
Microchip Technology - PIC18LF4680T-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 3.25K x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-VQFN Exposed Pad

Supplier Device Package 44-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4680t-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf4680t-i-ml-4427102
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F2585/2680/4585/4680
FIGURE 1-1: PIC18F2585/2680 (28-PIN) BLOCK DIAGRAM

Instruction
Decode &

Control

PORTA

PORTB

PORTC

RA4/T0CKI
RA5/AN4/SS/HLVDIN

RB0/INT0/AN10

RC0/T1OSO/T13CKI
RC1/T1OSI
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT

RA3/AN3/VREF+
RA2/AN2/VREF-
RA1/AN1
RA0/AN0

RB1/INT1/AN8

Data Latch

Data Memory
(3.9 Kbytes)

Address Latch

Data Address<12>

12

AccessBSR
4 4

PCH PCL

 PCLATH

8

31 Level Stack

Program Counter

PRODLPRODH

8 x 8 Multiply

8

88

ALU<8>

Address Latch

Program Memory
(48/64 Kbytes)

Data Latch

20

8

8

Table Pointer<21>

inc/dec logic

21

8

Data Bus<8>

Table Latch
8

IR

12

3

ROM Latch

RB2/INT2/CANTX
RB3/CANRX

PCLATU

PCU

PORTE

MCLR/VPP/RE3(1)

OSC2/CLKO/RA6

Note 1: RE3 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.

2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O.
Refer to Section 2.0 “Oscillator Configurations” for additional information.

RB4/KBI0/AN9
RB5/KBI1/PGM
RB6/KBI2/PGC
RB7/KBI3/PGD

EUSARTComparator MSSP 10-bit
ADC

Timer2Timer1 Timer3Timer0

ECCP1

HLVD

CCP1

BOR Data
EEPROM

W

Instruction Bus <16>

STKPTR Bank

8

State Machine
Control Signals

8

8
Power-up

Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

OSC1(2)

OSC2(2)

VDD,

Brown-out
Reset

Internal
Oscillator

Fail-Safe
Clock Monitor

Reference
Band Gap

VSS

MCLR(1)

Block

INTRC
Oscillator

8 MHz
Oscillator

Single-Supply
Programming

In-Circuit
Debugger

T1OSI

T1OSO

OSC1/CLKI/RA7

ECAN

BITOP

FSR0
FSR1
FSR2

inc/dec

Address

12

Decode

logic
DS39625C-page 10 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
5.3.5 STATUS REGISTER

The STATUS register, shown in Register 5-2, contains
the arithmetic status of the ALU. As with any other SFR,
it can be the operand for any instruction.

If the STATUS register is the destination for an instruc-
tion that affects the Z, DC, C, OV or N bits, the results
of the instruction are not written; instead, the status is
updated according to the instruction performed. There-
fore, the result of an instruction with the STATUS
register as its destination may be different than
intended. As an example, CLRF STATUS will set the Z
bit and leave the remaining Status bits unchanged
(‘000u u1uu’).

It is recommended that only BCF, BSF, SWAPF, MOVFF
and MOVWF instructions are used to alter the STATUS
register, because these instructions do not affect the Z,
C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see
the instruction set summaries in Table 25-2 and
Table 25-3.

REGISTER 5-2: STATUS REGISTER

Note: The C and DC bits operate as the borrow
and digit borrow bits respectively in
subtraction.

U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x

— — — N OV Z DC C

bit 7 bit 0

bit 7-5 Unimplemented: Read as ‘0’

bit 4 N: Negative bit
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was
negative (ALU MSB = 1).
1 = Result was negative
0 = Result was positive

bit 3 OV: Overflow bit
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit
magnitude which causes the sign bit (bit 7) to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit
For ADDWF, ADDLW, SUBLW and SUBWF instructions:
1 = A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is
loaded with either the bit 4 or bit 3 of the source register.

bit 0 C: Carry/borrow bit
For ADDWF, ADDLW, SUBLW and SUBWF instructions:
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is
loaded with either the high or low-order bit of the source register.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 87

PIC18F2585/2680/4585/4680
5.4 Data Addressing Modes

While the program memory can be addressed in only
one way – through the program counter – information
in the data memory space can be addressed in several
ways. For most instructions, the addressing mode is
fixed. Other instructions may use up to three modes,
depending on which operands are used and whether or
not the extended instruction set is enabled.

The addressing modes are:

• Inherent

• Literal
• Direct
• Indirect

An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in greater detail in Section 5.6.1 “Indexed
Addressing with Literal Offset”.

