.

2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 2.0 "Oscillator Configurations" for additional information.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
PORTE ⁽³⁾	_	—		_	RE3 ⁽⁵⁾	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	52, 145
PORTD ⁽³⁾	Read PORTD	Read PORTD pins, Write PORTD Data Latch								52, 138
PORTC	Read PORTC	pins, Write P	ORTC Data L	.atch					xxxx xxxx	52, 135
PORTB	Read PORTB	pins, Write P	ORTB Data L	atch					xxxx xxxx	52, 132
PORTA	RA7 ⁽⁶⁾	RA6 ⁽⁶⁾	Read PORT	A pins, Write	PORTA Data I	_atch			xx00 0000	52, 129
ECANCON	MDSEL1	MDSEL0	FIFOWM	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0	0001 000	52, 280
TXERRCNT	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0	0000 0000	52, 285
RXERRCNT	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0	0000 0000	52, 293
COMSTAT Mode 0	RXB0OVFL	RXB1OVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000 0000	52, 281
COMSTAT Mode 1	—	RXBnOVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	-000 0000	52, 281
COMSTAT Mode 2	FIFOEMPTY	RXBnOVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000 0000	52, 281
CIOCON	_	_	ENDRHI	CANCAP	_	_	_	_	00	52, 314
BRGCON3	WAKDIS	WAKFIL	_	_	_	SEG2PH2	SEG2PH1	SEG2PH0	00000	52, 313
BRGCON2	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000 0000	52, 312
BRGCON1	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000 0000	52, 311
CANCON Mode 0	REQOP2	REQOP1	REQOP0	ABAT	WIN2 ⁽⁷⁾	WIN1 ⁽⁷⁾	WIN0 ⁽⁷⁾	(7)	1000 000-	53, 276
CANCON Mode 1	REQOP2	REQOP1	REQOP0	ABAT	(7)	(7)	(7)	(7)	1000	53, 276
CANCON Mode 2	REQOP2	REQOP1	REQOP0	ABAT	FP3 ⁽⁷⁾	FP2 ⁽⁷⁾	FP1 ⁽⁷⁾	FP0 ⁽⁷⁾	1000 0000	53, 276
CANSTAT Mode 0	OPMODE2	OPMODE1	OPMODE0	(7)	ICODE3 ⁽⁷⁾	ICODE2 ⁽⁷⁾	ICODE1 ⁽⁷⁾	(7)	000- 0000	53, 277
CANSTAT Modes 1, 2	OPMODE2	OPMODE1	OPMODE0	EICODE4 ⁽⁷⁾	EICODE3 ⁽⁷⁾	EICODE2 ⁽⁷⁾	EICODE1 ⁽⁷⁾	EICODE0 ⁽⁷⁾	0000 0000	53, 277
RXB0D7	RXB0D77	RXB0D76	RXB0D75	RXB0D74	RXB0D73	RXB0D72	RXB0D71	RXB0D70	xxxx xxxx	53, 292
RXB0D6	RXB0D67	RXB0D66	RXB0D65	RXB0D64	RXB0D63	RXB0D62	RXB0D61	RXB0D60	xxxx xxxx	53, 292
RXB0D5	RXB0D57	RXB0D56	RXB0D55	RXB0D54	RXB0D53	RXB0D52	RXB0D51	RXB0D50	xxxx xxxx	53, 292
RXB0D4	RXB0D47	RXB0D46	RXB0D45	RXB0D44	RXB0D43	RXB0D42	RXB0D41	RXB0D40	xxxx xxxx	53, 292
RXB0D3	RXB0D37	RXB0D36	RXB0D35	RXB0D34	RXB0D33	RXB0D32	RXB0D31	RXB0D30	xxxx xxxx	53, 292
RXB0D2	RXB0D27	RXB0D26	RXB0D25	RXB0D24	RXB0D23	RXB0D22	RXB0D21	RXB0D20	xxxx xxxx	53, 292
RXB0D1	RXB0D17	RXB0D16	RXB0D15	RXB0D14	RXB0D13	RXB0D12	RXB0D11	RXB0D10	xxxx xxxx	53, 292
RXB0D0	RXB0D07	RXB0D06	RXB0D05	RXB0D04	RXB0D03	RXB0D02	RXB0D01	RXB0D00	xxxx xxxx	53, 292
RXB0DLC		RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	53, 292
RXB0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	53, 291
RXB0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	53, 291
RXB0SIDL	SID2	SID1	SID0	SRR	EXID		EID17	EID16	xxxx x-xx	53, 291
RXB0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	53, 290
RXB0CON Mode 0	RXFUL	RXM1	RXM0 ⁽⁷⁾	(7)	RXRTRRO ⁽⁷⁾	RXBODBEN ⁽⁷⁾	JTOFF ⁽⁷⁾	FILHITO ⁽⁷⁾	000- 0000	53, 287
RXB0CON Mode 1, 2	RXFUL	RXM1	RTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	53, 287

