

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4585-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nomo	Pin Number			Pin	Buffer	Description				
	PDIP	QFN	TQFP	Туре	Туре	Description				
						PORTD is a bidirectional I/O port or a Parallel Slave				
						These pins have TTL input buffers when PSP module				
						is enabled.				
RD0/PSP0/C1IN+	19	38	38							
RD0				I/O	ST	Digital I/O.				
PSP0 C1IN+				1/0		Parallel Slave Port data.				
BD1/PSP1/C1IN-	20	39	39	•	Analog					
RD1	20	00	00	I/O	ST	Digital I/O.				
PSP1				I/O	TTL	Parallel Slave Port data.				
C1IN-				I	Analog	Comparator 1 input (-)				
RD2/PSP2/C2IN+	21	40	40		<u>от</u>					
RD2 PSP2				1/0		Digital I/O. Parallel Slave Port data				
C2IN+				1/0	Analog	Comparator 2 input (+).				
RD3/PSP3/C2IN-	22	41	41		Ū					
RD3				I/O	ST	Digital I/O.				
PSP3				I/O	TTL	Parallel Slave Port data.				
				I	Analog	Comparator 2 input (-).				
RD4/PSP4/ECCP1/	27	2	2							
RD4				I/O	ST	Digital I/O.				
PSP4				I/O	TTL	Parallel Slave Port data.				
ECCP1				1/0	ST	Capture2 input/Compare2 output/PWM2 output.				
		•	~	0	111	ECCPT PWM output A.				
RD5/PSP5/PIB	28	3	3	1/0	ST	Digital I/O				
PSP5				I/O	TTL	Parallel Slave Port data.				
P1B				0	TTL	ECCP1 PWM output B.				
RD6/PSP6/P1C	29	4	4							
RD6				1/0	ST	Digital I/O. Parallal Slave Port data				
P1C				0		ECCP1 PWM output C.				
BD7/PSP7/P1D	30	5	5	•						
RD7		-	_	I/O	ST	Digital I/O.				
PSP7				I/O	TTL	Parallel Slave Port data.				
			l	0		ECCP1 PWM output D.				
Legend: IIL = TTL ST - Sch	compat	ible inpl der inpl	Jt it with Cl	MOSIC	Vels I	<pre>JNUCS = CMOS compatible input or output = Input</pre>				
O = Outr	$S_1 = Schmitt rigger input with CIVIOS levels 1 = Input Q = Qutput P = Power$									

TABLE 1-3: PIC18F4585/4680 PINOUT I/O DESCRIPTIONS (CONTINUED)

2.8 Effects of Power Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power managed mode (see Section 24.2 "Watchdog Timer (WDT)", Section 24.3 "Two-Speed Start-up" and Section 24.4 "Fail-Safe Clock Monitor" for more information on WDT, Two-Speed Start-up and Fail-Safe Clock Monitor). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a real-time clock. Other features may be operating that do not require a device clock source (i.e., SSP slave, PSP, INTn pins and others). Peripherals that may add significant current consumption are listed in Section 27.2 "DC Characteristics: Power Down and Supply Current".

2.9 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 4.5 "Device Reset Timers"**.

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 27-10). It is enabled by clearing (= 0) the PWRTEN Configuration bit.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms, following the HS mode OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval TCSD (parameter 38, Table 27-10), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source.

OSC Mode	OSC1 Pin	OSC2 Pin		
RC, INTIO1	Floating, external resistor should pull high	At logic low (clock/4 output)		
RCIO, INTIO2	Floating, external resistor should pull high	Configured as PORTA, bit 6		
ECIO	Floating, pulled by external clock	Configured as PORTA, bit 6		
EC	Floating, pulled by external clock	At logic low (clock/4 output)		
LP, XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level		

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-2 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

9.0 INTERRUPTS

The PIC18F2585/2680/4585/4680 devices have multiple interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high priority level or a low priority level. The high priority interrupt vector is at 000008h and the low priority interrupt vector is at 000018h. High priority interrupt events will interrupt any low priority interrupts that may be in progress.