5.4.1 INHERENT AND LITERAL
ADDRESSING

Many PIC18 control instructions do not need any
argument at all; they either perform an operation that
globally affects the device or they operate implicitly on
one register. This addressing mode is known as
Inherent Addressing. Examples include SLEEP, RESET
and DAW.

Other instructions work in a similar way but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode because they
require some literal value as an argument. Examples
include ADDLW and MOVLW which, respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.

5.4.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and
byte-oriented instructions use some version of direct
addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 5.3.3 “General

Purpose Register File”) or a location in the Access
Bank (Section 5.3.2 “Access Bank”) as the data
source for the instruction.

The Access RAM bit ‘a’ determines how the address is
interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 5.3.1 “Bank Select Register (BSR)”) are
used with the address to determine the complete 12-bit
address of the register. When ‘a’ is ‘0’, the address is
interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes
also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In those cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its origi-
nal contents. When ‘d’ is ‘0’, the results are stored in
the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

5.4.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations to be read or written
to. Since the FSRs are themselves located in RAM as
Special File Registers, they can also be directly manip-
ulated under program control. This makes FSRs very
useful in implementing data structures, such as tables
and arrays in data memory.

The registers for indirect addressing are also imple-
mented with Indirect File Operands (INDFs) that permit
automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code, using
loops, such as the example of clearing an entire RAM
bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM
(BANK 1) USING
INDIRECT ADDRESSING

Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction
set is enabled. See Section 5.6 “Data
Memory and the Extended Instruction
Set” for more information.

LFSR FSR0, 100h ;
NEXT CLRF POSTINC0 ; Clear INDF

; register then
; inc pointer

BTFSS FSR0H, 1 ; All done with
; Bank1?

BRA NEXT ; NO, clear next
CONTINUE ; YES, continue
DS39625C-page 88 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
5.4.3.1 FSR Registers and the
INDF Operand

At the core of indirect addressing are three sets of
registers: FSR0, FSR1 and FSR2. Each represents a
pair of 8-bit registers, FSRnH and FSRnL. The four
upper bits of the FSRnH register are not used, so each
FSR pair holds a 12-bit value. This represents a value
that can address the entire range of the data memory
in a linear fashion. The FSR register pairs, then, serve
as pointers to data memory locations.

Indirect addressing is accomplished with a set of
Indirect File Operands, INDF0 through INDF2. These
can be thought of as “virtual” registers: they are

mapped in the SFR space, but are not physically
implemented. Reading or writing to a particular INDF
register actually accesses its corresponding FSR
register pair. A read from INDF1, for example, reads
the data at the address indicated by FSR1H:FSR1L.
Instructions that use the INDF registers as operands
actually use the contents of their corresponding FSR as
a pointer to the instruction’s target. The INDF operand
is just a convenient way of using the pointer.

Because indirect addressing uses a full 12-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

FIGURE 5-7: INDIRECT ADDRESSING

FSR1H:FSR1L

07

Data Memory

000h

100h

200h

300h

F00h

E00h

FFFh

Bank 0

Bank 1

Bank 2

Bank 14

Bank 15

Bank 3
through
Bank 13

ADDWF, INDF1, 1

07

Using an instruction with one of the
indirect addressing registers as the
operand....

...uses the 12-bit address stored in
the FSR pair associated with that
register....

...to determine the data memory
location to be used in that operation.

In this case, the FSR1 pair contains
ECCh. This means the contents of
location ECCh will be added to that
of the W register and stored back in
ECCh.

x x x x 1 1 1 0 1 1 0 0 1 1 0 0

Bank 14
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 89

PIC18F2585/2680/4585/4680
6.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only
through the use of an external programmer, or through
ICSP control, can larger blocks of program memory be
bulk erased. Word erase in the Flash array is not
supported.

When initiating an erase sequence from the micro-
controller itself, a block of 64 bytes of program memory
is erased. The Most Significant 16 bits of the
TBLPTR<21:6> point to the block being erased.
TBLPTR<5:0> are ignored.

The EECON1 register commands the erase operation.
The EEPGD bit must be set to point to the Flash
program memory. The WREN bit must be set to enable
write operations. The FREE bit is set to select an erase
operation.

For protection, the write initiate sequence for EECON2
must be used.

A long write is necessary for erasing the internal Flash.
Instruction execution is halted while in a long write
cycle. The long write will be terminated by the internal
programming timer.

6.4.1 FLASH PROGRAM MEMORY
ERASE SEQUENCE

The sequence of events for erasing a block of internal
program memory location is:

1. Load Table Pointer register with address of row
being erased.

2. Set the EECON1 register for the erase operation:
• set EEPGD bit to point to program memory;

• clear the CFGS bit to access program memory;
• set WREN bit to enable writes;
• set FREE bit to enable the erase.

