

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4585t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number	Pin	Buffer	
Pin Name	PDIP, SOIC	Туре	Туре	Description
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/AN10	21			
RB0		I/O	TTL	Digital I/O.
IN IO			SI	External interrupt 0.
		I	Analog	Analog input 10.
RB1/INT1/AN8	22	1/0		
		1/0		Digital I/O.
			Analog	External interrupt 1.
	00		Analog	
RD2/INT2/CANTA	23	1/0	тті	
INT2		1/0	ST	External interrunt 2
CANTX		Ö	TTL	CAN bus TX.
BB3/CANBX	24			
RB3	21	I/O	TTL	Digital I/O.
CANRX		1	TTL	CAN bus RX.
BB4/KBI0/AN9	25			
RB4		I/O	TTL	Digital I/O.
KBI0		I	TTL	Interrupt-on-change pin.
AN9		I	Analog	Analog input 9.
RB5/KBI1/PGM	26			
RB5		I/O	TTL	Digital I/O.
KBI1		I	TTL	Interrupt-on-change pin.
PGM		I/O	ST	Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC	27			
RB6		I/O	TTL	Digital I/O.
KBI2			TTL	Interrupt-on-change pin.
PGC		I/O	SI	In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD	28			
KB7		1/0		Digital I/O.
KBI3 BCD			IIL et	Interrupt-on-change pin.
		1/0	51	
Legend: IIL = IIL col	mpatible in	put with		CMOS = CMOS compatible input or output
$S_1 = SCHIMUO = Output$	ingger ing			evels i = lilput P - Power

TABLE 1-2: PIC18F2585/2680 PINOUT I/O DESCRIPTIONS (CONTINUED)

2.4 RC Oscillator

For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The actual oscillator frequency is a function of several factors:

- supply voltage
- values of the external resistor (REXT) and capacitor (CEXT)
- · operating temperature

Given the same device, operating voltage and temperature and component values, there will also be unit-to-unit frequency variations. These are due to factors such as:

- normal manufacturing variation
- difference in lead frame capacitance between package types (especially for low CEXT values)
- variations within the tolerance of limits of REXT and \mbox{Cext}

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-5 shows how the R/C combination is connected.

The RCIO Oscillator mode (Figure 2-6) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

2.5 PLL Frequency Multiplier

A Phase Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency oscillator circuit or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals or users who require higher clock speeds from an internal oscillator.

2.5.1 HSPLL OSCILLATOR MODE

The HSPLL mode makes use of the HS mode oscillator for frequencies up to 10 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 40 MHz.

The PLL is only available to the crystal oscillator when the FOSC3:FOSC0 Configuration bits are programmed for HSPLL mode (= 0110).

FIGURE 2-7: PLL BLOCK DIAGRAM (HS MODE)

2.5.2 PLL AND INTOSC

The PLL is also available to the internal oscillator block in selected oscillator modes. In this configuration, the PLL is enabled in software and generates a clock output of up to 32 MHz. The operation of INTOSC with the PLL is described in **Section 2.6.4 "PLL in INTOSC Modes"**.