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2585/2680/4585/4680) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.
2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X8X devices and are read as '0'. Reset values are shown for PIC18F4X8X devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

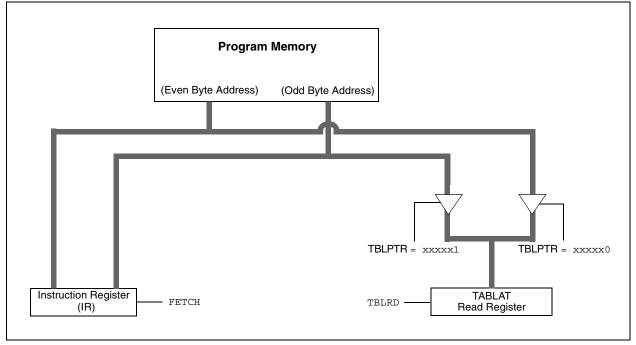
5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X8X devices only.


6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
_	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVF	WORD ODD		
		_		

9.6 INTn Pin Interrupts

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxE. Flag bit INTxF must be cleared in software in the Interrupt.

All external interrupts (INT0, INT1 and INT2) can wake-up the processor from the power managed modes, if bit INTxE was set prior to going into power managed modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high priority interrupt source.

9.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 11.0 "Timer0 Module" for further details on the Timer0 module.

9.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (See **Section 5.3 "Data Memory Organization**"), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 9-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

MOVWF	W_TEMP	; W_TEMP is in virtual bank
MOVFF	STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
MOVFF	BSR, BSR_TEMP	; BSR_TMEP located anywhere
;		
; USER	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS TEMP, STATUS	; Restore STATUS

EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

-n = Value at POR

ER 10-1:	I RISE RE	GISTER (I			ONLT)			
	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0
	bit 7							bit 0
bit 7	IBF: Input	Buffer Full S	Status bit					
		l has been r rd has been		l waiting to be	read by the	e CPU		
bit 6	OBF: Outp	out Buffer Fu	ull Status bit					
		itput buffer s itput buffer h		oreviously writ ad	tten word			
bit 5	IBOV: Inpu	ut Buffer Ove	erflow Deteo	ct bit (in Micro	processor r	node)		
		e occurred wi erflow occu	•	usly input word	l has not bee	en read (mus	t be cleared	in software)
bit 4	PSPMODE	: Parallel S	lave Port M	ode Select bit				
		I Slave Port						
		al Purpose I						
bit 3	•	ented: Rea						
bit 2		E2 Direction	n Control bi	t				
	1 = Input 0 = Output	:						
bit 1	TRISE1: R	E1 Direction	n Control bi	t				
	1 = Input							
	0 = Output							
bit 0	TRISE0: R	E0 Direction	n Control bi	t				
	1 = Input 0 = Output	:						
	Legend:							
	R = Reada	ble bit	W = V	Vritable bit	U = Unim	plemented	bit, read as	'0'
	1							

REGISTER 10-1: TRISE REGISTER (PIC18F4X8X DEVICES ONLY)

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

14.0 TIMER3 MODULE

The Timer3 module timer/counter incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Module Reset on CCP1 special event trigger

A simplified block diagram of the Timer3 module is shown in Figure 14-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 14-2.

The Timer3 module is controlled through the T3CON register (Register 14-1). It also selects the clock source options for the CCP1 modules (see **Section 15.1.1** "**CCP1 Modules and Timer Resources**" for more information).

REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3ECCP1 ⁽¹⁾	T3CKPS1	T3CKPS0	T3CCP1 ⁽¹⁾	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write Mode Enable bit
	 1 = Enables register read/write of Timer3 in one 16-bit operation 0 = Enables register read/write of Timer3 in two 8-bit operations
bit 6,3	T3ECCP1:T3CCP1: Timer3 and Timer1 to ECCP1/CCP1 Enable bits ⁽¹⁾ 1x = Timer3 is the capture/compare clock source for both CCP1 and ECCP1 modules 01 = Timer3 is the capture/compare clock source for ECCP1; Timer1 is the capture/compare clock source for CCP1 00 = Timer1 is the capture/compare clock source for both CCP1 and ECCP1 modules
	Note 1: These bits are available on PIC18F4X8X devices only.
bit 5-4	T3CKPS1:T3CKPS0 : Timer3 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 2	T3SYNC: Timer3 External Clock Input Synchronization Control bit (Not usable if the device clock comes from Timer1/Timer3.) When TMR3CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR3CS = 0: This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.
bit 1	 TMR3CS: Timer3 Clock Source Select bit 1 = External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first falling edge) 0 = Internal clock (FOSC/4)
bit 0	TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3
	Legend:

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared x = Bit is unknown

NOTES:

The ECCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the ECCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation.

EQUATION 15-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the ECCP1 pin will not be cleared.

TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	14	12	10	8	7	6.58

15.4.3 PWM AUTO-SHUTDOWN (ECCP1 ONLY)

The PWM auto-shutdown features of the Enhanced CCP1 module are available to ECCP1 in PIC18F4585/4680 (40/44-pin) devices. The operation of this feature is discussed in detail in **Section 16.4.7** "Enhanced PWM Auto-Shutdown".

Auto-shutdown features are not available for CCP1.

15.4.4 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP1 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

17.3.8 OPERATION IN POWER MANAGED MODES

In SPI Master mode, module clocks may be operating at a different speed than when in full power mode; in the case of the Sleep mode, all clocks are halted.

In most power managed modes, a clock is provided to the peripherals. That clock should be from the primary clock source, the secondary clock (Timer1 oscillator at 32.768 kHz) or the INTOSC source. See **Section 2.7 "Clock Sources and Oscillator Switching**" for additional information.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSP interrupts are enabled, they can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the devices wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power managed mode and data to be shifted into the SPI Transmit/ Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.3.10 BUS MODE COMPATIBILITY

Table 17-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

TABLE 17-1: SPI BUS MODES

There is also a SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
TRISA	PORTA Da	ta Direction	Register						52
TRISC	PORTC Da	ata Direction	Register						52
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								50
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	50
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	50

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Note 1: These bits are unimplemented in PIC18F2X8X devices; always maintain these bits clear.

REGISTER 23-24: BnSIDH: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS, HIGH BYTE IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7							bit 0

bit 7-0 **SID10:SID3:** Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-25: BnSIDH: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS,

HIGH BYTE IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL0 < n >) = 1]^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **SID10:SID3:** Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-35: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL < n >) = 1]^{(1)}$

	$[0 \ge 11 \ge 0]$		022/11/) -	- - 1.				
	U-0	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
	—	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0
	bit 7							bit 0
bit 7	Unimplem	ented: Read	d as '0'					
bit 6	TXRTR: Tra	ansmitter Re	emote Trans	mission Rec	uest bit			
				RTR bit set RTR bit clea				
bit 5-4	Unimplem	ented: Read	d as '0'					
bit 3-0	DLC3:DLC	0: Data Len	gth Code bit	ts				
		= Reserve						
		ta length = 8	•					
		ta length = 7	•					
		ta length = 6	•					
		ta length = 5	•					
		ta length = 4	-					
		ta length = 3	•					
		ta length = 2	•					
		ta length = 1	-					
	0000 = Dat	ta length = C) bytes					
	Note 1:	These regi	sters are av	ailable in Mo	ode 1 and 2	only.		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-36: BSEL0: BUFFER SELECT REGISTER 0⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
B5TXEN	B4TXEN	B3TXEN	B2TXEN	B1TXEN	B0TXEN	_	—
bit 7							bit 0

bit 7-2 B5TXEN:B0TXEN: Buffer 5 to Buffer 0 Transmit Enable bit

1 = Buffer is configured in Transmit mode

0 = Buffer is configured in Receive mode

bit 1-0 Unimplemented: Read as '0'