3. Disable interrupts.
4. Write 55h to EECON2.
5. Write 0AAh to EECON2.

6. Set the WR bit. This will begin the row erase
cycle.

7. The CPU will stall for duration of the erase
(about 2 ms using internal timer).

8. Re-enable interrupts.

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY ROW
MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

ERASE_ROW
BSF EECON1, EEPGD ; point to Flash program memory
BCF EECON1, CFGS ; access Flash program memory
BSF EECON1, WREN ; enable write to memory
BSF EECON1, FREE ; enable Row Erase operation
BCF INTCON, GIE ; disable interrupts

Required MOVLW 55h
Sequence MOVWF EECON2 ; write 55h

MOVLW 0AAh
MOVWF EECON2 ; write 0AAh
BSF EECON1, WR ; start erase (CPU stall)
BSF INTCON, GIE ; re-enable interrupts
DS39625C-page 100 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
6.5 Writing to Flash Program Memory

The minimum programming block is 32 words or
64 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are 64 holding registers used by the table writes for
programming.

Since the Table Latch (TABLAT) is only a single byte,
the TBLWT instruction may need to be executed 64
times for each programming operation. All of the table
write operations will essentially be short writes because
only the holding registers are written. At the end of
updating the 64 holding registers, the EECON1 register
must be written to in order to start the programming
operation with a long write.

The long write is necessary for programming the
internal Flash. Instruction execution is halted while in a
long write cycle. The long write will be terminated by
the internal programming timer.

The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.5.1 FLASH PROGRAM MEMORY WRITE
SEQUENCE

The sequence of events for programming an internal
program memory location should be:

1. Read 64 bytes into RAM.
2. Update data values in RAM as necessary.
3. Load Table Pointer register with address being

erased.
4. Execute the row erase procedure.
5. Load Table Pointer register with address of first

byte being written.
6. Write the 64 bytes into the holding registers with

auto-increment.
7. Set the EECON1 register for the write operation:

• set EEPGD bit to point to program memory;
• clear the CFGS bit to access program memory;
• set WREN to enable byte writes.

8. Disable interrupts.
9. Write 55h to EECON2.
10. Write 0AAh to EECON2.
11. Set the WR bit. This will begin the write cycle.
12. The CPU will stall for duration of the write (about

2 ms using internal timer).
13. Re-enable interrupts.
14. Verify the memory (table read).

This procedure will require about 18 ms to update one
row of 64 bytes of memory. An example of the required
code is given in Example 6-3.

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may be
modified, provided that the change does not
attempt to change any bit from a ‘0’ to a ‘1’.
When modifying individual bytes, it is not
necessary to load all 64 holding registers
before executing a write operation.

TBLPTR = xxxx3FTBLPTR = xxxxx1TBLPTR = xxxxx0 TBLPTR = xxxxx2

Program Memory

Holding Register Holding Register Holding Register Holding Register

8 8 8 8

TABLAT
Write Register

Note: Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the 64 bytes in
the holding register.
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 101

PIC18F2585/2680/4585/4680
NOTES:
DS39625C-page 104 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
In addition to the expanded range of modes available
through the CCP1CON register, the ECCP1 module
has two additional registers associated with Enhanced
PWM operation and auto-shutdown features. They are:
• ECCP1DEL (Dead-band delay)
• ECCP1AS (Auto-shutdown configuration)

16.1 ECCP1 Outputs and Configuration

The Enhanced CCP1 module may have up to four
PWM outputs, depending on the selected operating
mode. These outputs, designated P1A through P1D,
are multiplexed with I/O pins on PORTC and PORTD.
The outputs that are active depend on the CCP1
operating mode selected. The pin assignments are
summarized in Table 16-1.

To configure the I/O pins as PWM outputs, the proper
PWM mode must be selected by setting the
EPWM1M1:EPWM1M0 and CCP1M3:CCP1M0 bits.
The appropriate TRISC and TRISD direction bits for the
port pins must also be set as outputs.

16.1.1 ECCP1 MODULES AND TIMER
RESOURCES

Like the standard CCP1 modules, the ECCP1 module
can utilize Timers 1, 2 or 3, depending on the mode
selected. Timer1 and Timer3 are available for modules
in Capture or Compare modes, while Timer2 is
available for modules in PWM mode. Interactions
between the standard and Enhanced CCP1 modules
are identical to those described for standard CCP1
modules. Additional details on timer resources are
provided in Section 15.1.1 “CCP1 Modules and
Timer Resources”.

16.2 Capture and Compare Modes

Except for the operation of the special event trigger
discussed below, the Capture and Compare modes of
the ECCP1 module are identical in operation to that of
CCP1. These are discussed in detail in Section 15.2
“Capture Mode” and Section 15.3 “Compare Mode”.

