
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4585t-i-pt

PIC18F2585/2680 (28-PIN) BLOCK DIAGRAM

3.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS

The length of the transition between clock sources is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Three bits indicate the current clock source and its status. They are:

- OSTS (OSCCON<3>)
- IOFS (OSCCON<2>)
- T1RUN (T1CON<6>)

In general, only one of these bits will be set while in a given power managed mode. When the OSTS bit is set, the primary clock is providing the device clock. When the IOFS bit is set, the INTOSC output is providing a stable 8 MHz clock source to a divider that actually drives the device clock. When the T1RUN bit is set, the Timer1 oscillator is providing the clock. If none of these bits are set, then either the INTRC clock source is clocking the device, or the INTOSC source is not yet stable.

If the internal oscillator block is configured as the primary clock source by the FOSC3:FOSC0 Configuration bits, then both the OSTS and IOFS bits may be set when in PRI_RUN or PRI_IDLE modes. This indicates that the primary clock (INTOSC output) is generating a stable 8 MHz output. Entering another RC power managed mode at the same frequency would clear the OSTS bit.

- Note 1: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.
 - 2: Executing a SLEEP instruction does not necessarily place the device into Sleep mode. It acts as the trigger to place the controller into either the Sleep mode or one of the Idle modes, depending on the setting of the IDLEN bit.

3.1.4 MULTIPLE SLEEP COMMANDS

The power managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power managed mode specified by IDLEN at that time. If IDLEN has changed, the device will enter the new power managed mode specified by the new setting.

3.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

3.2.1 PRI RUN MODE

The PRI_RUN mode is the normal, full power execution mode of the microcontroller. This is also the default mode upon a device Reset, unless Two-Speed Start-up is enabled (see **Section 24.3** "Two-Speed Start-up" for details). In this mode, the OSTS bit is set. The IOFS bit may be set if the internal oscillator block is the primary clock source (see **Section 2.7.1** "Oscillator Control Register").

3.2.2 SEC RUN MODE

result.

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high accuracy clock source.

SEC_RUN mode is entered by setting the SCS1:SCS0 bits to '01'. The device clock source is switched to the Timer1 oscillator (see Figure 3-1), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SCS1:SCS0 bits are set to '01', entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled but not yet running, device clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may

On transitions from SEC_RUN mode to PRI_RUN, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 3-2). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