There are ten registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3
- PIE1, PIE2, PIE3
- IPR1, IPR2, IPR3

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

Each interrupt source has three bits to control its operation. The functions of these bits are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit, which enables/ disables all peripheral interrupt sources. INTCON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to address 000008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt. Low priority interrupts are not processed while high priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while **any** interrupt is enabled. Doing so may cause erratic microcontroller behavior.

PIC18F2585/2680/4585/4680

REGISTER 9-12:	-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3							
Mada 0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
Mode U	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXB1IP	RXB0IP
Mode 1 2	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
mode 1, 2	IRXIP	WAKIP	ERRIP	TXBnIP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXBnIP	FIFOWMIP
	bit 7							bit 0
bit 7		N Involid D		ana Into	rupt Briarity	hi+		
Dit 7	1 = High p 0 = Low p	priority riority		ssaye me	ταρι Εποπιγ	DIL		
bit 6	WAKIP: C	AN bus Act	ivity Wake-	up Interrup	Priority bit			
	1 = High p 0 = Low p	priority riority			-			
bit 5	ERRIP: CA	AN bus Erro	or Interrupt	Priority bit				
	1 = High p 0 = Low p	priority riority						
bit 4	When CAN	<u>N is in Mode</u>	<u>e 0:</u> bit Buffor 2	Interrunt Pr	iority bit			
	1 = High p	priority	in Duner 2	menuprii				
	0 = Low pr	riority						
	When CAN	<u>N is in Mode</u> CAN Transm	<u>e 1 or 2:</u> hit Buffer In	terrunt Prio	rity bit			
	1 = High p	priority	In Ballor III	ton april no				
	0 = Low pr	riority			(4)			
bit 3	TXB1IP: (CAN Transm	nit Buffer 1	Interrupt Pr	iority bit ⁽¹⁾			
	0 = Low pi	riority						
bit 2	TXB0IP: C	CAN Transm	nit Buffer 0	Interrupt Pr	iority bit ⁽¹⁾			
	1 = High p	priority						
bit 1		N is in Mode	<u>, 0.</u>					
bit i	RXB1IP: (CAN Receiv	e Buffer 1 I	Interrupt Pri	ority bit			
	1 = High p	priority						
	When CAN	N is in Mode	e 1 or 2:					
	RXBnIP: (CAN Receiv	e Buffer In	terrupts Prie	ority bit			
	1 = High p 0 = Low p	priority riority						
bit 0	When CAN	<u>N is in Mode</u>	<u>e 0:</u> No Buffer 0 I	Interrunt Pri	ority bit			
	1 = High p 0 = Low p	priority riority	e Builer e l		only bit			
	When CAN	N is in Mode nented: Rea	<u>e 1:</u> ad as '0'					
	When CAN	<u>N is in Mode</u> P: FIFO Wa	<u>e 2:</u> termark Int	errupt Prior	ity bit			
	1 = High p	priority						
	v = Low p							
	Note 1:	In CAN M	ode 1 and 2	2, this bit is	torced to '0'.			
	Laganda							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit, GCEN, is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 17-15).

NOTES:

18.1 Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>) also control the baud rate. In Synchronous mode, BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 18-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 18-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 18-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

18.1.1 OPERATION IN POWER MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG register pair.

18.1.2 SAMPLING

The data on the RX pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

C	onfiguration B	lits	PPC/FUSAPT Modo	Paud Pata Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]		
0	0	1	8-bit/Asynchronous	$E_{0} = \frac{1}{16} (n + 1)$		
0	1	0	16-bit/Asynchronous	FOSC/[10 (11 + 1)]		
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n + 1)]		
1	1	x	16-bit/Synchronous			

TABLE 18-1: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

EXAMPLE 18-1: CALCULATING BAUD RATE ERROR

For a device with FOSC	For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:							
Desired Baud Rate	= Fosc/(64 ([SPBRGH:SPBRG] + 1)							
Solving for SPBRGH:S	PBRG:							
Х	= ((Fosc/Desired Baud Rate)/64) – 1							
	= ((1600000/9600)/64) - 1							
	= [25.042] = 25							
Calculated Baud Rate	= 1600000/(64(25+1))							
	= 9615							
Error	= (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate							
	= (9615 - 9600)/9600 = 0.16%							

TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
BAUDCON	BAUDCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN							51	
SPBRGH	EUSART Baud Rate Generator Register High Byte								51
SPBRG EUSART Baud Rate Generator Register Low Byte								51	
	– unimplom	ontod road	las '0' Sha	dod colle av	o not usod	by the BBC	1		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

18.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RX pin on the falling edge of the clock.