Note 1: This register is available in Mode 1 and 2 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-57:	PIE3: PEI	RIPHERAI		UPT ENAI	BLE REGIS	STER				
Mode 0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
Mode 0	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXB1IE	RXB0IE		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
Mode 1, 2	IRXIE	WAKIE	ERRIE	TXBnIE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXBnIE	FIFOWMIE		
	bit 7							bit 0		
L:+ 7						L :1				
bit 7	1 = Enable	IRXIE: CAN Invalid Received Message Interrupt Enable bit 1 = Enable invalid message received interrupt 0 = Disable invalid message received interrupt								
bit 6	1 = Enable	AN bus Act bus activit e bus activi	y wake-up		Enable bit					
bit 5	1 = Enable	AN bus Erro e CAN bus e CAN bus	error interru	ıpt						
bit 4	TXB2IE: (1 = Enable	e Transmit E	nit Buffer 2 Buffer 2 inte		able bit					
	 0 = Disable Transmit Buffer 2 interrupt <u>When CAN is in Mode 1 or 2:</u> TXBnIE: CAN Transmit Buffer Interrupts Enable bit 1 = Enable transmit buffer interrupt; individual interrupt is enabled by TXBIE and BIE0 0 = Disable all transmit buffer interrupts 									
bit 3	1 = Enable	CAN Transn e Transmit E e Transmit	Buffer 1 inte		able bit ⁽¹⁾					
bit 2				Interrupt En	able bit ⁽¹⁾					
		e Transmit E e Transmit								
bit 1	RXB1IE: CAN Receive Buffer 1 Interrupt Enable bit 1 = Enable Receive Buffer 1 interrupt 0 = Disable Receive Buffer 1 interrupt When CAN is in Mode 1 or 2: RXBnIE: CAN Receive Buffer Interrupts Enable bit 1 = Enable receive buffer interrupt; individual interrupt is enabled by BIE0									
bit 0	 0 = Disable all receive buffer interrupts bit 0 When CAN is in Mode 0: RXBOIE: CAN Receive Buffer 0 Interrupt Enable bit 1 = Enable Receive Buffer 0 interrupt 0 = Disable Receive Buffer 0 interrupt When CAN is in Mode 1: Unimplemented: Read as '0' When CAN is in Mode 2: FIFOWMIE: FIFO Watermark Interrupt Enable bit 1 = Enable FIFO watermark interrupt 0 = Disable FIFO watermark interrupt 0 = Disable FIFO watermark interrupt Note 1: In CAN Mode 1 and 2, this bit is forced to '0'. 									
	Legend:									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

23.5.4 PROGRAMMABLE AUTO-RTR BUFFERS

In Mode 1 and 2, any of six programmable transmit/ receive buffers may be programmed to automatically respond to predefined RTR messages without user firmware intervention. Automatic RTR handling is enabled by setting the TXnEN bit in the BSEL0 register and the RTREN bit in the BnCON register. After this setup, when an RTR request is received, the TXREQ bit is automatically set and the current buffer content is automatically queued for transmission as a RTR response. As with all transmit buffers, once the TXREQ bit is set, buffer registers become read-only and any writes to them will be ignored.

The following outlines the steps required to automatically handle RTR messages:

- 1. Set buffer to Transmit mode by setting TXnEN bit to '1' in BSEL0 register.
- 2. At least one acceptance filter must be associated with this buffer and preloaded with expected RTR identifier.
- 3. Bit RTREN in BnCON register must be set to '1'.
- 4. Buffer must be preloaded with the data to be sent as a RTR response.

Normally, user firmware will keep buffer data registers up to date. If firmware attempts to update the buffer while an automatic RTR response is in the process of transmission, all writes to buffers are ignored.

23.6 CAN Message Transmission

23.6.1 INITIATING TRANSMISSION

For the MCU to have write access to the message buffer, the TXREQ bit must be clear, indicating that the message buffer is clear of any pending message to be transmitted. At a minimum, the SIDH, SIDL and DLC registers must be loaded. If data bytes are present in the message, the data registers must also be loaded. If the message is to use extended identifiers, the EIDH:EIDL registers must also be loaded and the EXIDE bit set.