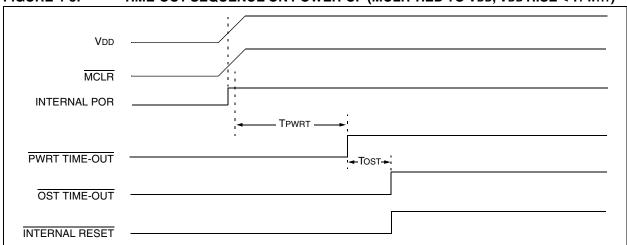


FIGURE 4-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

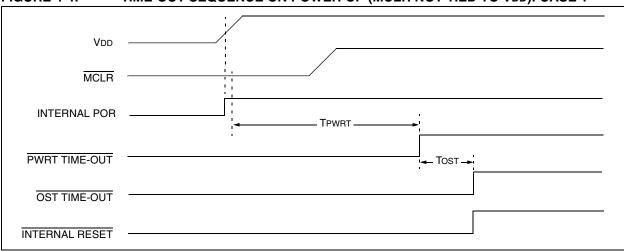


FIGURE 4-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

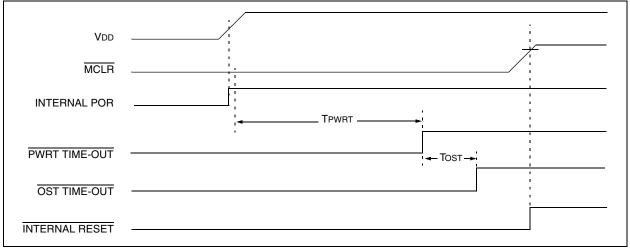


TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
B2CON ⁽⁶⁾	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
B1D7 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D6 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D5 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D4 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D3 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D2 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D1 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1D0 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1DLC ⁽⁶⁾	2585	2680	4585	4680	-xxx xxxx	-uuu uuuu	-uuu uuuu
B1EIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1EIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1SIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx x-xx	uuuu u-uu	uuuu u-uu
B1SIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B1CON ⁽⁶⁾	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
B0D7 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D6 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D5 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D4 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D3 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D2 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D1 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0D0 ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0DLC ⁽⁶⁾	2585	2680	4585	4680	-xxx xxxx	-uuu uuuu	-uuu uuuu
B0EIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0EIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0SIDL ⁽⁶⁾	2585	2680	4585	4680	xxxx x-xx	uuuu u-uu	uuuu u-uu
B0SIDH ⁽⁶⁾	2585	2680	4585	4680	xxxx xxxx	uuuu uuuu	uuuu uuuu
B0CON ⁽⁶⁾	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu
TXBIE ⁽⁶⁾	2585	2680	4585	4680	0 00	u uu	u uu
BIE0 ⁽⁶⁾	2585	2680	4585	4680	0000 0000	0000 0000	uuuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

- Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
 - 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
 - **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
 - **4:** See Table 4-3 for Reset value for specific condition.
 - 5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.
 - 6: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

FIGURE 5-8: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

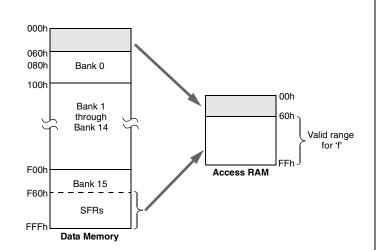
EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff fffff)

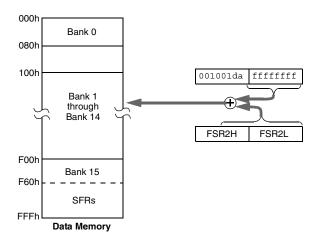
When a = 0 and $f \ge 60h$:

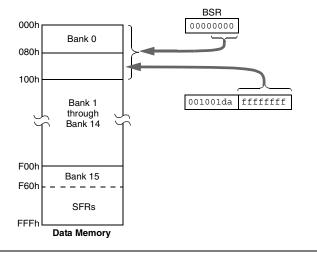
The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as the SFRs, or locations F60h to 0FFh (Bank 15) of data memory.

Locations below 60h are not available in this addressing mode.

When a = 0 and $f \le 5Fh$:


The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.


Note that in this mode, the correct syntax is now: $\label{eq:add_power} \texttt{ADDWF} \ \ [\texttt{k}] \ , \ \ \texttt{d}$


where 'k' is the same as 'f'.

When a = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

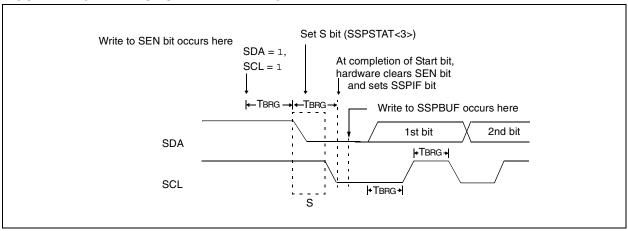
NOTES:

NOTES:

Note:

17.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.


If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

17.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

bte: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7			•			•	bit 0

bit 0

bit 7 **CSRC:** Clock Source Select bit

Asynchronous mode:

Don't care.

Synchronous mode:

1 = Master mode (clock generated internally from BRG)

0 = Slave mode (clock from external source)

bit 6 TX9: 9-bit Transmit Enable bit

1 = Selects 9-bit transmission

0 = Selects 8-bit transmission

bit 5 TXEN: Transmit Enable bit

1 = Transmit enabled

0 = Transmit disabled

SREN/CREN overrides TXEN in Sync mode.

bit 4 SYNC: EUSART Mode Select bit

1 = Synchronous mode

0 = Asynchronous mode

bit 3 SENDB: Send Break Character bit

Asynchronous mode:

1 = Send Sync Break on next transmission (cleared by hardware upon completion)

0 = Sync Break transmission completed

Synchronous mode:

Don't care.

bit 2 **BRGH:** High Baud Rate Select bit

Asynchronous mode:

1 = High speed

0 = Low speed

Synchronous mode:

Unused in this mode.

bit 1 TRMT: Transmit Shift Register Status bit

1 = TSR empty

0 = TSR full

bit 0 TX9D: 9th bit of Transmit Data

Can be address/data bit or a parity bit.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

19.2 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT2:ACQT0 bits (ADCON2<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

19.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- · Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD (approximately 2 μ s, see parameter 130 for more information).

Table 19-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 19-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	ource (TAD)	Maximum Device Frequency				
Operation	ADCS2:ADCS0	PIC18FX585/X680	PIC18LFX585/X680 ⁽⁴⁾			
2 Tosc	000	2.86 MHz	1.43 kHz			
4 Tosc	100	5.71 MHz	2.86 MHz			
8 Tosc	001	11.43 MHz	5.72 MHz			
16 Tosc	101	22.86 MHz	11.43 MHz			
32 Tosc	010	40.0 MHz	22.86 MHz			
64 Tosc	110	40.0 MHz	22.86 MHz			
RC ⁽³⁾	x11	1.00 MHz ⁽¹⁾	1.00 MHz ⁽²⁾			

- Note 1: The RC source has a typical TAD time of 4 ms.
 - 2: The RC source has a typical TAD time of 6 ms.
 - 3: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D accuracy may be out of specification.
 - 4: Low-power (PIC18LFXXXX) devices only.

REGISTER 23-34: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN RECEIVE MODE $[0 \le n \le 5, \text{ TXnEN (BSEL} < n >) = 0]^{(1)}$

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x
_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

bit 7 Unimplemented: Read as '0'

bit 6 RXRTR: Receiver Remote Transmission Request bit

1 = This is a remote transmission request0 = This is not a remote transmission request

bit 5 **RB1:** Reserved bit 1

Reserved by CAN Spec and read as '0'.

bit 4 RB0: Reserved bit 0

Reserved by CAN Spec and read as '0'.

bit 3-0 DLC3:DLC0: Data Length Code bits

1111 = Reserved

1110 = Reserved

1101 = Reserved

1100 = Reserved

1011 = Reserved 1010 = Reserved

1001 = Reserved

1000 = Data length = 8 bytes

0111 = Data length = 7 bytes

0110 = Data length = 6 bytes

0101 = Data length = 5 bytes

0100 = Data length = 4 bytes 0011 = Data length = 3 bytes

0010 = Data length = 2 bytes

0001 = Data length = 1 bytes

0000 = Data length = 0 bytes

Note 1: These registers are available in Mode 1 and 2 only.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 23-58: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

Mode 0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
woue o	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXB1IP	RXB0IP

Mode 1 2	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
Mode 1, 2	IRXIP	WAKIP	ERRIP	TXBnIP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXBnIP	FIFOWMIP
	1 11 7							1 11 0

bit 7 bit 0

bit 7 IRXIP: CAN Invalid Received Message Interrupt Priority bit

1 = High priority0 = Low priority

bit 6 WAKIP: CAN bus Activity Wake-up Interrupt Priority bit

1 = High priority0 = Low priority

bit 5 ERRIP: CAN bus Error Interrupt Priority bit

1 = High priority0 = Low priority

bit 4 When CAN is in Mode 0:

TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit

1 = High priority0 = Low priority

When CAN is in Mode 1 or 2:

TXBnIP: CAN Transmit Buffer Interrupt Priority bit

1 = High priority0 = Low priority

bit 3 **TXB1IP:** CAN Transmit Buffer 1 Interrupt Priority bit⁽¹⁾

1 = High priority0 = Low priority

bit 2 **TXB0IP:** CAN Transmit Buffer 0 Interrupt Priority bit⁽¹⁾

1 = High priority0 = Low priority

bit 1 When CAN is in Mode 0:

RXB1IP: CAN Receive Buffer 1 Interrupt Priority bit

1 = High priority0 = Low priority

When CAN is in Mode 1 or 2:

RXBnIP: CAN Receive Buffer Interrupts Priority bit

1 = High priority0 = Low priority

bit 0 When CAN is in Mode 0:

RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit

1 = High priority0 = Low priority

When CAN is in Mode 1: Unimplemented: Read as '0' When CAN is in Mode 2:

FIFOWMIP: FIFO Watermark Interrupt Priority bit

1 = High priority0 = Low priority

Note 1: In CAN Mode 1 and 2, this bit is forced to '0'.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Address ⁽¹⁾	Name				
D7Fh	(4)				
D7Eh	(4)				
D7Dh	(4)				
D7Ch	(4)				
D7Bh	RXF11EIDL				
D7Ah	RXF11EIDH				
D79h	RXF11SIDL				
D78h	RXF11SIDH				
D77h	RXF10EIDL				
D76h	RXF10EIDH				
D75h	RXF10SIDL				
D74h	RXF10SIDH				
D73h	RXF9EIDL				
D72h	RXF9EIDH				
D71h	RXF9SIDL				
D70h	RXF9SIDH				
D6Fh	(4)				
D6Eh	(4)				
D6Dh	(4)				
D6Ch	(4)				
D6Bh	RXF8EIDL				
D6Ah	RXF8EIDH				
D69h	RXF8SIDL				
D68h	RXF8SIDH				
D67h	RXF7EIDL				
D66h	RXF7EIDH				
D65h	RXF7SIDL				
D64h	RXF7SIDH				
D63h	RXF6EIDL				
D62h	RXF6EIDH				
D61h	RXF6SIDL				
D60h	RXF6SIDH				

- Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.
 - **2:** CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.
 - 3: These registers are not CAN registers.
 - 4: Unimplemented registers are read as '0'.

24.0 SPECIAL FEATURES OF THE CPU

PIC18F2585/2680/4585/4680 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- · Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- · Fail-Safe Clock Monitor
- · Two-Speed Start-up
- Code Protection
- ID Locations
- · In-Circuit Serial Programming

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in **Section 2.0** "Oscillator Configurations".

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18F2585/2680/4585/4680 devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits or software controlled (if configured as disabled).

The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction with the TBLPTR pointing to the Configuration register sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration register. The Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 6.5 "Writing to Flash Program Memory".

TABLE 24-1: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_	_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	-	_		-	LPT1OSC	PBADEN		101-
300006h	CONFIG4L	DEBUG	XINST	BBSIZ1	BBSIZ2	-	LVP	1	STVREN	1000 -1-1
300008h	CONFIG5L	_	_	_	_	CP3	CP2	CP1	CP0	1111
300009h	CONFIG5H	CPD	СРВ	_	_	_	_	_	_	11
30000Ah	CONFIG6L			_		WRT3	WRT2	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	_	_	_	111
30000Ch	CONFIG7L	_	_	_	_	EBTR3	EBTR2	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_		_	-1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx(1)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 1100

 $\begin{tabular}{ll} \textbf{Legend:} & $x=$ unknown, $u=$ unchanged, $-=$ unimplemented, $q=$ value depends on condition. \\ & Shaded cells are unimplemented, read as '0'. \\ \end{tabular}$

Note 1: See Register 24-14 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

25.1.1 STANDARD INSTRUCTION SET

ADD	LW	ADD Lite	ADD Literal to W						
Synta	ax:	ADDLW	k						
Oper	ands:	$0 \le k \le 255$	$0 \leq k \leq 255$						
Oper	ation:	$\text{(W)} + \text{k} \rightarrow$	W						
Statu	s Affected:	N, OV, C, [C, Z						
Enco	ding:	0000	0000 1111 kkkk kkkk						
Desc	ription:	The conter 8-bit literal in W.							
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Data		/rite to W				

Example: ADDLW 15h

Before Instruction W = 10hAfter Instruction W = 25h

ADDWF	ADD W to	o f			
Syntax:	ADDWF	f {,d {,a}}	}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:	$(W) + (f) \to$	dest			
Status Affected:	N, OV, C, D)C, Z			
Encoding:	0010	01da	ffff	ffff	
Description:	result is sto result is sto (default). If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enabl in Indexed mode when Section 25	Add W to register 'f'. If 'd' is 'o', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'			
Words:	1	oct mode	ioi dete		
Cycles:	1				
Q Cycle Activity:	•				
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Proces Data		Vrite to stination	

 Example:
 ADDWF
 REG, 0, 0
 0

 Before Instruction
 W = 17h REG = 0C2h
 0.02h
 <

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

BCF	Bit Clear	f				
Syntax:	BCF f, b	(,a)				
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$;				
Operation:	$0 \to f {<} b {>}$					
Status Affected:	None					
Encoding:	1001	bbba	ffff	ffff		
Description:	Bit 'b' in re	gister 'f' i	s cleared.			
	Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Words:	1					
Cycles:	1					

Q1	Q2	Q3	Q4	
Decode	Read	Process	Write	
	register 'f'	Data	register 'f'	

Example: FLAG_REG, 7, 0 BCF

Before Instruction $FLAG_REG = C7h$ After Instruction $FLAG_REG = 47h$

Q Cycle Activity:

BN	Branch if Negative					
Syntax:	BN n					
Operands:	-128 ≤ n ≤	-128 ≤ n ≤ 127				
Operation:	if Negative bit is '1' $(PC) + 2 + 2n \rightarrow PC$					
Status Affected:	None					
Encoding:	1110 0110 nnnn nnnn					
Description:	If the Nega		'1', then t	he		
	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Words:	1					
Cycles:	1(2)					
Q Cycle Activity:						

Q1	Q2	Q3	Q4
Decode	Read literal	Process	Write to PC
	'n'	Data	
No	No	No	No
operation	operation	operation	operation

If No Jump:

If Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	No
	ʻn'	Data	operation

Example: HERE Jump

Before Instruction

PC address (HERE)

After Instruction

If Negative PC address (Jump)

If Negative PC

address (HERE + 2)

SUBLW	Subtrac	t W from	Lite	ral		
Syntax:	SUBLW	k				
Operands:	$0 \le k \le 25$	5				
Operation:	k – (W) –	$k-(W)\to W$				
Status Affected:	N, OV, C,	DC, Z				
Encoding:	0000	1000	kkk	k	kkkk	
Description:	W is subt literal 'k'.			_		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3			Q4	
Decode	Read	Proces		Writ	e to W	
	literal 'k'	Data	l			
Example 1:	SUBLW	02h				
Before Instruc	tion					
W C	= 01h = ?					
After Instruction	•					
W	= 01h					
C 7	= 1 ; r = 0	1 ; result is positive				
Z N	= 0					
Example 2:	SUBLW	02h				
Before Instruc	tion					
W	= 02h					
C After Instruction	= ?					
W	= 00h					
Ç		esult is ze	ero			
Z N	= 1 = 0					
Example 3:	SUBLW	02h				
Before Instruc	tion					

SUBWF Subtract W from f							
Synta	ax:		SUBWF	f {,d {,a}}			
Oper	ands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5			
Oper	ation:		(f) - (W) -	→ dest			
Statu	s Affected:		N, OV, C,	DC, Z			
Enco	ding:		0101	11da ffi	ff ffff		
Desc	ription:		Subtract W from register 'f' (2's complement method). If 'd' is 'o', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is 'o', the Access Bank is selected.				
			GPR bank If 'a' is '0' set is enal in Indexed mode who Section 2 Bit-Orien	the BSR is use (default). and the extend oled, this instruct d Literal Offset anever f ≤ 95 (5 15.2.3 "Byte-Or ted Instruction fset Mode" for	ed instruction ction operates Addressing Fh). See riented and ns in Indexed		
Word	ls:		1				
Cycle	es:		1				
Q Cycle Activity:							
ı	Q1		Q2	Q3	Q4		
	Decode	re	Read Process egister 'f' Data		Write to destination		
_		10			destination		
	<u>nple 1:</u> Before Instruc	tion	SUBWF	REG, 1, 0			
	REG W	=	3 2				
	C After Instruction	=	?				
	REG W C Z	= =	1 2 1 ; re	esult is positive			
	N !- 0:	=		DEG 0 0			
	<u>nple 2:</u> Before Instruc	tion	SUBWF	REG, 0, 0			
	REG W C	= = = =	2 2 2 ?				
After Instruction REG = W = C = Z = N =			1 ; result is zero 1				
Example 3:			0 SUBWF	REG, 1, 0			
Before Instruction							
	REG W C	= =	1 2 ?				
	After Instruction	n					
	REG W	=	FFh ;(2	2's complemer	nt)		
	C Z N	= =		result is negati	ve		

FFh; (2's complement) 0 ; result is negative 0

W After Instruction

W C Z N

= = =

25.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F2585/2680/4585/4680 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

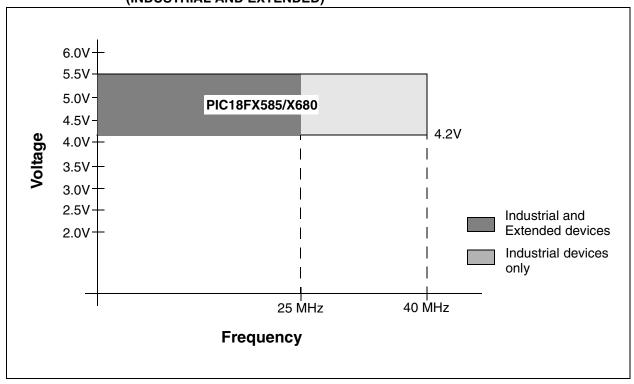
- dynamic allocation and de-allocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software stack pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 25-3. Detailed descriptions are provided in **Section 25.2.2 "Extended Instruction Set"**. The opcode field descriptions in Table 25-1 apply to both the standard and extended PIC18 instruction sets.

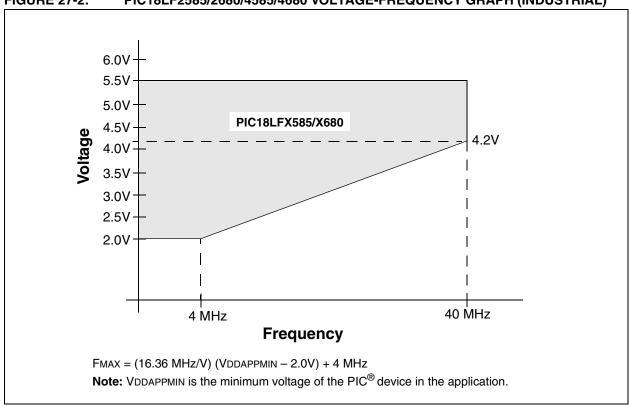
Note:	The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.
-------	--

25.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. MPASMTM Assembler will flag an error if it determines that an index or offset value is not bracketed.


When the extended instruction set is enabled, brackets are also used to indicate index arguments in bitoriented and byte-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note:	In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this
	text and going forward, optional arguments are denoted by braces ("{ }").


TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Mnemonic,		Description	Cycles	16-Bit Instruction Word				Status
Operar	nds	Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add literal to FSR2 and return	2	1110	1000	11kk	kkkk	None
CALLW		Call subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z_s , f_d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z_s, z_d	Move z _s (source) to 1st word	2	1110	1011	1zzz	ZZZZ	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ	
PUSHL	k	Store literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		decrement FSR2						
SUBFSR	f, k	Subtract literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		return						

FIGURE 27-1: PIC18F2585/2680/4585/4680 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL AND EXTENDED)

FIGURE 27-2: PIC18LF2585/2680/4585/4680 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

TABLE 27-2: COMPARATOR SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 5.5V, $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated).

Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D300	VIOFF	Input Offset Voltage	_	± 5.0	± 10	mV	
D301	VICM	Input Common Mode Voltage*	0	_	VDD - 1.5	V	
D302	CMRR	Common Mode Rejection Ratio*	55	_	_	dB	
300	TRESP	Response Time ^{(1)*}	_	150	400	ns	PIC18FXXXX
300A		·	_	150	600	ns	PIC18LFXXXX, VDD = 2.0V
301	Тмс2оv	Comparator Mode Change to Output Valid*	_	_	10	μs	

^{*} These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from Vss to VDD.

TABLE 27-3: VOLTAGE REFERENCE SPECIFICATIONS

$\textbf{Operating Conditions: } 3.0 \text{V} < \text{VDD} < 5.5 \text{V}, -40 ^{\circ}\text{C} < \text{TA} < +85 ^{\circ}\text{C} \text{ (unless otherwise stated)}.$								
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments	
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb		
D311	VRAA	Absolute Accuracy	_	_	1/4 1/2	LSb LSb	Low Range (CVRR = 1) High Range (CVRR = 0)	
D312	VRur	Unit Resistor Value (R)*	_	2k	_	Ω		
310	TSET	Settling Time ^{(1)*}	_	_	10	μs		

^{*} These parameters are characterized but not tested.

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.