If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- 7. Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
RCREG	EUSART Re	ceive Registe	r						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART Baud Rate Generator Register High Byte								51
SPBRG	EUSART Baud Rate Generator Register Low Byte								51
Legend:	— = unimpler	nented, read a	as '0'. Shadeo	d cells are not	t used for syn	chronous ma	ster reception		

Note 1: Reserved in PIC18F2X8X devices; always maintain these bits clear.

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 8 inputs for the PIC18F2X8X devices and 11 for the PIC18F4X8X devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 19-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 19-2, configures the functions of the port pins. The ADCON2 register, shown in Register 19-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0 U-0 U-0 **R/W-0** R/W-0 R/W-0 **R/W-0 R/W-0** R/W-0 CHS3 CHS2 CHS1 CHS0 GO/DONE ADON bit 7 bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-2 CHS3:CHS0: Analog Channel Select bits
 - 0000 = Channel 0 (AN0)
 - 0001 = Channel 1 (AN1)
 - 0010 = Channel 2 (AN2)
 - 0011 = Channel 3 (AN3)
 - 0100 = Channel 4 (AN4) 0101 = Channel 5 (AN5)^(1,2)
 - 0110 =Channel 6 (AN6)^(1,2)
 - $0111 = Channel 7 (AN7)^{(1,2)}$
 - 1000 = Channel 8 (AN8)
 - 1001 = Channel 9 (AN9)
 - 1010 = Channel 10 (AN10)
 - 1011 = Unused
 - 1100 = Unused
 - 1101 = Unused
 - 1110 = Unused
 - 1111 = Unused
 - Note 1: These channels are not implemented on PIC18F2X8X devices.
 - **2:** Performing a conversion on unimplemented channels will return full-scale measurements.
- bit 1 GO/DONE: A/D Conversion Status bit
 - When ADON = 1:
 - 1 = A/D conversion in progress
 - 0 = A/D Idle
- bit 0 ADON: A/D On bit
 - 1 = A/D converter module is enabled
 - 0 = A/D converter module is disabled

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented	oit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

EXAMPLE 23-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS (CONTINUED)

ſ	ErrorInter	rupt	
	BCF	PIR3, ERRIF	; Clear the interrupt flag
			; Handle error.
	RETFIE		
	TXB2Interr	upt	
	BCF	PIR3, TXB2IF	; Clear the interrupt flag
	GOTO	AccessBuffer	
	TXB1Interr	upt	
	BCF	PIR3, TXB1IF	; Clear the interrupt flag
	GOTO	AccessBuffer	
	TXB0Interr	upt	
	BCF	PIR3, TXB0IF	; Clear the interrupt flag
	GOTO	AccessBuffer	
	RXB1Interr	upt	
	BCF	PIR3, RXB1IF	; Clear the interrupt flag
	GOTO	Accessbuffer	
	RXB0Interr	upt	
	BCF	PIR3, RXBOIF	; Clear the interrupt flag
	GOTO	AccessBuffer	
	AccessBuff	er	; This is either TX or RX interrupt
	; Copy	CANSTAT.ICODE bits to	LANCON.WIN bits
	MOVF	TempCANCON, W	; Clear CANCON.WIN bits before copying
			; new ones.
	ANDLW	B'11110001'	; Use previously saved CANCON value to
			; make sure same value.
	MOVWF	TempCANCON	; Copy masked value back to TempCANCON
	MOVF	TempCANSTAT, W	; Retrieve ICODE bits
	ANDLW	B'00001110'	; Use previously saved CANSTAT value
			; to make sure same value.
	IORWF	TempCANCON	; Copy ICODE bits to WIN bits.
	MOVFF	TempCANCON, CANCON	; Copy the result to actual CANCON
	; Acces	ss current buffer…	
	; User	code	
	; Resto	ore CANCON.WIN bits	
	MOVF	CANCON, W	; Preserve current non WIN bits
	ANDLW	B'11110001'	
	IORWF	TempCANCON	; Restore original WIN bits
	; Do no	ot need to restore CANS	AT - it is read-only register.
	; Ketu	in from interrupt or ch	eck for another module interrupt source
1	a		

