

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2680t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Device Reset Timers

PIC18F2585/2680/4585/4680 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of PIC18F2585/2680/ 4585/4680 devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip to chip due to temperature and process variation. See DC parameter 33 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset or on exit from most power managed modes.

4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, all time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

Oscillator	Power-up ⁽²⁾ an	Exit from		
Configuration	PWRTEN = 0	PWRTEN = 1	Power Managed Mode	
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc	
EC, ECIO	66 ms ⁽¹⁾	_	—	
RC, RCIO	66 ms ⁽¹⁾	—	—	
INTIO1, INTIO2	66 ms ⁽¹⁾	_	—	

TABLE 4-2:TIME-OUT IN VARIOUS SITUATIONS

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the PLL to lock.

Register	Арј	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
CCPR1H	2585	2680	4585	4680	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1L	2585	2680	4585	4680	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	2585	2680	4585	4680	00 0000	00 0000	uu uuuu
ECCPR1H	2585	2680	4585	4680	xxxx xxxx	սսսս սսսս	սսսս սսսս
ECCPR1L	2585	2680	4585	4680	xxxx xxxx	սսսս սսսս	սսսս սսսս
ECCP1CON	2585	2680	4585	4680	0000 0000	0000 0000	սսսս սսսս
BAUDCON	2585	2680	4585	4680	01-0 0-00	01-0 0-00	uu uuuu
ECCP1DEL	2585	2680	4585	4680	0000 0000	0000 0000	սսսս սսսս
ECCP1AS	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
CVRCON	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
CMCON	2585	2680	4585	4680	0000 0111	0000 0111	uuuu uuuu
TMR3H	2585	2680	4585	4680	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR3L	2585	2680	4585	4680	XXXX XXXX	uuuu uuuu	uuuu uuuu
T3CON	2585	2680	4585	4680	0000 0000	uuuu uuuu	uuuu uuuu
SPBRGH	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
SPBRG	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
RCREG	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
TXREG	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
TXSTA	2585	2680	4585	4680	0000 0010	0000 0010	uuuu uuuu
RCSTA	2585	2680	4585	4680	0000 000x	0000 000x	uuuu uuuu
EEADRH	2585	2680	4585	4680	00	00	uu
EEADR	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
EEDATA	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
EECON2	2585	2680	4585	4680	0000 0000	0000 0000	0000 0000
EECON1	2585	2680	4585	4680	xx-0 x000	uu-0 u000	uu-0 u000
IPR3	2585	2680	4585	4680	1111 1111	1111 1111	uuuu uuuu
PIR3	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
PIE3	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
IPR2	2585	2680	4585	4680	11-1 1111	11-1 1111	uu-u uuuu
	2585	2680	4585	4680	11 111-	11 111-	uu uuu-
PIR2	2585	2680	4585	4680	00-0 0000	00-0 0000	uu-u uuuu (1)
	2585	2680	4585	4680	0 0 000 -	00 000-	uu uuu-(1)

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

-n = Value at POR

-	-	· · ·			- /					
	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1		
	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0		
	bit 7					<u>.</u>		bit 0		
bit 7	IBF: Input	Buffer Full S	Status bit							
	1 = A word 0 = No wor	l has been r rd has been	eceived an received	d waiting to be	read by th	e CPU				
bit 6	OBF: Outp	out Buffer Fu	ull Status bi	t						
	1 = The ou 0 = The ou	itput buffer s itput buffer h	still holds a nas been re	previously writ ad	ten word					
bit 5	IBOV: Inpu	ut Buffer Ove	erflow Dete	ct bit (in Micro	processor r	mode)				
	1 = A write	occurred wh	hen a previc	ously input word	has not be	en read (mus	t be cleared	in software)		
	0 = No ov	erflow occur	rred							
bit 4	PSPMODE	: Parallel S	lave Port N	lode Select bit						
	1 = Parallel Slave Port mode									
1.110		al Purpose i	/O mode							
bit 3	Unimplem	ented: Rea	d as ' 0'	-						
bit 2	TRISE2: RE2 Direction Control bit									
	1 = Input 0 = Output									
bit 1	TRISE1: R	E1 Direction	n Control bi	it						
	1 = Input									
	0 = Output									
bit 0	TRISE0: R	E0 Direction	n Control bi	it						
	1 = Input									
	0 = Output									
	Legend:]		
	R = Reada	ble bit	۲ = W	Writable bit	U = Unim	nplemented l	bit. read as '	'0'		

REGISTER 10-1: TRISE REGISTER (PIC18F4X8X DEVICES ONLY)

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

The ECCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the ECCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation.