To initiate message transmission, the TXREQ bit must be set for each buffer to be transmitted. When TXREQ is set, the TXABT, TXLARB and TXERR bits will be cleared. To successfully complete the transmission, there must be at least one node with matching baud rate on the network. Setting the TXREQ bit does not initiate a message transmission; it merely flags a message buffer as ready for transmission. Transmission will start when the device detects that the bus is available. The device will then begin transmission of the highest priority message that is ready.

When the transmission has completed successfully, the TXREQ bit will be cleared, the TXBnIF bit will be set and an interrupt will be generated if the TXBnIE bit is set.

If the message transmission fails, the TXREQ will remain set, indicating that the message is still pending for transmission and one of the following condition flags will be set. If the message started to transmit but encountered an error condition, the TXERR and the IRXIF bits will be set and an interrupt will be generated. If the message lost arbitration, the TXLARB bit will be set.

23.6.2 ABORTING TRANSMISSION

The MCU can request to abort a message by clearing the TXREQ bit associated with the corresponding message buffer (TXBnCON<3> or BnCON<3>). Setting the ABAT bit (CANCON<4>) will request an abort of all pending messages. If the message has not yet started transmission, or if the message started but is interrupted by loss of arbitration or an error, the abort will be processed. The abort is indicated when the module sets the TXABT bit for the corresponding buffer (TXBnCON<6> or BnCON<6>). If the message has started to transmit, it will attempt to transmit the current message fully. If the current message is transmitted fully and is not lost to arbitration or an error, the TXABT bit will not be set because the message was transmitted successfully. Likewise, if a message is being transmitted during an abort request and the message is lost to arbitration or an error, the message will not be retransmitted and the TXABT bit will be set, indicating that the message was successfully aborted.

Once an abort is requested by setting the ABAT or TXABT bits, it cannot be cleared to cancel the abort request. Only CAN module hardware or a POR condition can clear it.

In Mode 1 and 2, there are an additional 10 acceptance filters, RXF6-RXF15, creating a total of 16 available filters. RXF15 can be used either as an acceptance filter or acceptance mask register. Each of these acceptance filters can be individually enabled or disabled by setting or clearing the RXFENn bit in the RXFCONn register. Any of these 16 acceptance filters can be dynamically associated with any of the receive buffers. Actual association is made by setting appropriate bits in the RXFBCONn register. Each RXFBCONn register contains a nibble for each filter. This nibble can be used to associate a specific filter to any of available receive buffers. User firmware may associate more than one filter to any one specific receive buffer.

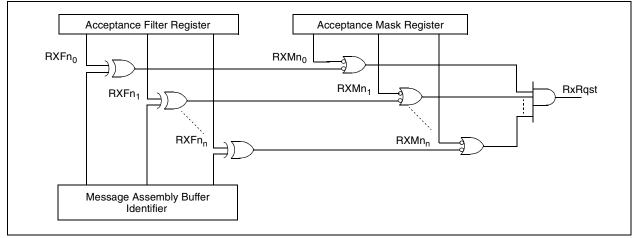
In addition to dynamic filter to buffer association, in Mode 1 and 2, each filter can also be dynamically associated to available acceptance mask registers. The FILn_m bits in the MSELn register can be used to link a specific acceptance filter to an acceptance mask register. As with filter to buffer association, one can also associate more than one mask to a specific acceptance filter.

When a filter matches and a message is loaded into the receive buffer, the filter number that enabled the message reception is loaded into the FILHIT bit(s). In Mode 0 for RXB1, the RXB1CON register contains the FILHIT<2:0> bits. They are coded as follows:

- 101 = Acceptance Filter 5 (RXF5)
- 100 = Acceptance Filter 4 (RXF4)
- 011 = Acceptance Filter 3 (RXF3)
- 010 = Acceptance Filter 2 (RXF2)
- 001 = Acceptance Filter 1 (RXF1)
- 000 = Acceptance Filter 0 (RXF0)

Note: '000' and '001' can only occur if the RXB0DBEN bit is set in the RXB0CON register, allowing RXB0 messages to rollover into RXB1. The coding of the RXB0DBEN bit enables these three bits to be used similarly to the FILHIT bits and to distinguish a hit on filter RXF0 and RXF1, in either RXB0 or after a rollover into RXB1.