EXAMPLE 23-3: TRANSMITTING A CAN MESSAGE USING BANKED METHOD

; Need to transmit Standard Identifier message 123h using TXB0 buffer. ; To successfully transmit, CAN module must be either in Normal or Loopback mode. ; TXB0 buffer is not in access bank. And since we want banked method, we need to make sure ; that correct bank is selected. BANKSEL TXBOCON ; One BANKSEL in beginning will make sure that we are ; in correct bank for rest of the buffer access. ; Now load transmit data into TXB0 buffer. MOVLW MY DATA_BYTE1 ; Load first data byte into buffer MOVWF TXB0D0 ; Compiler will automatically set "BANKED" bit ; Load rest of data bytes - up to 8 bytes into TXBO buffer. ; Load message identifier ; Load SID2:SID0, EXIDE = 0 MOVLW 60H MOVWF TXBOSIDL MOVLW 24H ; Load SID10:SID3 MOVWF TXB0SIDH ; No need to load TXB0EIDL:TXB0EIDH, as we are transmitting Standard Identifier Message only. ; Now that all data bytes are loaded, mark it for transmission. MOVLW B'00001000' ; Normal priority; Request transmission MOVWF TXB0CON ; If required, wait for message to get transmitted BTFSC TXB0CON, TXREQ ; Is it transmitted? ; No. Continue to wait... BRA \$-2 ; Message is transmitted.

EXAMPLE 23-4: TRANSMITTING A CAN MESSAGE USING WIN BITS

```
; Need to transmit Standard Identifier message 123h using TXB0 buffer.
; To successfully transmit, CAN module must be either in Normal or Loopback mode.
; TXB0 buffer is not in access bank. Use WIN bits to map it to RXB0 area.
                                    ; WIN bits are in lower 4 bits only. Read CANCON
MOVF
      CANCON, W
                                    ; register to preserve all other bits. If operation
                                    ; mode is already known, there is no need to preserve
                                    ; other bits.
ANDLW B'11110000'
                                    ; Clear WIN bits.
IORLW B'00001000'
                                    ; Select Transmit Buffer 0
                                    ; Apply the changes.
MOVWF CANCON
; Now TXB0 is mapped in place of RXB0. All future access to RXB0 registers will actually
; yield TXB0 register values.
; Load transmit data into TXB0 buffer.
MOVLW MY DATA BYTE1
                                    ; Load first data byte into buffer
                                    ; Access TXB0D0 via RXB0D0 address.
MOVWF RXB0D0
; Load rest of the data bytes - up to 8 bytes into "TXBO" buffer using RXB0 registers.
. . .
; Load message identifier
                                    ; Load SID2:SID0, EXIDE = 0
MOVLW 60H
MOVWF RXBOSIDL
MOVLW 24H
                                    ; Load SID10:SID3
MOVWF RXBOSIDH
; No need to load RXB0EIDL:RXB0EIDH, as we are transmitting Standard Identifier Message only.
; Now that all data bytes are loaded, mark it for transmission.
MOVLW B'00001000'
                                   ; Normal priority; Request transmission
MOVWF RXB0CON
; If required, wait for message to get transmitted
BTFSC RXB0CON, TXREQ ; Is it transmitted?
                                    ; No. Continue to wait...
BRA
       $-2
; Message is transmitted.
; If required, reset the WIN bits to default state.
```

23.2.3.2 Message Acceptance Filters and Masks

This section describes the message acceptance filters and masks for the CAN receive buffers.