EQUATION 15-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{\text{FOSC}}{\text{FPWM}}\right)}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the ECCP1 pin will not be cleared.

TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	14	12	10	8	7	6.58

15.4.3 PWM AUTO-SHUTDOWN (ECCP1 ONLY)

The PWM auto-shutdown features of the Enhanced CCP1 module are available to ECCP1 in PIC18F4585/4680 (40/44-pin) devices. The operation of this feature is discussed in detail in **Section 16.4.7** "Enhanced PWM Auto-Shutdown".

Auto-shutdown features are not available for CCP1.

15.4.4 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP1 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

NOTES:

PIC18F2585/2680/4585/4680

17.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 17-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

17.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

17.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

17.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

17.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

Note: The MSSP module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/ low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>).

17.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

17.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

17.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 18-7: ASYNCHRONOUS RECEPTION

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
RCREG	EUSART F	Receive Regi	ster						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART E	Baud Rate G	enerator Re	gister High	Byte				51
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low	Byte				51

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Reserved in PIC18F2X8X devices; always maintain these bits clear.

18.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RX/DT line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX/DT is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN protocol.)

Following a wake-up event, the module generates an RCIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 18-8) and asynchronously, if the device is in Sleep mode (Figure 18-9). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RX line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

18.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RX/DT, information with any state changes before the Stop bit may signal a false

end-of-character and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bytes) for standard RS-232 devices or 000h (12 bits) for LIN bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

18.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared after this when a rising edge is seen on RX/DT. The interrupt condition is then cleared by reading the RCREG register. Ordinarily, the data in RCREG will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCIF flag is set should not be used as an indicator of the integrity of the data in RCREG. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 18-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

FIGURE 18-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

REGISTER 23-14:	RXB1CON: RECEIVE BUFFER 1 CONTROL REGISTER									
Modo 0	R/C-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R-0	R-0		
Mode o	RXFUL ⁽¹⁾	RXM1	RXM0		RXRTRRO	FILHIT2	FILHIT1	FILHIT0		
Mode 1.2	R/C-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
	RXFUL ⁽¹⁾	RXM1	RTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0		
	bit 7							bit 0		
bit 7	RXFUL: Re	eceive Full	Status bit ⁽¹⁾							
	1 = Receiv	e buffer coi	ntains a rece	ived messa	iqe					
	0 = Receiv	e buffer is o	open to rece	ve a new m	nessage					
	Note 1:	This bit is	set by the C	AN module	upon receivi	ng a messag	e and must	be cleared		
		by softwar	e after the b	uffer is read	d. As long as	RXFUL is set	t, no new m	essage will		
bit 6	Mode 0.	De loaueu								
Dit O	RXM1: Red	ceive Buffe	r Mode bit 1							
	Combines	Combines with RXM0 to form RXM<1:0> bits (see bit 5).								
	11 = Recei	ve all mess	ages (incluc	ling those w	/ith errors); filt	er criteria is i	gnored	unt ha (1)		
	10 = Receive only valid messages with extended identifier; EXIDEN in RXFnSIDL must be '1' 01 = Receive only valid messages with standard identifier. EXIDEN in RXFnSIDL must be '0'									
	00 = Recei	ve all valid	messages a	s per EXID	EN bit in RXF	nSIDL registe	ər			
	Mode 1, 2: RXM1: Red	ceive Buffe	r Mode bit							
	1 = Receive all messages (including those with errors); acceptance filters are ignored									
	0 = Receive all valid messages as per acceptance filters									
bit 5	Mode 0: BXM0: Beceive Buffer Mode bit 0									
	Combines with RXM1 to form RXM<1:0> bits (see bit 6).									
	<u>Mode 1, 2:</u>									
	RTRRO: Remote Transmission Request bit for Received Message (read-only)									
	1 = A remote transmission request is received									
bit 4	Mode 0:				ivou -					
2	Unimplem	ented: Rea	ad as '0'							
	Mode 1, 2:		A							
	This bit cor	nbines with	4 other bits to	o form filter	acceptance bi	ts <4:0>.				
bit 3	Mode 0:									
	RXRTRRO	: Remote 1	Fransmission	Request b	it for Received	d Message (r	ead-only)			
	1 = A remo	te transmis	sion reques	t is received						
	0 = A remo	te transmis	sion reques	t is not rece	lved					
	FILHIT3: F	ilter Hit bit	3							
	This bit cor	nbines with	other bits to	form filter	acceptance bi	ts <4:0>.				