16.2.1 SPECIAL EVENT TRIGGER

The special event trigger output of ECCP1 resets the
TMR1 or TMR3 register pair, depending on which timer
resource is currently selected. This allows the ECCP1
register to effectively be a 16-bit programmable period
register for Timer1 or Timer3. The special event trigger
for ECCP1 can also start an A/D conversion. In order to
start the conversion, the A/D converter must be
previously enabled.

16.3 Standard PWM Mode

When configured in Single Output mode, the ECCP1
module functions identically to the standard CCP1
module in PWM mode, as described in Section 15.4
“PWM Mode”. This is also sometimes referred to as
“Compatible CCP1” mode, as in Table 16-1.

TABLE 16-1: PIN ASSIGNMENTS FOR VARIOUS ECCP1 MODES

Note: When setting up single output PWM
operations, users are free to use either of the
processes described in Section 15.4.4
“Setup for PWM Operation” or
Section 16.4.9 “Setup for PWM Operation”.
The latter is more generic but will work for
either single or multi-output PWM.

ECCP1 Mode
CCP1CON

Configuration
RD4 RD5 RD6 RD7

All PIC18F4585/4680 devices:

Compatible CCP1 00xx 11xx CCP1 RD5/PSP5 RD6/PSP6 RD7/PSP7

Dual PWM 10xx 11xx P1A P1B RD6/PSP6 RD7/PSP7

Quad PWM x1xx 11xx P1A P1B P1C P1D

Legend: x = Don’t care. Shaded cells indicate pin assignments not used by ECCP1 in a given mode.
DS39625C-page 174 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
16.4.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring
the ECCP1 module for PWM operation:

1. Configure the PWM pins P1A and P1B (and
P1C and P1D, if used) as inputs by setting the
corresponding TRIS bits.

2. Set the PWM period by loading the PR2 register.
3. Configure the ECCP1 module for the desired

PWM mode and configuration by loading the
ECCP1CON register with the appropriate
values:
• Select one of the available output

configurations and direction with the
EPWM1M1:EPWM1M0 bits.

• Select the polarities of the PWM output
signals with the ECCP1M3:ECCP1M0 bits.

4. Set the PWM duty cycle by loading the
ECCPR1L register and ECCP1CON<5:4> bits.

5. For Half-Bridge Output mode, set the
dead-band delay by loading ECCP1DEL<6:0>
with the appropriate value.

6. If auto-shutdown operation is required, load the
ECCP1AS register:

• Select the auto-shutdown sources using the
ECCPAS2:ECCPAS0 bits.

• Select the shutdown states of the PWM
output pins using PSSAC1:PSSAC0 and
PSSBD1:PSSBD0 bits.

• Set the ECCPASE bit (ECCP1AS<7>).

• Configure the comparators using the CMCON
register.

• Configure the comparator inputs as analog
inputs.

7. If auto-restart operation is required, set the
PRSEN bit (ECCP1DEL<7>).

8. Configure and start TMR2:
• Clear the TMR2 interrupt flag bit by clearing

the TMR2IF bit (PIR1<1>).
• Set the TMR2 prescale value by loading the

T2CKPS bits (T2CON<1:0>).
• Enable Timer2 by setting the TMR2ON bit

(T2CON<2>).
9. Enable PWM outputs after a new PWM cycle

has started:
• Wait until TMRn overflows (TMRnIF bit is set).
• Enable the ECCP1/P1A, P1B, P1C and/or

P1D pin outputs by clearing the respective
TRIS bits.

• Clear the ECCPASE bit (ECCP1AS<7>).

16.4.10 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force
all ports to Input mode and the CCP1 registers to their
Reset states.

This forces the Enhanced CCP1 module to reset to a
state compatible with the standard CCP1 module.
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 185

PIC18F2585/2680/4585/4680
17.4.12 ACKNOWLEDGE SEQUENCE
TIMING

An Acknowledge sequence is enabled by setting the
Acknowledge sequence enable bit, ACKEN
(SSPCON2<4>). When this bit is set, the SCL pin is
pulled low and the contents of the Acknowledge data bit
are presented on the SDA pin. If the user wishes to gen-
erate an Acknowledge, then the ACKDT bit should be
cleared. If not, the user should set the ACKDT bit before
starting an Acknowledge sequence. The Baud Rate
Generator then counts for one rollover period (TBRG)
and the SCL pin is deasserted (pulled high). When the
SCL pin is sampled high (clock arbitration), the Baud
Rate Generator counts for TBRG. The SCL pin is then
pulled low. Following this, the ACKEN bit is automatically
cleared, the Baud Rate Generator is turned off and the
MSSP module then goes into Idle mode (Figure 17-23).

17.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge
sequence is in progress, then WCOL is set and the
contents of the buffer are unchanged (the write doesn’t
occur).

17.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a
receive/transmit by setting the Stop Sequence Enable
bit, PEN (SSPCON2<2>). At the end of a receive/
transmit, the SCL line is held low after the falling edge
of the ninth clock. When the PEN bit is set, the master
will assert the SDA line low. When the SDA line is
sampled low, the Baud Rate Generator is reloaded and
counts down to ‘0’. When the Baud Rate Generator
times out, the SCL pin will be brought high and one
TBRG (Baud Rate Generator rollover count) later, the
SDA pin will be deasserted. When the SDA pin is
sampled high while SCL is high, the P bit
(SSPSTAT<4>) is set. A TBRG later, the PEN bit is
cleared and the SSPIF bit is set (Figure 17-24).

17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence
is in progress, then the WCOL bit is set and the
contents of the buffer are unchanged (the write doesn’t
occur).

FIGURE 17-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 17-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

Note: TBRG = one Baud Rate Generator period.

SDA

SCL

Set SSPIF at the

Acknowledge sequence starts here,
write to SSPCON2

ACKEN automatically cleared

Cleared in

TBRG TBRG

end of receive

8

ACKEN = 1, ACKDT = 0

D0

9

SSPIF

software Set SSPIF at the end
of Acknowledge sequence

Cleared in
software

ACK

SCL

SDA

SDA asserted low before rising edge of clock

Write to SSPCON2,
set PEN

Falling edge of

SCL = 1 for TBRG, followed by SDA = 1 for TBRG

9th clock

SCL brought high after TBRG

Note: TBRG = one Baud Rate Generator period.

TBRG TBRG

after SDA sampled high. P bit (SSPSTAT<4>) is set.

TBRG

to setup Stop condition

ACK

P
TBRG

PEN bit (SSPCON2<2>) is cleared by
hardware and the SSPIF bit is set
DS39625C-page 220 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
REGISTER 18-3: BAUDCON: BAUD RATE CONTROL REGISTER
R/W-0 R-1 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0

ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN

bit 7 bit 0

bit 7 ABDOVF: Auto-Baud Acquisition Rollover Status bit
1 = A BRG rollover has occurred during Auto-Baud Rate Detect mode

(must be cleared in software)
0 = No BRG rollover has occurred

bit 6 RCIDL: Receive Operation Idle Status bit
1 = Receive operation is Idle
0 = Receive operation is active

bit 5 Unimplemented: Read as ‘0’

bit 4 SCKP: Synchronous Clock Polarity Select bit

Asynchronous mode:
Unused in this mode.

Synchronous mode:
1 = Idle state for clock (CK) is a high level
0 = Idle state for clock (CK) is a low level

bit 3 BRG16: 16-bit Baud Rate Register Enable bit
1 = 16-bit Baud Rate Generator – SPBRGH and SPBRG
0 = 8-bit Baud Rate Generator – SPBRG only (Compatible mode), SPBRGH value ignored

bit 2 Unimplemented: Read as ‘0’

bit 1 WUE: Wake-up Enable bit
Asynchronous mode:
1 = EUSART will continue to sample the RX pin – interrupt generated on falling edge; bit

cleared in hardware on following rising edge
0 = RX pin not monitored or rising edge detected

Synchronous mode:
Unused in this mode.

bit 0 ABDEN: Auto-Baud Detect Enable bit
Asynchronous mode:
1 = Enable baud rate measurement on the next character. Requires reception of a Sync field

(55h); cleared in hardware upon completion
0 = Baud rate measurement disabled or completed

Synchronous mode:
Unused in this mode.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
DS39625C-page 230 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
18.4 EUSART Synchronous
Slave Mode

Synchronous Slave mode is entered by clearing bit,
CSRC (TXSTA<7>). This mode differs from the
Synchronous Master mode in that the shift clock is sup-
plied externally at the CK pin (instead of being supplied
internally in Master mode). This allows the device to
transfer or receive data while in any low-power mode.

18.4.1 EUSART SYNCHRONOUS
SLAVE TRANSMIT

The operation of the Synchronous Master and Slave
modes are identical, except in the case of the Sleep
mode.

If two words are written to the TXREG and then the
SLEEP instruction is executed, the following will occur:

a) The first word will immediately transfer to the
TSR register and transmit.

b) The second word will remain in the TXREG
register.

c) Flag bit TXIF will not be set.
d) When the first word has been shifted out of TSR,

the TXREG register will transfer the second
word to the TSR and flag bit TXIF will now be
set.

e) If enable bit TXIE is set, the interrupt will wake the
chip from Sleep. If the global interrupt is enabled,
the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

1. Enable the synchronous slave serial port by
setting bits SYNC and SPEN and clearing bit
CSRC.

2. Clear bits CREN and SREN.
3. If interrupts are desired, set enable bit TXIE.
4. If 9-bit transmission is desired, set bit TX9.

5. Enable the transmission by setting enable bit
TXEN.

6. If 9-bit transmission is selected, the ninth bit
should be loaded in bit TX9D.

7. Start transmission by loading data to the
TXREGx register.

8. If using interrupts, ensure that the GIE and PEIE
bits in the INTCON register (INTCON<7:6>) are
set.

TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 49

PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 52

PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 52

IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 52

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 51

TXREG EUSART Transmit Register 51

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 51

BAUDCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 51

SPBRGH EUSART Baud Rate Generator Register High Byte 51

SPBRG EUSART Baud Rate Generator Register Low Byte 51

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.
Note 1: Reserved in PIC18F2X8X devices; always maintain these bits clear.
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 245

PIC18F2585/2680/4585/4680
20.0 COMPARATOR MODULE

The analog comparator module contains two compara-
tors that can be configured in a variety of ways. The
inputs can be selected from the analog inputs multiplexed
with pins RA0 through RA5, as well as the on-chip volt-
age reference (see Section 21.0 “Comparator Voltage
Reference Module”). The digital outputs (normal or
inverted) are available at the pin level and can also be
read through the control register.

The CMCON register (Register 20-1) selects the
comparator input and output configuration. Block
diagrams of the various comparator configurations are
shown in Figure 20-1.

REGISTER 20-1: CMCON: COMPARATOR CONTROL REGISTER
R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

C2OUT C1OUT C2INV C1INV CIS CM2 CM1 CM0

bit 7 bit 0

bit 7 C2OUT: Comparator 2 Output bit

When C2INV = 0:
1 = C2 VIN+ > C2 VIN-
0 = C2 VIN+ < C2 VIN-
When C2INV = 1:
1 = C2 VIN+ < C2 VIN-
0 = C2 VIN+ > C2 VIN-

bit 6 C1OUT: Comparator 1 Output bit

When C1INV = 0:
1 = C1 VIN+ > C1 VIN-
0 = C1 VIN+ < C1 VIN-
When C1INV = 1:
1 = C1 VIN+ < C1 VIN-
0 = C1 VIN+ > C1 VIN-

bit 5 C2INV: Comparator 2 Output Inversion bit

1 = C2 output inverted
0 = C2 output not inverted

bit 4 C1INV: Comparator 1 Output Inversion bit
1 = C1 Output inverted
0 = C1 Output not inverted

bit 3 CIS: Comparator Input Switch bit
When CM2:CM0 = 110:
1 = C1 VIN- connects to RD0/PSP0/C1IN+

C2 VIN- connects to RD2/PSP2/C2IN+
0 = C1 VIN- connects to RD1/PSP1/C1IN-

C2 VIN- connects to RD3/PSP3/C2IN-

bit 2-0 CM2:CM0: Comparator Mode bits

Figure 20-1 shows the Comparator modes and the CM2:CM0 bit settings.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
© 2007 Microchip Technology Inc. Preliminary DS39625C-page 257

PIC18F2585/2680/4585/4680
EXAMPLE 23-1: CHANGING TO CONFIGURATION MODE

EXAMPLE 23-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS
TX/RX BUFFERS

; Request Configuration mode.
MOVLW B’10000000’ ; Set to Configuration Mode.
MOVWF CANCON
; A request to switch to Configuration mode may not be immediately honored.
; Module will wait for CAN bus to be idle before switching to Configuration Mode.
; Request for other modes such as Loopback, Disable etc. may be honored immediately.
; It is always good practice to wait and verify before continuing.

ConfigWait:
MOVF CANSTAT, W ; Read current mode state.
ANDLW B’10000000’ ; Interested in OPMODE bits only.
TSTFSZ WREG ; Is it Configuration mode yet?
BRA ConfigWait ; No. Continue to wait...
; Module is in Configuration mode now.
; Modify configuration registers as required.
; Switch back to Normal mode to be able to communicate.

; Save application required context.
; Poll interrupt flags and determine source of interrupt
; This was found to be CAN interrupt
; TempCANCON and TempCANSTAT are variables defined in Access Bank low
MOVFF CANCON, TempCANCON ; Save CANCON.WIN bits

; This is required to prevent CANCON
; from corrupting CAN buffer access
; in-progress while this interrupt
; occurred

MOVFF CANSTAT, TempCANSTAT ; Save CANSTAT register
; This is required to make sure that
; we use same CANSTAT value rather
; than one changed by another CAN
; interrupt.

MOVF TempCANSTAT, W ; Retrieve ICODE bits
ANDLW B’00001110’
ADDWF PCL, F ; Perform computed GOTO

; to corresponding interrupt cause
BRA NoInterrupt ; 000 = No interrupt
BRA ErrorInterrupt ; 001 = Error interrupt
BRA TXB2Interrupt ; 010 = TXB2 interrupt
BRA TXB1Interrupt ; 011 = TXB1 interrupt
BRA TXB0Interrupt ; 100 = TXB0 interrupt
BRA RXB1Interrupt ; 101 = RXB1 interrupt
BRA RXB0Interrupt ; 110 = RXB0 interrupt

; 111 = Wake-up on interrupt
WakeupInterrupt

BCF PIR3, WAKIF ; Clear the interrupt flag
;
; User code to handle wake-up procedure
;
;
; Continue checking for other interrupt source or return from here
…

NoInterrupt
… ; PC should never vector here. User may

; place a trap such as infinite loop or pin/port
; indication to catch this error.
DS39625C-page 278 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
REGISTER 23-28: BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS,
HIGH BYTE IN RECEIVE MODE [0 ≤ n ≤ 5, TXnEN (BSEL0<n>) = 0](1)

REGISTER 23-29: BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS,
HIGH BYTE IN TRANSMIT MODE [0 ≤ n ≤ 5, TXnEN (BSEL0<n>) = 1](1)

REGISTER 23-30: BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS,
LOW BYTE IN RECEIVE MODE [0 ≤ n ≤ 5, TXnEN (BSEL<n>) = 0](1)

R-x R-x R-x R-x R-x R-x R-x R-x

EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8

bit 7 bit 0

bit 7-0 EID15:EID8: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8

bit 7 bit 0

bit 7-0 EID15:EID8: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

R-x R-x R-x R-x R-x R-x R-x R-x

EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0

bit 7 bit 0

bit 7-0 EID7:EID0: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
DS39625C-page 298 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
23.10 Synchronization

To compensate for phase shifts between the oscillator
frequencies of each of the nodes on the bus, each CAN
controller must be able to synchronize to the relevant
signal edge of the incoming signal. When an edge in
the transmitted data is detected, the logic will compare
the location of the edge to the expected time
(Sync_Seg). The circuit will then adjust the values of
Phase Segment 1 and Phase Segment 2 as necessary.
There are two mechanisms used for synchronization.

23.10.1 HARD SYNCHRONIZATION

Hard synchronization is only done when there is a
recessive to dominant edge during a bus Idle condition,
indicating the start of a message. After hard synchroni-
zation, the bit time counters are restarted with
Sync_Seg. Hard synchronization forces the edge
which has occurred to lie within the synchronization
segment of the restarted bit time. Due to the rules of
synchronization, if a hard synchronization occurs, there
will not be a resynchronization within that bit time.

23.10.2 RESYNCHRONIZATION

As a result of resynchronization, Phase Segment 1
may be lengthened or Phase Segment 2 may be short-
ened. The amount of lengthening or shortening of the
phase buffer segments has an upper bound given by
the Synchronization Jump Width (SJW). The value of
the SJW will be added to Phase Segment 1 (see
Figure 23-6) or subtracted from Phase Segment 2 (see
Figure 23-7). The SJW is programmable between 1 TQ

and 4 TQ.

Clocking information will only be derived from
recessive to dominant transitions. The property, that
only a fixed maximum number of successive bits have
the same value, ensures resynchronization to the bit
stream during a frame.

The phase error of an edge is given by the position of
the edge relative to Sync_Seg, measured in TQ. The
phase error is defined in magnitude of TQ as follows:

• e = 0 if the edge lies within Sync_Seg.

• e > 0 if the edge lies before the sample point.
• e < 0 if the edge lies after the sample point of the

previous bit.

If the magnitude of the phase error is less than, or equal
to, the programmed value of the Synchronization Jump
Width, the effect of a resynchronization is the same as
that of a hard synchronization.

If the magnitude of the phase error is larger than the
Synchronization Jump Width and if the phase error is
positive, then Phase Segment 1 is lengthened by an
amount equal to the Synchronization Jump Width.

If the magnitude of the phase error is larger than the
resynchronization jump width and if the phase error is
negative, then Phase Segment 2 is shortened by an
amount equal to the Synchronization Jump Width.

23.10.3 SYNCHRONIZATION RULES

• Only one synchronization within one bit time is
allowed.