REGISTER 4-1:	RCON: R	ESET CON		GISTER							
	R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0			
	IPEN	SBOREN	_	RI	TO	PD	POR	BOR			
	bit 7							bit 0			
bit 7	IPEN: Inte	rrupt Priority I	Enable bit								
	1 = Enable 0 = Disabl	e priority level e priority leve	s on interru Is on interru	pts .pts (16CXX	X Compatib	ility mode)					
bit 6	SBOREN: BOR Software Enable bit'' <u>If BOREN1:BOREN0 = 01:</u> 1 = BOR is enabled 0 = BOR is disabled <u>If BOREN1:BOREN0 = 00, 10 or 11:</u> Bit is disabled and read as '0'.										
bit 5	Unimplem	nented: Read	as '0'								
bit 4	RI: RESET	Instruction Fl	ag bit								
 1 = The RESET instruction was not executed (set by firmware only) 0 = The RESET instruction was executed causing a device Reset (must be set in so a Brown-out Reset occurs) 							t be set in so	itware after			
bit 3	TO: Watchdog Time-out Flag bit										
	1 = Set by 0 = A WD	power-up, CI T time-out occ	RWDT instr	uction or SLI	EEP instruct	ion					
bit 2	PD: Powe	r-down Detec	tion Flag bi	t							
	1 = Set by 0 = Set by	power-up or execution of	by the CLR the SLEEP	WDT instructi	on						
bit 1	POR: Pow	er-on Reset S	Status bit ⁽²⁾								
	1 = A Pow 0 = A Pow	er-on Reset h er-on Reset c	as not occ occurred (m	urred (set by ust be set in	firmware of software at	nly) iter a Power	-on Reset or	curs)			
bit 0	BOR: Brown-out Reset Status bit										
 1 = A Brown-out Reset has not occurred (set by firmware only) 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) 							occurs)				
	Note 1:	If SBOREN	is enabled,	its Reset sta	ate is '1'; oth	nerwise, it is	ʻ0'.				
	2: The actual Reset value of POR is determined by the type of device Reset. See th notes following this register and Section 4.6 "Reset State of Registers" for additional information.										
	Legend:										
	B = Beadable bit $W = Writable bit$ $U = Unimplemented bit read as '0'$										
	-n = Value	at POR	'1' = l	Bit is set	'0' = Bit	is cleared	x = Bit is u	unknown			

Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected.

2: Brown-out Reset is said to have occurred when BOR is '0' and POR is '1' (assuming that POR was set to '1' by software immediately after POR).

REGISTER 7-1:	EECON1:	DATA EEF	ROM CO	NTROL RE	GISTER 1						
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0			
	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD			
	bit 7			·				bit 0			
bit 7		ach Dragran	n ar Data El		man Calaat	h:t					
Dit 7	1 – Access Flash program memory										
	0 = Access	data EEPR	OM memor	y y							
bit 6	CFGS: Flas	CFGS: Flash Program/Data EEPROM or Configuration Select bit									
	 1 = Access Configuration registers 0 = Access Flash program or data EEPROM memory 										
bit 5	Unimplem	ented: Read	d as '0'								
bit 4	FREE: Flas	sh Row Eras	e Enable bi	t							
	1 = Eraset by com 0 = Perform	the program pletion of e m write only	memory rov rase operati	w addressed ion)	l by TBLPTR	on the next	WR comma	nd (cleared			
bit 3	WRERR: F	lash Progra	m/Data EEF	PROM Error	Flag bit						
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming normal operation, or an improper write attempt) 0 = The write operation completed Note: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition. 										
bit 2	WREN: Fla	ish Program	/Data EEPF	ROM Write E	nable bit						
	1 = Allows 0 = Inhibits	write cycles write cycle	to Flash pr s to Flash p	ogram/data rogram/data	EEPROM EEPROM						
bit 1	WR: Write	Control bit									
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle or write operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete 										
bit 0	RD: Read (Control bit									
	1 = Initiate (Read in softw 0 = Does r	s an EEPRO takes one cy ware. RD bit not initiate an	DM read /cle. RD is c cannot be s n EEPROM	leared in ha set when EE read	rdware. The PGD = 1 or	RD bit can (CFGS = 1.)	only be set (r)	not cleared)			

Legend:

•						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

DS39625C-page 106

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52	
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	ATA Data Output Register						
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ORTA Data Direction Register						
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	50	
CMCON ⁽²⁾	C2OUT	C10UT	C2INV C1INV CIS CM2 CM1 CM0					51		
CVRCON ⁽²⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51	

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

2: These registers are unimplemented on PIC18F2X8X devices.

10.5 PORTE, TRISE and LATE Registers

Depending on the particular PIC18F2585/2680/4585/ 4680 device selected, PORTE is implemented in two different ways.

For PIC18F4X8X devices, PORTE is a 4-bit wide port. Three pins (RE0/RD/AN5, RE1/WR/AN6/C1OUT and RE2/CS/AN7/C2OUT) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as an analog input, these pins will read as '0's.

The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note:	On a		Power-on	Reset,	RE2:RE0	are
	con	figu	ired as anal	log input	s.	

The upper four bits of the TRISE register also control the operation of the Parallel Slave Port. Their operation is explained in Register 10-1.

The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register, read and write the latched output value for PORTE.