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0 bit 7 bit 0

REGISTER 23-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

bit 7-0 **REC7:REC0:** Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EXAMPLE 23-5: READING A CAN MESSAGE

```
; Need to read a pending message from RXB0 buffer.
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be
; programmed correctly.
;
; Make sure that there is a message pending in RXBO.
BTFSS RXBOCON, RXFUL
                                     ; Does RXB0 contain a message?
                                      ; No. Handle this situation...
       NoMessage
BRA
; We have verified that a message is pending in RXB0 buffer.
; If this buffer can receive both Standard or Extended Identifier messages,
; identify type of message received.
BTFSS RXBOSIDL, EXID
                                      ; Is this Extended Identifier?
                                      ; No. This is Standard Identifier message.
BRA
       StandardMessage
                                      ; Yes. This is Extended Identifier message.
; Read all 29-bits of Extended Identifier message.
. . .
; Now read all data bytes
MOVFF RXBODO, MY DATA BYTE1
. . .
; Once entire message is read, mark the RXBO that it is read and no longer FULL.
BCF
       RXBOCON, RXFUL
                                     ; This will allow CAN Module to load new messages
                                      ; into this buffer.
. . .
```

In Mode 1 and 2, there are an additional 10 acceptance filters, RXF6-RXF15, creating a total of 16 available filters. RXF15 can be used either as an acceptance filter or acceptance mask register. Each of these acceptance filters can be individually enabled or disabled by setting or clearing the RXFENn bit in the RXFCONn register. Any of these 16 acceptance filters can be dynamically associated with any of the receive buffers. Actual association is made by setting appropriate bits in the RXFBCONn register. Each RXFBCONn register contains a nibble for each filter. This nibble can be used to associate a specific filter to any of available receive buffers. User firmware may associate more than one filter to any one specific receive buffer.

In addition to dynamic filter to buffer association, in Mode 1 and 2, each filter can also be dynamically associated to available acceptance mask registers. The FILn_m bits in the MSELn register can be used to link a specific acceptance filter to an acceptance mask register. As with filter to buffer association, one can also associate more than one mask to a specific acceptance filter.

When a filter matches and a message is loaded into the receive buffer, the filter number that enabled the message reception is loaded into the FILHIT bit(s). In Mode 0 for RXB1, the RXB1CON register contains the FILHIT<2:0> bits. They are coded as follows:

- 101 = Acceptance Filter 5 (RXF5)
- 100 = Acceptance Filter 4 (RXF4)
- 011 = Acceptance Filter 3 (RXF3)
- 010 = Acceptance Filter 2 (RXF2)
- 001 = Acceptance Filter 1 (RXF1)
- 000 = Acceptance Filter 0 (RXF0)

Note: '000' and '001' can only occur if the RXB0DBEN bit is set in the RXB0CON register, allowing RXB0 messages to rollover into RXB1. The coding of the RXB0DBEN bit enables these three bits to be used similarly to the FILHIT bits and to distinguish a hit on filter RXF0 and RXF1, in either RXB0 or after a rollover into RXB1.

- 111 = Acceptance Filter 1 (RXF1)
- 110 = Acceptance Filter 0 (RXF0)
- 001 = Acceptance Filter 1 (RXF1)
- 000 = Acceptance Filter 0 (RXF0)

If the RXB0DBEN bit is clear, there are six codes corresponding to the six filters. If the RXB0DBEN bit is set, there are six codes corresponding to the six filters, plus two additional codes corresponding to RXF0 and RXF1 filters, that rollover into RXB1.

In Mode 1 and 2, each buffer control register contains 5 bits of filter hit bits (FILHIT<4:0>). A binary value of '0' indicates a hit from RXF0 and 15 indicates RXF15.

If more than one acceptance filter matches, the FILHIT bits will encode the binary value of the lowest numbered filter that matched. In other words, if filter RXF2 and filter RXF4 match, FILHIT will be loaded with the value for RXF2. This essentially prioritizes the acceptance filters with a lower number filter having higher priority. Messages are compared to filters in ascending order of filter number.

The mask and filter registers can only be modified when the PIC18F2585/2680/4585/4680 devices are in Configuration mode.