• An edge will be used for synchronization only if
the value detected at the previous sample point
(previously read bus value) differs from the bus
value immediately after the edge.

• All other recessive to dominant edges fulfilling
rules 1 and 2 will be used for resynchronization,
with the exception that a node transmitting a
dominant bit will not perform a resynchronization
as a result of a recessive to dominant edge with a
positive phase error.
DS39625C-page 336 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680

COMF Complement f

Syntax: COMF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: → dest

Status Affected: N, Z

Encoding: 0001 11da ffff ffff

Description: The contents of register ‘f’ are
complemented. If ‘d’ is ‘1’, the result is
stored in W. If ‘d’ is ‘0’, the result is
stored back in register ‘f’ (default).

If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).

If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: COMF REG, 0, 0

Before Instruction
REG = 13h

After Instruction
REG = 13h
W = ECh

(f)

CPFSEQ Compare f with W, Skip if f = W

Syntax: CPFSEQ f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: (f) – (W),
skip if (f) = (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 001a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of W by
performing an unsigned subtraction.

If ‘f’ = W, then the fetched instruction is
discarded and a NOP is executed
instead, making this a two-cycle
instruction.

If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘0’, the BSR is used to select the
GPR bank (default).

If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process

Data
No

operation
If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSEQ REG, 0
NEQUAL :
EQUAL :

Before Instruction
PC Address = HERE
W = ?
REG = ?

After Instruction
If REG = W;

PC = Address (EQUAL)
If REG ≠ W;

PC = Address (NEQUAL)
DS39625C-page 378 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680

GOTO Unconditional Branch

Syntax: GOTO k

Operands: 0 ≤ k ≤ 1048575

Operation: k → PC<20:1>

Status Affected: None

Encoding:

1st word (k<7:0>)

2nd word(k<19:8>)

1110
1111

1111
k19kkk

k7kkk
kkkk

kkkk0
kkkk8

Description: GOTO allows an unconditional branch
anywhere within entire
2-Mbyte memory range. The 20-bit
value ‘k’ is loaded into PC<20:1>.
GOTO is always a two-cycle
instruction.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal
‘k’<7:0>,

No
operation

Read literal
‘k’<19:8>,

Write to PC

No
operation

No
operation

No
operation

No
operation

Example: GOTO THERE

After Instruction
PC = Address (THERE)

INCF Increment f

Syntax: INCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) + 1 → dest

Status Affected: C, DC, N, OV, Z

Encoding: 0010 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).

If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).

If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: INCF CNT, 1, 0

Before Instruction
CNT = FFh
Z = 0
C = ?
DC = ?

After Instruction
CNT = 00h
Z = 1
C = 1
DC = 1
DS39625C-page 382 Preliminary © 2007 Microchip Technology Inc.

PIC18F2585/2680/4585/4680
25.2.3 BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 5.6.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embed-
ded in opcodes are treated as literal memory locations:
either as a location in the Access Bank (a = 0), or in a
GPR bank designated by the BSR (a = 1). When the
extended instruction set is enabled and a = 0, however,
a file register argument of 5Fh or less is interpreted as
an offset from the pointer value in FSR2 and not as a
literal address. For practical purposes, this means that
all instructions that use the Access RAM bit as an
argument – that is, all bit-oriented and byte-oriented
instructions, or almost half of the core PIC18 instructions
– may behave differently when the extended instruction
set is enabled.

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between ‘C’ and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 25.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the Indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing.

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand
conditions shown in the examples are applicable to all
instructions of these types.

25.2.3.1 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, ‘f’, in the standard byte-oriented and
bit-oriented commands, is replaced with the literal off-
set value, ‘k’. As already noted, this occurs only when
‘f’ is less than or equal to 5Fh. When an offset value is
used, it must be indicated by square brackets (“[]”). As
with the extended instructions, the use of brackets indi-
cates to the compiler that the value is to be interpreted
as an index or an offset. Omitting the brackets, or using
a value greater than 5Fh within brackets, will generate
an error in the MPASM™ Assembler.

If the index argument is properly bracketed for Indexed
Literal Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
‘0’. This is in contrast to standard operation (extended
instruction set disabled) when ‘a’ is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
Assembler.

The destination argument, ‘d’, functions as before.

In the latest versions of the MPASM Assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing.

25.2.4 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the instruc-
tion set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses.

When porting an application to the PIC18F2585/2680/
4585/4680, it is very important to consider the type of
code. A large, re-entrant application that is written in ‘C’
and would benefit from efficient compilation will do well
when using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set.

Note: Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.
DS39625C-page 408 Preliminary © 2007 Microchip Technology Inc.

DS39625C-page 480 Preliminary © 2007 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Habour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

12/08/06