The fourth pin of PORTE ($\overline{\text{MCLR}}/\text{VPP}/\text{RE3}$) is an input only pin. Its operation is controlled by the MCLRE Configuration bit. When selected as a port pin (MCLRE = 0), it functions as a digital input only pin. As such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device's Master Clear input. In either configuration, RE3 also functions as the programming voltage input during programming.

Note:	On a Power-on Reset, RE3 is enabled as									
	a digital input only if Master Clear									
	functionality is disabled.									

EXAMPLE 10	-5: INITIA	ALIZING PORTE

CLRF	PORTE	;	Initialize PORTE by
		;	clearing output
		;	data latches
CLRF	LATE	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	0Ah	;	Configure A/D
MOVWF	ADCON1	;	for digital inputs
MOVLW	03h	;	Value used to
		;	initialize data
		;	direction
MOVLW	07h	;	Turn off
MOVWF	CMCON	;	comparators
MOVWF	TRISC	;	Set RE<0> as inputs
		;	RE<1> as outputs
		;	RE<2> as inputs
			-

10.5.1 PORTE IN 28-PIN DEVICES

For PIC18F2X8X devices, PORTE is only available when Master Clear functionality is disabled (MCLRE = 0). In these cases, PORTE is a single bit, input only port comprised of RE3 only. The pin operates as previously described.

14.1 **Timer3 Operation**

Timer3 can operate in one of three modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction

cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/ T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 14-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

15.0 CAPTURE/COMPARE/PWM (CCP1) MODULES

PIC18F2585/2680 devices have one CCP1 module. PIC18F4585/4680 devices have two CCP1 (Capture/Compare/PWM) modules. CCP1, discussed in this chapter, implements standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

ECCP1 implements an Enhanced PWM mode. The ECCP1 implementation is discussed in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP1) Module". The CCP1 module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP1 module operation in the following sections is described with respect to CCP1, but is equally applicable to ECCP1.

Capture and Compare operations described in this chapter apply to all standard and Enhanced CCP1 modules. The operations of PWM mode, described in **Section 15.4 "PWM Mode**", apply to ECCP1 only.

REGISTER 15-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 DC1B1:DC1B0: PWM Duty Cycle bit 1 and bit 0 for CCP1 Module

Capture mode: Unused. Compare mode: Unused. <u>PWM mode:</u>

These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs (DC19:DC12) of the duty cycle are found in ECCPR1L.

bit 3-0 CCP1M3:CCP1M0: CCP1 Module Mode Select bits

- 0000 = Capture/Compare/PWM disabled (resets CCP1 module)
- 0001 = Reserved
- 0010 = Compare mode, toggle output on match (CCP1IF bit is set)
- 0011 = Reserved
- 0100 = Capture mode, every falling edge or CAN message received (time-stamp)⁽¹⁾
- 0101 = Capture mode, every rising edge or CAN message received (time-stamp)⁽¹⁾
- 0110 = Capture mode, every 4th rising edge or every 4th CAN message received (time-stamp)⁽¹⁾
- 0111 = Capture mode, every 16th rising edge or every 16th CAN message received (time-stamp)⁽¹⁾
- 1000 = Compare mode: initialize CCP1 pin low; on compare match, force CCP1 pin high (CCPIF bit is set)
- 1001 = Compare mode: initialize CCP pin high; on compare match, force CCP1 pin low (CCPIF bit is set)
- 1010 = Compare mode: generate software interrupt on compare match (CCPIF bit is set, CCP1 pin reflects I/O state)
- 1011 = Compare mode: trigger special event, reset timer (TMR1 or TMR3, CCP1IF bit is set) 11xx = PWM mode
 - Note 1: Selected by CANCAP (CIOCON<4>) bit; overrides the CCP1 input pin source.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCL output is forced to '0'. However, setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has

already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the l^2 C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 17-12).