FIGURE 23-3: MESSAGE ACCEPTANCE MASK AND FILTER OPERATION

23.15.1 INTERRUPT CODE BITS

To simplify the interrupt handling process in user firmware, the ECAN module encodes a special set of bits. In Mode 0, these bits are ICODE<3:1> in the CANSTAT register. In Mode 1 and 2, these bits are EICODE<4:0> in the CANSTAT register. Interrupts are internally prioritized such that the higher priority interrupts are assigned lower values. Once the highest priority interrupt condition has been cleared, the code for the next highest priority interrupt that is pending (if any) will be reflected by the ICODE bits (see Table 23-5). Note that only those interrupt sources that have their associated interrupt enable bit set will be reflected in the ICODE bits.

In Mode 2, when a receive message interrupt occurs, the EICODE bits will always consist of '10000'. User firmware may use FIFO pointer bits to actually access the next available buffer.

23.15.2 TRANSMIT INTERRUPT

When the transmit interrupt is enabled, an interrupt will be generated when the associated transmit buffer becomes empty and is ready to be loaded with a new message. In Mode 0, there are separate interrupt enable/disable and flag bits for each of the three dedicated transmit buffers. The TXBnIF bit will be set to indicate the source of the interrupt. The interrupt is cleared by the MCU, resetting the TXBnIF bit to a '0'. In Mode 1 and 2, all transmit buffers share one interrupt enable/ disable bit and one flag bit. In Mode 1 and 2, TXBnIE in PIE3 and TXBnIF in PIR3 indicate when a transmit buffer has completed transmission of its message. TXBnIF, TXBnIE and TXBnIP in PIR3, PIE3 and IPR3, respectively, are not used in Mode 1 and 2. Individual transmit buffer interrupts can be enabled or disabled by setting or clearing TXBIE and BIE0 register bits. When a shared interrupt occurs, user firmware must poll the TXREQ bit of all transmit buffers to detect the source of interrupt.

23.15.3 RECEIVE INTERRUPT

When the receive interrupt is enabled, an interrupt will be generated when a message has been successfully received and loaded into the associated receive buffer. This interrupt is activated immediately after receiving the End-Of-Frame (EOF) field. In Mode 0, the RXBnIF bit is set to indicate the source of the interrupt. The interrupt is cleared by the MCU, resetting the RXBnIF bit to a '0'.

In Mode 1 and 2, all receive buffers share RXBIE, RXBIF and RXBIP in PIE3, PIR3 and IPR3, respectively. Bits RXBnIE, RXBnIF and RXBnIP are not used. Individual receive buffer interrupts can be controlled by the TXBIE and BIE0 registers. In Mode 1, when a shared receive interrupt occurs, user firmware must poll the RXFUL bit of each receive buffer to detect the source of interrupt. In Mode 2, a receive interrupt indicates that the new message is loaded into FIFO. FIFO can be read by using FIFO Pointer bits, FP.

ICODE <2:0>	Interrupt	Boolean Expression
000	None	ERR•WAK•TX0•TX1•TX2•RX0•RX1
001	Error	ERR
010	TXB2	ERR•TX0•TX1•TX2
011	TXB1	ERR•TX0•TX1
100	TXB0	ERR•TX0
101	RXB1	ERR•TX0•TX1•TX2•RX0•RX1
110	RXB0	ERR•TX0•TX1•TX2•RX0
111	Wake on Interrupt	ERR•TX0•TX1•TX2•RX0•RX1•WAK

TABLE 23-5: VALUES FOR ICODE<3:1>

Legend:

ERR = ERRIF * ERRIERX0 = RXB0IF * RXB0IETX0 = TXB0IF * TXB0IERX1 = RXB1IF * RXB1IETX1 = TXB1IF * TXB1IEWAK = WAKIF * WAKIETX2 = TXB2IF * TXB2IE

23.15.4 MESSAGE ERROR INTERRUPT

When an error occurs during transmission or reception of a message, the message error flag, IRXIF, will be set and if the IRXIE bit is set, an interrupt will be generated. This is intended to be used to facilitate baud rate determination when used in conjunction with Listen Only mode.

PIC18F2585/2680/4585/4680

RCA		Relative Call		RE	SET	Reset	Reset				
Synt	ax:	RCALL n			Syn	tax:	RESET	RESET			
Oper	ands:	-1024 ≤ n ≤	≤ 1023		Ope	rands:	None				
Ope	ation:	(PC) + 2 → (PC) + 2 +	TOS, $2n \rightarrow PC$		Ope	Operation:		egisters and fl	ags that are set.		
Statu	tatus Affected: None		Stat	us Affected:	All						
Enco	oding:	1101 1nnn nnnn nnnn		Enc	oding:	0000	0000 11	111 1111			
Description: Subroutine call with a jump up to 1K from the current location. First, return			Des	cription:	This instrue execute a	ction provides	a way to in software.				
	address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will				Wor	ds:	1				
					Сус	les:	1				
		have incremented to fetch the next instruction, the new address will be			Q	Cycle Activity:					
						Q1	Q2	Q3	Q4		
		two-cycle ii	nstruction.	cuon is a		Decode	Start	No	No		
Word	ls:	1					Reset	operation	operation		
Cycl	es:	2			_						
0.0	vole Activity:	-			<u>Exa</u>	mple:	RESET				
QU	01 ∩1	02	03	04		After Instruct	ion ro – Rooot V	/oluo			
	Decode	Read literal 'n'	Process	Write to PC	ן	Flags*	= Reset	/alue			
	200040	Push PC to stack	Data								
	No operation	No operation	No operation	No operation							
<u>Exar</u>	n <u>ple:</u> Before Instru PC =	HERE Inction Address (H	RCALL Jum ERE)	р							

PC = TOS=

Address (Jump) Address (HERE + 2)

1111

PIC18F2585/2680/4585/4680

FIGURE 27-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 27-8: BROWN-OUT RESET TIMING

TABLE 27-10:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2		_	μs	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.4	4.00	4.6	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc		Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	55.6	65.5	75	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μs	
35	TBOR	Brown-out Reset Pulse Width	200	—	—	μs	$VDD \le BVDD$ (see D005)
36	TIRVST	Time for Internal Reference Voltage to become stable	—	20	50	μs	
37	Tlvd	High/Low-Voltage Detect Pulse Width	200	_	—	μs	V DD \leq V LVD
38	TCSD	CPU Start-up Time	_	10	_	μs	
39	TIOBST	Time for INTOSC to stabilize	_	1	_	μs	

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

Example

Example

40-Lead PDIP

28-Lead SOIC

0

PIC18F2680-E/SO@3

10710017

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

APPENDIX A: REVISION HISTORY

Revision A (December 2003)

Original data sheet for PIC18F2585/2680/4585/4680 devices.

Revision B (July 2004)

This update includes updates to the Electrical Specifications in Section 27.0 and includes minor corrections to the data sheet text.

Revision C (January 2007)

Major edits to Section 27.0 "Electrical Characteristics". Packaging diagrams have been updated and minor edits to text have been made throughout document.

TABLE B-1: DEVICE DIFFERENCES

Features	PIC18F2585	PIC18F2680	PIC18F4585	PIC18F4680
Program Memory (Bytes)	49152	65536	49152	65536
Program Memory (Instructions)	24576	32768	24576	32768
Interrupt Sources	27	27	28	28
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	1	1	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Parallel Communications (PSP)	No	No	Yes	Yes
10-bit Analog-to-Digital Module	8 input channels	8 input channels	11 input channels	11 input channels
Packages	28-pin PDIP 28-pin SOIC	28-pin PDIP 28-pin SOIC	40-pin PDIP 44-pin TQFP 44-pin QFN	40-pin PDIP 44-pin TQFP 44-pin QFN

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

PIC18F2585/2680/4585/4680 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx</u> xxx	Examples:	
Device Device	Temperature Package Pattern Range PiC18F2585/2680 ⁽¹⁾ , PiC18F4585/4680 ⁽¹⁾ , PiC18F2585/26801 ⁽²⁾ , PiC18F4585/46801 ⁽²⁾ , PiC18F4585/4680 ⁽²⁾ , PiC18F458585/4680 ⁽²⁾ , PiC18F45858585858585858585858585858585858585	 a) PIC18LF4680-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18LF2585-I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC18F4585-I/P = Industrial temp., PDIP 	
	VDD range 4.2V to 5.5V PIC18LF2585/2680 ⁽¹⁾ , PIC18LF4585/4680 ⁽¹⁾ , PIC18LF2585/2680T ⁽²⁾ , PIC18LF4585/4680T ⁽²⁾ ; VDD range 2.0V to 5.5V	package, normal VDD limits.	
Temperature Range	$E = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (industrial)}$ $E = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Extended)}$		
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP ML = QFN	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=in tape and reel PLCC and TQFPpackages only.	
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)		