- 111 = Acceptance Filter 1 (RXF1)
- 110 = Acceptance Filter 0 (RXF0)
- 001 = Acceptance Filter 1 (RXF1)
- 000 = Acceptance Filter 0 (RXF0)


If the RXB0DBEN bit is clear, there are six codes corresponding to the six filters. If the RXB0DBEN bit is set, there are six codes corresponding to the six filters, plus two additional codes corresponding to RXF0 and RXF1 filters, that rollover into RXB1.

In Mode 1 and 2, each buffer control register contains 5 bits of filter hit bits (FILHIT<4:0>). A binary value of '0' indicates a hit from RXF0 and 15 indicates RXF15.

If more than one acceptance filter matches, the FILHIT bits will encode the binary value of the lowest numbered filter that matched. In other words, if filter RXF2 and filter RXF4 match, FILHIT will be loaded with the value for RXF2. This essentially prioritizes the acceptance filters with a lower number filter having higher priority. Messages are compared to filters in ascending order of filter number.

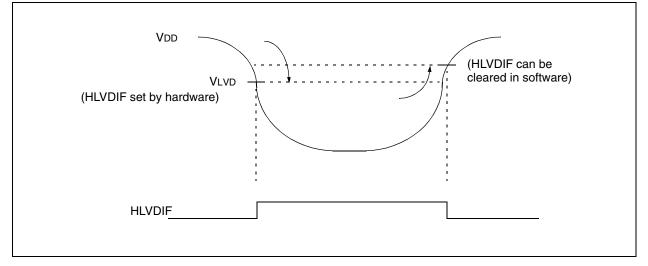
The mask and filter registers can only be modified when the PIC18F2585/2680/4585/4680 devices are in Configuration mode.

FIGURE 23-3: MESSAGE ACCEPTANCE MASK AND FILTER OPERATION

BRA	۱.	Unconditional Branch						
Synta	ax:	BRA n						
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$					
Statu	s Affected:	None						
Enco	ding:	1101	0nnn nnr	nn nnnn				
Desc	ription:	the PC. Sin incremented instruction,	complement r ce the PC will d to fetch the r the new addre n. This instruct instruction.	have next ess will be				
Word	ls:	1						
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation				
<u>Exan</u>	Before Instruc		BRA Jump					
	PC After Instructio PC	on	dress (HERE) dress (Jump)					

BSF	Bit Set f							
Syntax:	BSF f, b	{,a}						
Operands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]							
Operation:	$1 \rightarrow \text{f}$							
Status Affected:	None							
Encoding:	1000	bbba	fff	f	ffff			
Description:	Bit 'b' in re	gister 'f' i	s set.					
	If 'a' is '0', If 'a' is '1', GPR bank	the BSR i	s used					
	If 'a' is '0' a set is enab in Indexed mode whe Section 2! Bit-Orient Literal Off	bled, this i Literal O never f ≤ 5.2.3 "By ed Instru	nstructi ffset Ac 95 (5Ff te-Orie ctions	ion ddre h). S ente in I	operates ssing See d and ndexed			
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	;		Q4			
Decode	ReadProcessWriteregister 'f'Dataregister 'f'							
Example: BSF FLAG_REG, 7, 1 Before Instruction FLAG_REG = 0Ah								

FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah


 $\ensuremath{\textcircled{}^{\circ}}$ 2007 Microchip Technology Inc.

MUL	_LW	Multiply I	Literal with	w	MULW
Synta	ax:	MULLW	k		Syntax:
Oper	ands:	$0 \le k \le 255$	5		Operand
Oper	ation:	(W) x k \rightarrow	PRODH:PRO	DL	
Statu	is Affected:	None			Operatio
Enco	oding:	0000	1101 kk	kk kkkk	Status A
Desc	Description: An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected.				Encodin Descript
Word	ls:	1			
Cycle	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q3	Q4	
	Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL	
	nple: Before Instruc W PRODH PRODL After Instructio	= E2 = ? = ?	0C4h 2 h		Words: Cycles: Q Cycle
	W PRODH PRODL	= E2 = AI = 08	Dh		