REGISTER 23-37: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER REGISTERS, HIGH BYTE $[0 \le n \le 15]^{(1)}$

	R/W-x									
	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 7										

bit 7-0 **SID10:SID3:** Standard Identifier Filter bits (if EXIDEN = 0) Extended Identifier Filter bits EID28:EID21 (if EXIDEN = 1).

Note 1: Registers RXF6SIDH:RXF15SIDH are available in Mode 1 and 2 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-38: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER REGISTERS, LOW BYTE $[0 \le n \le 15]^{(1)}$

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDEN ⁽²⁾	—	EID17	EID16
bit 7							bit 0

bit 7-5	SID2:SID0: Standard Identifier Filter bits (if EXIDEN = 0)
	Extended Identifier Filter bits EID20:EID18 (if EXIDEN = 1)
bit 4	Unimplemented: Read as '0'
bit 3	EXIDEN: Extended Identifier Filter Enable bit ⁽²⁾
	1 - Filter will only accept extended ID messages

- 1 = Filter will only accept extended ID messages
 0 = Filter will only accept standard ID messages
- bit 2 Unimplemented: Read as '0'

bit 1-0 EID17:EID16: Extended Identifier Filter bits

Note 1: Registers RXF6SIDL:RXF15SIDL are available in Mode 1 and 2 only.

2: In Mode 0, this bit must be set/cleared as required, irrespective of corresponding mask register value.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
E7Fh	CANCON_RO4 ⁽²⁾	E5Fh	CANCON_RO6(2)	E3Fh	CANCON_RO8 ⁽²⁾	E1Fh	(4)
E7Eh	CANSTAT_RO4 ⁽²⁾	E5Eh	CANSTAT_RO6 ⁽²⁾	E3Eh	CANSTAT_RO8 ⁽²⁾	E1Eh	(4)
E7Dh	B5D7	E5Dh	B3D7	E3Dh	B1D7	E1Dh	(4)
E7Ch	B5D6	E5Ch	B3D6	E3Ch	B1D6	E1Ch	(4)
E7Bh	B5D5	E5Bh	B3D5	E3Bh	B1D5	E1Bh	(4)
E7Ah	B5D4	E5Ah	B3D4	E3Ah	B1D4	E1Ah	(4)
E79h	B5D3	E59h	B3D3	E39h	B1D3	E19h	(4)
E78h	B5D2	E58h	B3D2	E38h	B1D2	E18h	(4)
E77h	B5D1	E57h	B3D1	E37h	B1D1	E17h	(4)
E76h	B5D0	E56h	B3D0	E36h	B1D0	E16h	(4)
E75h	B5DLC	E55h	B3DLC	E35h	B1DLC	E15h	(4)
E74h	B5EIDL	E54h	B3EIDL	E34h	B1EIDL	E14h	(4)
E73h	B5EIDH	E53h	B3EIDH	E33h	B1EIDH	E13h	(4)
E72h	B5SIDL	E52h	B3SIDL	E32h	B1SIDL	E12h	(4)
E71h	B5SIDH	E51h	B3SIDH	E31h	B1SIDH	E11h	(4)
E70h	B5CON	E50h	B3CON	E30h	B1CON	E10h	(4)
E6Fh	CANCON_RO5	E4Fh	CANCON_RO7	E2Fh	CANCON_RO9	E0Fh	(4)
E6Eh	CANSTAT_RO5	E4Eh	CANSTAT_RO7	E2Eh	CANSTAT_RO9	E0Eh	(4)
E6Dh	B4D7	E4Dh	B2D7	E2Dh	B0D7	E0Dh	(4)
E6Ch	B4D6	E4Ch	B2D6	E2Ch	B0D6	E0Ch	(4)
E6Bh	B4D5	E4Bh	B2D5	E2Bh	B0D5	E0Bh	(4)
E6Ah	B4D4	E4Ah	B2D4	E2Ah	B0D4	E0Ah	(4)
E69h	B4D3	E49h	B2D3	E29h	B0D3	E09h	(4)
E68h	B4D2	E48h	B2D2	E28h	B0D2	E08h	(4)
E67h	B4D1	E47h	B2D1	E27h	B0D1	E07h	(4)
E66h	B4D0	E46h	B2D0	E26h	B0D0	E06h	(4)
E65h	B4DLC	E45h	B2DLC	E25h	B0DLC	E05h	(4)
E64h	B4EIDL	E44h	B2EIDL	E24h	B0EIDL	E04h	(4)
E63h	B4EIDH	E43h	B2EIDH	E23h	B0EIDH	E03h	(4)
E62h	B4SIDL	E42h	B2SIDL	E22h	B0SIDL	E02h	(4)
E61h	B4SIDH	E41h	B2SIDH	E21h	B0SIDH	E01h	(4)
E60h	B4CON	E40h	B2CON	E20h	B0CON	E00h	(4)