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0			
	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D			
	bit 7							bit 0			
bit 7	CSRC: Clo	ock Source S	Select bit								
	Asynchron Don't care	<u>ous mode:</u>									
	Synchrono 1 = Master 0 = Slave i	<u>Synchronous mode:</u> 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source)									
bit 6	TX9: 9-bit 1 = Select 0 = Select	TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission									
bit 5	TXEN: Tra 1 = Transi 0 = Transi	nsmit Enable mit enabled mit disabled	e bit								
	Note:	SREN/CRE	EN override	s TXEN in S	ync mode.						
bit 4	SYNC: EUSART Mode Select bit										
	1 = Synchronous mode0 = Asynchronous mode										
bit 3	SENDB: Send Break Character bit										
bit 3	<u>Asynchron</u> 1 = Send 0 = Sync I	Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed									
	Synchrono Don't care	us mode:									
bit 2	BRGH: High Baud Rate Select bit										
	Asynchronous mode: 1 = High speed										
	0 = Low speed <u>Synchronous mode:</u> Unused in this mode.										
bit 1	TRMT: Transmit Shift Register Status bit										
	1 = TSR e 0 = TSR f	1 = TSR empty 0 = TSR full									
bit 0	TX9D: 9th	bit of Transr	nit Data								
	Can be ad	Can be address/data bit or a parity bit.									
	Legend:										
	R = Reada	ble bit	W = V	Vritable bit	U = Unir	nplemented	bit, read as	'O'			

REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

DS39625C-page 228

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

18.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

18.4.1 EUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	SPEN RX9 SREN CREN ADDEN FERR OERR RX9D						51	
TXREG	EUSART T	ransmit Regi	ister						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART B	aud Rate Ge	enerator Reg	gister High I	Byte				51
SPBRG	EUSART B	Baud Rate Ge	enerator Re	gister Low E	Byte				51

TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Reserved in PIC18F2X8X devices; always maintain these bits clear.

Mada 0	R/W-1	R/W-0	R/W-0	R/S-0	R/W-0	R/W-0	R/W-0	U-0	
wode u	REQOP2	REQOP1	REQOP0	ABAT	WIN2	WIN1	WIN0	—	
Mode 1	R/W-1	R/W-0	R/W-0	R/S-0	U-0	U-0	U-0	U-0	
wode i	REQOP2	REQOP1	REQOP0	ABAT				_	
	R/W-1	R/W-0	R/W-0	R/S-0	R-0	R-0	R-0	R-0	
Mode 2	REQOP2	REQOP1	REQOP0	ABAT	FP3	FP2	FP1	FP0	
	bit 7							bit 0	
bit 7-5	REQOP2:F	REQOP0: Re	equest CAN	Operation N	Node bits				
	1xx = Request Configuration mode								
010 = Request Loopback mode									
	001 = Req	uest Disable	mode						
	000 = Req	uest Normal	mode						
DIT 4	ABAI: Abo	rt All Pendir Il ponding tr	ng Transmiss	SIONS DIE	mit buffore)				
	1 = Abort a 0 = Transm	issions proc	ceeding as n	ormal	mit bullets)				
bit 3-1	Mode 0:								
	WIN2:WIN	0: Window A	Address bits						
	These bits	select which	of the CAN	buffers to s	witch into th	e access ba	nk area. Thi	s allows	
	access to the interrupt the	ne butter reg	CODE0 bits	any data me can be con	emory bank. ied to the W	After a fram IN3:WIN0 bi	e has cause its to select i	an the correct	
	buffer. See	Example 23	3-2 for a cod	e example.					
	111 = Rece	eive Buffer C)						
	110 = Rece	eive Buffer C)						
	101 = Rece 100 = Tran	smit Buffer (n						
	011 = Tran	smit Buffer	1						
	010 = Tran	smit Buffer	2						
	001 = Rec	eive Buffer (Deive Buffer ()						
bit 0		ented: Read	d as '0'						
bit 4-0	Mode 1:								
	Unimplem	ented: Read	d as '0'						
	<u>Mode 2:</u>								
	FP3:FP0: F	FIFO Read F	Pointer bits						
	These bits	point to the	message bu	ffer to be re	ad.				
	0111:000	0 = Message 0 = Reserve	e butter to bi	e read					
	1111.100		i di la construcción de la const						
	Legend:								
	R = Reada	ble bit	W = Writal	ole bit	U = Unim	plemented b	oit, read as '	0'	
	-n = Value	at POR	'1' = Bit is	set	'0' = Bit is	cleared	x = Bit is u	nknown	

REGISTER 23-1: CANCON: CAN CONTROL REGISTER

Table 23-3 shows the relation between the clock generated by the PLL and the frequency error from jitter (measured jitter-induced error of 2%, Gaussian distribution, within 3 standard deviations), as a percentage of the nominal clock frequency.

This is clearly smaller than the expected drift of a crystal oscillator, typically specified at 100 ppm or 0.01%. If we add jitter to oscillator drift, we have a total frequency drift of 0.0132%. The total oscillator frequency errors for common clock frequencies and bit rates, including both drift and jitter, are shown in Table 23-4.

	TABLE 23-3:	FREQUENCY ERROR FROM JITTER AT VARIOUS PLL GENERATED CLOCK SPEED
--	-------------	--

PLL			Frequency Error at Various Nominal Bit Times (Bit Rates)					
Output	P _{jitter}	T jitter	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)		
40 MHz	0.5 ns	1 ns	0.00125%	0.00250%	0.005%	0.01%		
24 MHz	0.83 ns	1.67 ns	0.00209%	0.00418%	0.008%	0.017%		
16 MHz	1.25 ns	2.5 ns	0.00313%	0.00625%	0.013%	0.025%		

TABLE 23-4:TOTAL FREQUENCY ERROR AT VARIOUS PLL GENERATED CLOCK SPEEDS
(100 PPM OSCILLATOR DRIFT, INCLUDING ERROR FROM JITTER)

	Frequency Error at Various Nominal Bit Times (Bit Rates)							
Nominal PLL Output	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)				
40 MHz	0.01125%	0.01250%	0.015%	0.02%				
24 MHz	0.01209%	0.01418%	0.018%	0.027%				
16 MHz	0.01313%	0.01625%	0.023%	0.035%				

23.15.1 INTERRUPT CODE BITS

To simplify the interrupt handling process in user firmware, the ECAN module encodes a special set of bits. In Mode 0, these bits are ICODE<3:1> in the CANSTAT register. In Mode 1 and 2, these bits are EICODE<4:0> in the CANSTAT register. Interrupts are internally prioritized such that the higher priority interrupts are assigned lower values. Once the highest priority interrupt condition has been cleared, the code for the next highest priority interrupt that is pending (if any) will be reflected by the ICODE bits (see Table 23-5). Note that only those interrupt sources that have their associated interrupt enable bit set will be reflected in the ICODE bits.

In Mode 2, when a receive message interrupt occurs, the EICODE bits will always consist of '10000'. User firmware may use FIFO pointer bits to actually access the next available buffer.

23.15.2 TRANSMIT INTERRUPT

When the transmit interrupt is enabled, an interrupt will be generated when the associated transmit buffer becomes empty and is ready to be loaded with a new message. In Mode 0, there are separate interrupt enable/disable and flag bits for each of the three dedicated transmit buffers. The TXBnIF bit will be set to indicate the source of the interrupt. The interrupt is cleared by the MCU, resetting the TXBnIF bit to a '0'. In Mode 1 and 2, all transmit buffers share one interrupt enable/ disable bit and one flag bit. In Mode 1 and 2, TXBnIE in PIE3 and TXBnIF in PIR3 indicate when a transmit buffer has completed transmission of its message. TXBnIF, TXBnIE and TXBnIP in PIR3, PIE3 and IPR3, respectively, are not used in Mode 1 and 2. Individual transmit buffer interrupts can be enabled or disabled by setting or clearing TXBIE and BIE0 register bits. When a shared interrupt occurs, user firmware must poll the TXREQ bit of all transmit buffers to detect the source of interrupt.

23.15.3 RECEIVE INTERRUPT

When the receive interrupt is enabled, an interrupt will be generated when a message has been successfully received and loaded into the associated receive buffer. This interrupt is activated immediately after receiving the End-Of-Frame (EOF) field. In Mode 0, the RXBnIF bit is set to indicate the source of the interrupt. The interrupt is cleared by the MCU, resetting the RXBnIF bit to a '0'.

In Mode 1 and 2, all receive buffers share RXBIE, RXBIF and RXBIP in PIE3, PIR3 and IPR3, respectively. Bits RXBnIE, RXBnIF and RXBnIP are not used. Individual receive buffer interrupts can be controlled by the TXBIE and BIE0 registers. In Mode 1, when a shared receive interrupt occurs, user firmware must poll the RXFUL bit of each receive buffer to detect the source of interrupt. In Mode 2, a receive interrupt indicates that the new message is loaded into FIFO. FIFO can be read by using FIFO Pointer bits, FP.

ICODE <2:0>	Interrupt	Boolean Expression
000	None	ERR•WAK•TX0•TX1•TX2•RX0•RX1
001	Error	ERR
010	TXB2	ERR•TX0•TX1•TX2
011	TXB1	ERR•TX0•TX1
100	TXB0	ERR•TX0
101	RXB1	ERR•TX0•TX1•TX2•RX0•RX1
110	RXB0	ERR•TX0•TX1•TX2•RX0
111	Wake on Interrupt	ERR•TX0•TX1•TX2•RX0•RX1•WAK

TABLE 23-5: VALUES FOR ICODE<3:1>

Legend:

ERR = ERRIF * ERRIERX0 = RXB0IF * RXB0IETX0 = TXB0IF * TXB0IERX1 = RXB1IF * RXB1IETX1 = TXB1IF * TXB1IEWAK = WAKIF * WAKIETX2 = TXB2IF * TXB2IE

23.15.4 MESSAGE ERROR INTERRUPT

When an error occurs during transmission or reception of a message, the message error flag, IRXIF, will be set and if the IRXIE bit is set, an interrupt will be generated. This is intended to be used to facilitate baud rate determination when used in conjunction with Listen Only mode.

25.0 INSTRUCTION SET SUMMARY

PIC18F2585/2680/4585/4680 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

25.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 25-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 25-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 25-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 25-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 25.1.1 "Standard Instruction Set" provides a description of each instruction.

ΒZ		Branch if	Zero				
Synta	ax:	BZ n					
Oper	ands:	-128 ≤ n ≤	127				
Oper	ation:	if Zero bit i (PC) + 2 +	s '1' 2n → PC				
Statu	s Affected:	None					
Enco	ding:	1110	0000 ni	nnn nnnn			
Desc	ription:	If the Zero will branch	If the Zero bit is '1', then the program will branch.				
		The 2's con added to th incremente instruction, PC + 2 + 2 two-cycle i	mplement nur le PC. Since t ed to fetch the the new add n. This instru- nstruction.	nber '2n' is he PC will have next ress will be ction is then a			
Word	ls:	1					
Cycle	es:	1(2)					
Q Cycle Activity:							
lf Ju	mp:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
lf No	o Jump:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
Example:		HERE	BZ Jum	ρ			
Before Instruction PC After Instruction		tion = ac on	Idress (HER)	Ξ)			
	If Zero PC If Zero PC	= 1; = ac = 0; = ac	ldress (Jum) ldress (HER)	c) E + 2)			

CALL	Subrouti	ne Call		
Syntax:	CALL k {,;	s}		
Operands:	0 ≤ k ≤ 104 s ∈ [0,1]	8575		
Operation:	$\begin{array}{l} (PC) + 4 \rightarrow \\ k \rightarrow PC < 20 \\ \text{if } s = 1 \\ (W) \rightarrow WS \\ (STATUS) \rightarrow \\ (BSR) \rightarrow B \end{array}$	→ TOS, D:1>, → STATU SRS	JSS,	
Status Affected:	None			
Encodina:				
1st word (k<7:0>)	1110	110s	k ₇ kkk	kkkko
2nd word(k<19:8>)	1111	k ₁₉ kkk	, kkkk	kkkk ₈
	respective STATUSS update occ 20-bit value CALL is a	shadow i and BSR urs (defa two-cycle	egisters S. If 's' : ult). The ded into instruc	ed into the s, WS, = 0, no en, the p PC<20:1: tion.
Words:	2			
Cycles:	2			
Q Cycle Activity:				
Q1	Q2	Q3	1	Q4
Decode	Read literal 'k'<7:0>,	Push P stac	CtoF k	Read literal 'k'<19:8>, Vrite to PC
No	No	No		No
operation	operation	operat	ion	operation
Example: Before Instruc PC	HERE tion = address	CALL s (HERE	THERE	1, 1
After Instruction PC TOS WS BSRS STATUS	on = address = address = W = BSR S= STATU	s (THER s (HERE S	E) + 4)	

DAV	v	Decimal /	Adjust W Re	gister	DEC	F	Decreme	nt f	
Synt	ax:	DAW			Synt	ax:	DECF f{,	d {,a}}	
Ope	rands:	None			Oper	$\label{eq:operands} Operands: \qquad 0 \leq f \leq 255$			
Ope	ration:	If [W<3:0>	>9] or [DC = 1] then			d ∈ [0,1]		
-		(W<3:0>) +	$6 \rightarrow W < 3:0>;$				a ∈ [0,1]		
		else			Oper	ration:	$(f) - 1 \rightarrow d$	est	
		(W<3:0>) -	→ W<3:0>;		Statu	is Affected:	C, DC, N, 0	OV, Z	
		lf [W<7:4>	>9] or [C = 1] 1	then	Enco	oding:	0000	01da ff	ff ffff
		(W<7:4>) +	$6 \rightarrow W < 7:4>;$		Desc	cription:	Decrement	register 'f'. If	'd' is '0', the
		C = 1;					result is sto	ored in W. If 'd	' is '1', the
		else (W<7:4>) -	→ W<7:4>;				result is sto (default).	ored back in re	egister 'f'
Status Affected: C					If 'a' is 'o', t	the Access Ba	nk is selected.		
Encoding: 0000 0000 0000 0111				If 'a' is '1', t	the BSR is use	ed to select the			
Desc	cription:	DAW adjusts	s the eight-bit	value in W,			GPR bank	(default).	ad instruction
·		resulting from the earlier addition of two variables (each in packed BCD format)					set is enab	led, this instru	ction operates
								in Indexed Literal Offset Addressing	
		and produc	es a correct pa	acked BCD			mode when	never f ≤ 95 (5	Fh). See
Mor		1					Section 25	5.2.3 "Byte-Or	riented and
		і 4					Literal Off	set Mode" for	details.
Cyci		I			Word	ds:	1		
QC	ycle Activity:			. .	Cycl	26.	1		
	Q1	Q2	Q3	Q4		volo Activity:	•		
	Decode	register W	Data	W	QU		00	02	04
Exar	mple 1:	regiotor tr	Data			Decode	Q2 Boad	Process	Q4 Write to
		DAW				Decoue	register 'f'	Data	destination
	Before Instruc	tion							<u>. </u>
	W	= A5h			Exar	<u>nple:</u>	DECF	CNT, 1, 0	
	C DC	= 0 = 0				Before Instruc	ction		
	After Instruction	on				CNT	= 01h		
	w	= 05h				Z Aftor Instructi	= 0		
	DC	= 1 = 0				CNT	= 00h		
<u>Exar</u>	<u>mple 2</u> :					Z	= 1		
	Before Instruc	tion							
	W	= CEh - 0							
	ĎС	= 0							
	After Instructio	on							
	vv C	= 34h = 1							
	ĎC	= 0							

SLEEP	Enter Sle	eep mode		SUBFWB	Subtrac	f from W w	ith Borrow		
Syntax:	SLEEP			Syntax:	SUBFWE	f {,d {,a}}			
Operands:	None			Operands:	0 ≤ f ≤ 255	5			
Operation:	$00h \rightarrow WE$	DT,			d ∈ [0,1]				
SLEEPEnter Sleep modSyntax:SLEEPOperands:NoneOperation: $00h \rightarrow WDT$, $0 \rightarrow WDT postscale1 \rightarrow TO,0 \rightarrow PDStatus Affected:TO, PDEncoding:0000Description:The Power-Down scleared. The Time-4is set. Watchdog Tipostscaler are clearThe processor is puwith the oscillator sWords:1Cycles:1Q Cycle Activity:Q2Q1Q2Q3DecodeNoProcessoroperationExample:SLEEPBefore InstructionTO = 2PD = 2After InstructionTO = 1 \uparrowPD = 0† If WDT causes wake-up, this bit is clear$	postscaler,		Operation	$a \in [0, 1]$	$\left(\frac{\overline{C}}{C}\right)$, dept				
	Enter Sleep modeSLEEPNone $00h \rightarrow WDT$, $0 \rightarrow WDT$ postscaler, $1 \rightarrow TO$, $0 \rightarrow PD$ $1 \rightarrow TO$, $D \rightarrow PD$ $1 \rightarrow TO$, $1 \rightarrow POwer-Down status bit (PD) iscleared. The Time-out status bit (TO)is set. Watchdog Timer and itspostscaler are cleared.The Power-Down status bit (TO)is set. Watchdog Timer and itspostscaler are cleared.11111122Q3Q4deNoProcessGo toDataSLEEPnstruction= ?= ?truction= 1 1= 0uses wake-up, this bit is cleared.$	Operation:	(VV) - (T) -	$(C) \rightarrow \text{dest}$					
Status Affected:	TO. PD			Status Affected:	N, OV, C,	DC, Z			
Encoding:	0000	0000 000	0 0011	Encoding:	0101	01da ff			
Description:	The Powe	r-Down status	bit (PD) is	Description:	Subtract r (borrow) f	egister 'f' and rom W (2's coi	Carry flag		
2000.10.00	cleared. T	he Time-out sta	atus bit (TO)		method).	method). If 'd' is '0', the result is stored			
	is set. Wat	tchdog Timer a	nd its		in W. If 'd'	in W. If 'd' is '1', the result is stored in register 'f' (default).			
	The proce	are cleared.	Sleen mode		If 'a' is '0'				
	with the oscillator stopped.			If 'a' is '1',	If 'a' is '1', the BSR is used to select th				
Words:	1				GPR bank	(default).			
Cycles:	1				If 'a' is '0'	and the extend	led instruction		
Q Cycle Activity:					in Indexed	Literal Offset	Addressing		
Q1	Q2	Q3	Q4		mode whe	iFh). See			
Decode	No	Process	Go to		Section 2 Bit-Orient	5.2.3 "Byte-O	riented and		
	operation	Data	Sleep		Literal Of	fset Mode" for	details.		
Example:	OL EED			Words:	1				
Defere Instrue	SLEEP			Cycles:	1				
$\overline{TO} =$?			Q Cycle Activity:					
PD =	?			Q1	Q2	Q3	Q4		
After Instructio	on 1 ±			Decode	Read	Process	Write to		
$\frac{10}{PD} =$	1 T 0				register 'f'	Data	destination		
				Example 1:	SUBFWB	REG, 1, 0)		
† If WDT causes v	wake-up, this t	bit is cleared.		Before Instru REG	= 3				
				Ŵ	= 2				
				After Instruct	tion				
				REG	= FF				
				VV C	= 2 = 0				
				ZN	= 0 = 1 :re	sult is negativ	e		
				Example 2:	SUBFWB	REG, 0, 0	-		
				Before Instru	uction				
				REG W	= 2 = 5				
				C	. = 1				
				After Instruct BEG	= 2				
				Ŵ	= 3				
				Z	= 1 = 0				
				N Example 2:	= 0 ; re	sult is positive			
				Example 3: Refore Instru	Iction	KEG, I, (1		
				REG	= 1				
				W C	= 2 = 0				

After Instruction

REG W C Z N

= 0 = 2 = 1 = 1 = 0

; result is zero

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions		
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	-	ms			
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms			
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms			
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms			
102	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	_	300	ns			
103	TF	SDA and SCL Fall Time	100 kHz mode	_	300	ns	CB is specified to be from 10 to 400 pF		
			400 kHz mode	20 + 0.1 CB	300	ns			
			1 MHz mode ⁽¹⁾	_	100	ns			
90	Tsu:sta	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for Repeated Start condition		
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms			
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first clock pulse is generated		
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms			
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns			
			400 kHz mode	0	0.9	ms			
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns	(Note 2)		
			400 kHz mode	100	_	ns			
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms			
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns			
			400 kHz mode	—	1000	ns			
			1 MHz mode ⁽¹⁾	—	_	ns			
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	ms	Time the bus must be free before a new transmission can start		
			400 kHz mode	1.3	—	ms			
D102	Св	Bus Capacitive L	Sus Capacitive Loading		400	pF			

TABLE 27-21:	MASTER SSP I ² C [™] BUS DATA REQUIREMENTS
--------------	--

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A Fast mode l²C[™] bus device can be used in a Standard mode l²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Number of Pins	Ν	44			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B