MULWF	Multiply W with f
Syntax:	MULWF f {,a}
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]
Operation:	(W) x (f) \rightarrow PRODH:PRODL
Status Affected:	None
Encoding:	0000 001a ffff ffff
Description:	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged.
	None of the Status flags are affected.
	Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected.
	If 'a' is '0', the Access Bank is
	selected. If 'a' is '1', the BSR is used
	to select the GPR bank (default). If 'a' is '0' and the extended
	in a is of and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1 Decode	Q2 Q3 Q4 Read Process Write
Decode	register 'f' Data registers PRODH: PRODL
Example:	MULWF REG, 1
Before Instru	ction
W REG PRODH PRODL After Instruct	e ? ion
W REG PRODH PRODL	•••••

RETFIE Return from Interrupt		t	REI	ΓLW Return I		iteral to W						
Synta	Syntax: RETFIE {s}		Synt	ax: RETLW k								
Oper	Operands: $s \in [0,1]$		Ope	rands:	$0 \le k \le 255$	$0 \le k \le 255$						
Operation:		(TOS) \rightarrow PC, 1 \rightarrow GIE/GIEH or PEIE/GIEL, if s = 1			Ope	Operation:		$k \rightarrow W$, (TOS) → PC, PCLATU, PCLATH are unchanged				
		$\begin{array}{l} (WS) \rightarrow W, \\ (STATUSS) \rightarrow STATUS, \\ (BSRS) \rightarrow BSR, \\ PCLATU, PCLATH are unchanged. \\ GIE/GIEH, PEIE/GIEL. \end{array}$			Statu	us Affected:	None					
					Enco	oding:	0000	1100	kkkk	kkkk		
					Dese	cription:	W is loaded	W is loaded with the eight-bit literal 'k'. The program counter is loaded from the				
Statu	s Affected:											
Encoding:		0000	0000 00	01 000s			top of the stack (the return address). The high address latch (PCLATH)					
Desc	ription:	Return from Interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the					remains unchanged.					
				Wor	ds:	1						
				Cycl	es:							
				QC	Cycle Activity:							
		contents of the shadow registers, WS,			Q1	Q2	Q3		Q4			
		STATUSS and BSRS, are loaded into their corresponding registers, W,			Decode	Read	Process	PC	OP PC			
		STATUS and BSR. If 's' = 0, no update of these registers occurs (default).					literal 'k'	Data		n stack, ite to W		
Word	Words: 1			No	No	No		No				
Cycle		2				operation	operation	operatior	ор	eration		
	vcle Activity:	-			Бую	mala						
QU	Q1	Q2	Q3	Q4	Exa	<u>ample:</u> CALL TABLE ; W contains table						
	Decode	No	No	POP PC		CALL IABL	; offset		Ie			
		operation	operation	from stack			; W now	has				
				Set GIEH or			; table	value				
				GIEL	TAB	: 1.F						
	No	No	No	No	1110.	ADDWF PCL	; W = of	fset				
	operation	operation	operation	operation		RETLW k0	; Begin	table				
						RETLW k1	;					
<u>Exan</u>	<u>nple:</u>	RETFIE	1			:						
	After Interrupt					: RETLW kn	• End of	table				
	PC W	= TOS = WS = BSRS										
	BSR				Before Instruc W	= 07h						
STATUS					After Instruction							
	GIE/GIEI	H, PEIE/GIEL	= 1			W	= value o	f kn				

FIGURE 27-3: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

				Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
D420		HLVD Voltage on VDD		2.12	2.17	2.22	V	
		Transition High to Low	LVV = 0001	2.18	2.23	2.28	V	
			LVV = 0010	2.31	2.36	2.42	V	
			LVV = 0011	2.38	2.44	2.49	V	
			LVV = 0100	2.54	2.60	2.66	V	
			LVV = 0101	2.72	2.79	2.85	V	
			LVV = 0110	2.82	2.89	2.95	V	
			LVV = 0111	3.05	3.12	3.19	V	
			LVV = 1000	3.31	3.39	3.47	V	
			LVV = 1001	3.46	3.55	3.63	V	
			LVV = 1010	3.63	3.71	3.80	V	
			LVV = 1011	3.81	3.90	3.99	V	
			LVV = 1100	4.01	4.11	4.20	V	
			LVV = 1101	4.23	4.33	4.43	V	
			LVV = 1110	4.48	4.59	4.69	V	
			LVV = 1111	1.14	1.20	1.26	V	

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

28.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Graphs and tables are not available at this time.