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

TABLE 25-1: OPCODE FIELD DESCRIPTIONS

Field	Description							
a	RAM access bit							
	a = 0: RAM location in Access RAM (BSR register is ignored)							
	a = 1: RAM bank is specified by BSR register							
bbb	Bit address within an 8-bit file register (0 to 7).							
BSR	Bank Select Register. Used to select the current RAM bank.							
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.							
d	Destination select bit							
	d = 0: store result in WREG							
1	d = 1: store result in the register t							
dest	Destination: either the WREG register or the specified register file location.							
I c	8-bit Register file address (000 to FFN), or 2-bit FSR designator (00 to 3n).							
I _s	12-bit Register file address (000h to FFFn). This is the dectination address.							
I _d	12-bit Register file address (000h to FFFh). This is the destination address.							
GIE	Giobal Interrupt Enable bit.							
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)							
label								
mm	The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions:							
*	No change to register (such as TBLPTR with table reads and writes)							
*+	Post-Increment register (such as TBLPTR with table reads and writes)							
*_	Post-Decrement register (such as TBLPTR with table reads and writes)							
+*	Pre-Increment register (such as TBLPTR with table reads and writes)							
n	The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions							
PC	Program Counter.							
PCL	Program Counter Low Byte.							
PCH	Program Counter High Byte.							
PCLATH	Program Counter High Byte Latch.							
PCLATU	Program Counter Upper Byte Latch.							
PD	Power-down bit.							
PRODH	Product of Multiply High Byte.							
PRODL	Product of Multiply Low Byte.							
S	Fast Call/Return mode select bit							
	s = 0: do not update into/from shadow registers							
	s = 1: certain registers loaded into/from shadow registers (Fast mode)							
TBLPTR	21-bit Table Pointer (points to a Program Memory location).							
TABLAT	8-bit Table Latch.							
TO	Time-out bit.							
TOS	Top-of-Stack.							
u	Unused or unchanged.							
WDT	Watchdog Timer.							
WREG	Working register (accumulator).							
x	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.							
zs	7-bit offset value for indirect addressing of register files (source).							
zd	7-bit offset value for indirect addressing of register files (destination).							
{ }	Optional argument.							
[text]	Indicates an indexed address.							
(text)	The contents of text.							
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.							
\rightarrow	Assigned to.							
< >	Register bit field.							
e	In the set of.							
italics	User defined term (font is Courier).							