С

C Compilers	
MPLAB C18412	2
MPLAB C30412	2
CALL	6
CALLW	5
Capture (CCP1 Module)165	
Associated Registers168	
CCP1 Pin Configuration16	
Software Interrupt	
Timer1/Timer3 Mode Selection	
Capture (ECCP1 Module)	4
ECCPR1H:ECCPR1L Registers	
Capture/Compare/PWM (CCP1)165	3
Capture Mode. See Capture.	
CCP1 Mode and Timer Resources164	4
CCPR1H or ECCPR1H Register	4
CCPR1L or ECCPR1L Register	4
Compare Mode. See Compare.	
Interaction Between CCP1 and ECCP1	
for Timer Resources	1
Module Configuration164	4
PWM Mode. See PWM.	_
Clock Sources	
Selecting the 31 kHz Source29	
Selection Using OSCCON Register29	9
CLRF	7
CLRWDT	7
Code Examples	
16 x 16 Signed Multiply Routine	2
16 x 16 Unsigned Multiply Routine	
8 x 8 Signed Multiply Routine	
8 x 8 Unsigned Multiply Routine11	
Changing Between Capture Prescalers	
Changing to Configuration Mode278	8
Computed GOTO Using an Offset Value64	4
Data EEPROM Read10	7
Data EEPROM Refresh Routine	
Data EEPROM Write10	
Erasing a Flash Program Memory Row	
Fast Register Stack	
How to Clear RAM (Bank 1) Using	4
(, , ,	_
Indirect Addressing	8
Implementing a Real-Time Clock Using	
a Timer1 Interrupt Service	
Initializing PORTA129	
Initializing PORTB132	2
Initializing PORTC13	5
Initializing PORTD	
Initializing PORTE14	
Loading the SSPBUF (SSPSR) Register	
Reading a CAN Message	
Reading a CAN Message	3
Reading a Flash Program Memory Word99	9
Saving Status, WREG and	
BSR Registers in RAM128	8
Transmitting a CAN Message Using	
Banked Method280	6
Transmitting a CAN Message	
Using WIN Bits	6
WIN and ICODE Bits Usage in Interrupt Service	1
Routine to Access TX/RX Buffers	Q
Writing to Flash Program Memory	
Code Protection	
COMF	8

Comparator	257
Analog Input Connection Considerations	
Associated Registers	
Configuration	
Effects of a Reset	
Interrupts	
Operation	
Operation During Sleep	
Outputs	
Reference	
External Signal	
Internal Signal	
Response Time	
Comparator Specifications	
Comparator Voltage Reference	263
Accuracy and Error	200
Associated Registers	
Configuring	
Connection Considerations	
Effects of a Reset	
Operation During Sleep	
	. 204
Compare (CCP Module)	161
Special Event Trigger	
Compare (CCP1 Module)	
Associated Registers	
CCP1 Pin Configuration	
CCPR1 Register	
Software Interrupt	
Special Event Trigger	. 167
Timer1/Timer3 Mode Selection	
Compare (ECCP Module)	. 174
Compare (ECCP1 Module)	
Special Event Trigger 174	
Configuration Bits	
Configuration Mode	
Configuration Register Protection	
Context Saving During Interrupts	. 128
Conversion Considerations	
CPFSEQ	
CPFSGT	
CPFSLT	. 379
Crystal Oscillator/Ceramic Resonator	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	. 476
D	

D

Data Addressing Modes	88
Comparing Addressing Modes with the	
Extended Instruction Set Enabled	92
Direct	88
Indexed Literal Offset	91
Indirect	88
Inherent and Literal	88
Data EEPROM	
Code Protection	360
Data EEPROM Memory	105
Associated Registers	109
EEADR and EEADRH Registers	105
EECON1 and EECON2 Registers	105
Operation During Code-Protect	108
Protection Against Spurious Write	108
Reading	107
Using	108
Write Verify	107
Writing	107