PIC18F2585/2680/4585/4680

BCF	Bit Clear f		BN		Branch if Negative					
Syntax:	BCF f, b {,a}				ax:	BN n	BN n			
Operands:	$0 \le f \le 255$			Oper	Operands:		$-128 \le n \le 127$			
	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in \left[0,1\right] \end{array}$			Oper	ation:	if Negative bit is '1' (PC) + 2 + 2n \rightarrow PC				
peration: $0 \rightarrow f < b >$		Statu	s Affected:	None	None					
Status Affected:	tatus Affected: None		Enco	ding:	1110	0110 nr	nnn nnnn			
Encoding:	1001	bbba ff	ff ffff	Desc	ription:	If the Nega	tive bit is '1',	then the		
Description:	Bit 'b' in reg	gister 'f' is clea	ared.		P · · ·	program wi	ll branch.			
If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See				The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.						
		Fh). See	Word	ls:	1					
	Section 25	.2.3 "Byte-Or	iented and	Cycle	Cycles:					
Bit-Oriente		set Mode" for	details.	QC	vcle Activitv:	()				
Words:	1			lf Ju	mp:					
Cycles:	1				Q1	Q2	Q3	Q4		
Q Cycle Activity:	·				Decode	Read literal 'n'	Process Data	Write to PC		
Q1	Q2	Q3	Q4		No	No	No	No		
Decode	Read	Process	Write		operation	operation	operation	operation		
	register i	Dala	register i	lf No	o Jump:	00	00	04		
Example:	BCF	TAG REG.	7.0		Q1 Decede	Q2 Read literal	Q3 Brococc	Q4		
Refere Instruction			Decode	'n'	Data	operation				
FLAG_R	EG = C7h									
After Instruction	on			Exan	<u>nple:</u>	HERE	BN Jumj	p		
FLAG_R	IEG = 47h				Before Instru	ction = ad	dress (HERE)		
				After Instruction						

ecode	Read literal 'n'		Process Data		No operation
	HERE		BN	Jump	
re Instruc PC Instructio	tion = on	ad	dress	(HERE)	
If Negativ PC If Negativ PC	/e = _= /e = _	1; ad 0; ad	dress dress	(Jump)	+ 2)
				(,

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2585/2680/4585/4680 (Industrial) PIC18LF2585/2680/4585/4680 (Industrial) (Continued)

PIC18LF2585/2680/4585/4680 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2585/2680/4585/4680 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ^(2,3)								
	PIC18LFX585/X680	6.10	8.40	μA	-40°C				
		6.70	8.40	μA	+25°C	VDD = 2.0V			
		7.40	22.0	μΑ	+85°C				
	PIC18LFX585/X680	9.60	12.00	μΑ	-40°C		_		
		11.00	12.00	μΑ	+25°C	VDD = 3.0V	Fosc = 31 kHz		
		12.00	33.00	μA	+85°C		Internal oscillator source)		
	All devices	20.00	28.00	μA	-40°C		,		
		22.00	28.00	μA	+25°C	VDD = 5.0V			
		24.00	33.00	μA	+85°C				
	PIC18FX585/X680	84.00	200.00	μA	+125°C				
	PIC18LFX585/X680	300.00	390.00	μA	-40°C		_		
		320.00	390.00	μA	+25°C	VDD = 2.0V			
		330.00	390.00	μA	+85°C				
	PIC18LFX585/X680	450.00	550.00	μA	-40°C				
		470.00	550.00	μA	+25°C	VDD = 3.0V	FOSC = 1 MHz		
		490.00	550.00	μA	+85°C		Internal oscillator source)		
	All devices	0.84	1.10	mA	-40°C				
		0.88	1.10	mA	+25°C				
		0.90	1.10	mA	+85°C	VDD = 5.0V			
	PIC18FX585/X680	2.80	3.20	mA	+125°C				
	PIC18LFX585/X680	0.76	1.10	mA	-40°C				
		0.79	1.10	mA	+25°C	VDD = 2.0V			
		0.81	1.10	mA	+85°C				
	PIC18LFX585/X680	1.20	1.50	mA	-40°C				
		1.30	1.50	mA	+25°C	VDD = 3.0V	FOSC = 4 MHz (BC IDI F mode		
		1.30	1.50	mA	+85°C		Internal oscillator source)		
	All devices	2.20	2.70	mA	-40°C	ļ	,		
		2.30	2.70	mA	+25°C	Vpp – 5 0V			
		2.30	2.70	mA	+85°C	VDD - 0.0V			
	PIC18FX585/X680	4.70	5.50	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

NOTES:

BXBnSIDL (Beceive Buffer n Standard
Identifier Low Pute)
DVEDDONT (Desering Error Osurt)
RXERRONT (Receive Error Count)
RXFBCONn (Receive Filter Buffer Control n)
RXFCONn (Receive Filter Control n)
RXFnEIDH (Receive Acceptance Filter n
Extended Identifier, High Byte)
RXFnEIDL (Receive Acceptance Filter n
Extended Identifier, Low Byte)
BXEnSIDH (Beceive Accentance Filter n
Standard Identifier Filter, High Byte) 302
DVEnCIDL (Dessive Assentance Filter n
Standard Identifier Filter, Low Byte)
RXMnEIDH (Receive Acceptance Mask n
Extended Identifier Mask, High Byte)
RXMnEIDL (Receive Acceptance Mask n
Extended Identifier Mask, Low Byte)
RXMnSIDH (Receive Acceptance Mask n
Standard Identifier Mask, High Byte)
BXMnSIDL (Beceive Accentance Maskin
Standard Identifiar Maak Law Puto) 201
ODELO (Oliverate al Data Data Data
SDFLC (Standard Data Bytes
Filter Length Count)
SSPCON1 (MSSP Control 1, I ² C Mode)
SSPCON1 (MSSP Control 1, SPI Mode) 189
SSPCON2 (MSSP Control 2, I ² C Mode)
SSPSTAT (MSSP Status, I ² C Mode) 197
SSPSTAT (MSSP Status, SPI Mode) 188
Statuc 97
Status
STRPTR (Stack Pointer)
147 IOCON (Timero Control)
T1CON (Timer 1 Control) 151
T2CON (Timer 2 Control) 157
T3CON (Timer3 Control) 159
TRISE (PORTE/PSP Control)142
TXBIE (Transmit Buffers Interrupt Enable)
TXBnCON (Transmit Buffer n Control) 282
Deta Longth Code)
Data Length Code)
IXBnDm (Transmit Buffer n
Data Field Byte m)284
TXBnEIDH (Transmit Buffer n Extended
Identifier, High Byte)283
TXBnEIDL (Transmit Buffer n Extended
Identifier, Low Byte) 284
TXBnSIDH (Transmit Buffer n Standard
Identifier High Bute)
TVPnCIDL (Tronomit Buffor n Standard
Identifier, Low Byte)
TXERRCNT (Transmit Error Count)
TXSTA (Transmit Status and Control)
WDTCON (Watchdog Timer Control)
RESET
Resets
Brown-out Reset (BOR) 343
Oscillator Start-up Timer (OST) 343
Device on Depart (DOD)
Power-on Reset (POR)
Power-up Timer (PWRT)
Reifie
RETLW
RETURN
Return Address Stack
and Associated Registers 62
Beturn Stack Pointer (STKPTB) 63
Bevision History 461
401

RLOF
RLNCF
RRCF
RRNCF
S
SCK 187
107 187
SDO 197
SEC IDI E Modo 29
SEC_DUN Mode 24
SEC_RUN MODE
Serial Clock, SCK
Serial Data Out (SDO) 187
Serial Peripheral Interface. See SPI Mode.
SEIF
Slave Select (SS) 187
SLEEP
Sleep
OSC1 and OSC2 Pin States 31
Software Simulator (MPLAB SIM) 412
Special Event Trigger. See Compare (ECCP1 Module).
Special Features of the CPU 343
Special Function Registers
Map 70–75
SPI Mode (MSSP)
Associated Registers
Bus Mode Compatibility 195
Effects of a Beset 195
Enabling SPLI/O
Master Mode 102
Master/Slave Connection 101
Operation in Dower Managed Medeo
Operation in Power Managed Modes
Serial Data In
Serial Data Out
Slave Mode 193
Slave Select 187
Slave Select Synchronization 193
SPI Clock 192
Typical Connection 191
SS
SSPOV
SSPOV Status Flag 217
SSPSTAT Register
R/W Bit
Stack Full/Underflow Resets 64
Status Register
SUBFSR
SUBFWB
SUBLW
SUBULNK
SUBWE 397
SUBWEB 308
SWAPE 308

т

Table Pointer Operations (table)	
Table Reads/Table Writes	64
TBLRD	399
TBLWT	400
Time-out in Various Situations (table)	45

NOTES: