

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
|                            | Active                                                                      |
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 40MHz                                                                       |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                 |
| Number of I/O              | 36                                                                          |
| Program Memory Size        | 64KB (32K x 16)                                                             |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 1K x 8                                                                      |
| RAM Size                   | 3.25K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                   |
| Data Converters            | A/D 11x10b                                                                  |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 44-TQFP                                                                     |
| Supplier Device Package    | 44-TQFP (10x10)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4680t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Register | Applicable Devices |      | Power-on Reset,<br>Brown-out Reset | MCLR Resets,<br>WDT Reset,<br>RESET Instruction,<br>Stack Resets | Wake-up via WDT<br>or Interrupt |           |                      |
|----------|--------------------|------|------------------------------------|------------------------------------------------------------------|---------------------------------|-----------|----------------------|
| CCPR1H   | 2585               | 2680 | 4585                               | 4680                                                             | XXXX XXXX                       | uuuu uuuu | uuuu uuuu            |
| CCPR1L   | 2585               | 2680 | 4585                               | 4680                                                             | XXXX XXXX                       | uuuu uuuu | uuuu uuuu            |
| CCP1CON  | 2585               | 2680 | 4585                               | 4680                                                             | 00 0000                         | 00 0000   | uu uuuu              |
| ECCPR1H  | 2585               | 2680 | 4585                               | 4680                                                             | xxxx xxxx                       | սսսս սսսս | սսսս սսսս            |
| ECCPR1L  | 2585               | 2680 | 4585                               | 4680                                                             | xxxx xxxx                       | սսսս սսսս | սսսս սսսս            |
| ECCP1CON | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | սսսս սսսս            |
| BAUDCON  | 2585               | 2680 | 4585                               | 4680                                                             | 01-0 0-00                       | 01-0 0-00 | uu uuuu              |
| ECCP1DEL | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | սսսս սսսս            |
| ECCP1AS  | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| CVRCON   | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| CMCON    | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0111                       | 0000 0111 | uuuu uuuu            |
| TMR3H    | 2585               | 2680 | 4585                               | 4680                                                             | XXXX XXXX                       | uuuu uuuu | uuuu uuuu            |
| TMR3L    | 2585               | 2680 | 4585                               | 4680                                                             | XXXX XXXX                       | uuuu uuuu | uuuu uuuu            |
| T3CON    | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | uuuu uuuu | uuuu uuuu            |
| SPBRGH   | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| SPBRG    | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| RCREG    | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| TXREG    | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| TXSTA    | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0010                       | 0000 0010 | uuuu uuuu            |
| RCSTA    | 2585               | 2680 | 4585                               | 4680                                                             | 0000 000x                       | 0000 000x | uuuu uuuu            |
| EEADRH   | 2585               | 2680 | 4585                               | 4680                                                             | 00                              | 00        | uu                   |
| EEADR    | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| EEDATA   | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| EECON2   | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | 0000 0000            |
| EECON1   | 2585               | 2680 | 4585                               | 4680                                                             | xx-0 x000                       | uu-0 u000 | uu-0 u000            |
| IPR3     | 2585               | 2680 | 4585                               | 4680                                                             | 1111 1111                       | 1111 1111 | uuuu uuuu            |
| PIR3     | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| PIE3     | 2585               | 2680 | 4585                               | 4680                                                             | 0000 0000                       | 0000 0000 | uuuu uuuu            |
| IPR2     | 2585               | 2680 | 4585                               | 4680                                                             | 11-1 1111                       | 11-1 1111 | uu-u uuuu            |
|          | 2585               | 2680 | 4585                               | 4680                                                             | 11 111-                         | 11 111-   | uu uuu-              |
| PIR2     | 2585               | 2680 | 4585                               | 4680                                                             | 00-0 0000                       | 00-0 0000 | uu-u uuuu <b>(1)</b> |
|          | 2585               | 2680 | 4585                               | 4680                                                             | 00 000-                         | 00 000-   | uu uuu-(1)           |

#### TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

**3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

**5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN<sup>™</sup> technology is set up in Mode 1 or Mode 2.

| Register              | Applicable Devices |      | Power-on Reso<br>Brown-out Res | et,<br>set | MCLR Resets,<br>WDT Reset,<br>RESET Instruction,<br>Stack Resets | Wake-up via WDT<br>or Interrupt |           |           |  |
|-----------------------|--------------------|------|--------------------------------|------------|------------------------------------------------------------------|---------------------------------|-----------|-----------|--|
| B4EIDH <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B4SIDL <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx x-xx                                                        |                                 | uuuu u-uu | uuuu u-uu |  |
| B4SIDH <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B4CON <sup>(6)</sup>  | 2585               | 2680 | 4585                           | 4680       | 0000 0000                                                        |                                 | 0000 0000 | uuuu uuuu |  |
| B3D7 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3D6 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3D5 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3D4 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3D3 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3D2 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3D1 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3D0 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3DLC <sup>(6)</sup>  | 2585               | 2680 | 4585                           | 4680       | -xxx xxxx                                                        |                                 | -uuu uuuu | -uuu uuuu |  |
| B3EIDL <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3EIDH <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3SIDL <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx x-xx                                                        |                                 | uuuu u-uu | uuuu u-uu |  |
| B3SIDH <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B3CON <sup>(6)</sup>  | 2585               | 2680 | 4585                           | 4680       | 0000 0000                                                        |                                 | 0000 0000 | uuuu uuuu |  |
| B2D7 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2D6 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2D5 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2D4 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2D3 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2D2 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2D1 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2D0 <sup>(6)</sup>   | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2DLC <sup>(6)</sup>  | 2585               | 2680 | 4585                           | 4680       | -xxx xxxx                                                        |                                 | -uuu uuuu | -uuu uuuu |  |
| B2EIDL <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2EIDH <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |
| B2SIDL <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx x-xx                                                        |                                 | uuuu u-uu | uuuu u-uu |  |
| B2SIDH <sup>(6)</sup> | 2585               | 2680 | 4585                           | 4680       | xxxx xxxx                                                        |                                 | uuuu uuuu | uuuu uuuu |  |

### TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

**3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

**5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN<sup>™</sup> technology is set up in Mode 1 or Mode 2.

## 5.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 6.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 7.0 "Data EEPROM Memory"**.

### 5.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The PIC18F2585 and PIC18F4585 each have 48 Kbytes of Flash memory and can store up to 24,576 single-word instructions. The PIC18F2680 and PIC18F4680 each have 64 Kbytes of Flash memory and can store up to 32,768 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory maps for PIC18FX585 and PIC18FX680 devices are shown in Figure 5-1.





#### 5.3 Data Memory Organization

| Note: | The operation of some aspects of data    |
|-------|------------------------------------------|
|       | memory are changed when the PIC18        |
|       | extended instruction set is enabled. See |
|       | Section 5.6 "Data Memory and the         |
|       | Extended Instruction Set" for more       |
|       | information.                             |

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each; PIC18F2585/2680/4585/4680 devices implement all 16 banks. Figure 5-5 shows the data memory organization for the PIC18F2585/2680/4585/4680 devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the BSR. **Section 5.3.2** "Access Bank" provides a detailed description of the Access RAM.

#### 5.3.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit bank pointer.

Most instructions in the PIC18 instruction set make use of the bank pointer, known as the Bank Select Register (BSR). This SFR holds the 4 Most Significant bits of a location's address; the instruction itself includes the 8 Least Significant bits. Only the four lower bits of the BSR are implemented (BSR3:BSR0). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory; the 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 5-6.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh, will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory map in Figure 5-5 indicates which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

|                                        |         | -       |               |         |         |               | 7.      |         | <u>,</u>             |                     |
|----------------------------------------|---------|---------|---------------|---------|---------|---------------|---------|---------|----------------------|---------------------|
| File Name                              | Bit 7   | Bit 6   | Bit 5         | Bit 4   | Bit 3   | Bit 2         | Bit 1   | Bit 0   | Value on<br>POR, BOR | Details<br>on page: |
| B0DLC <sup>(8)</sup><br>Receive mode   | -       | RXRTR   | RB1           | RB0     | DLC3    | DLC2          | DLC1    | DLC0    | -xxx xxxx            | 56, 300             |
| B0DLC <sup>(8)</sup><br>Transmit mode  | -       | TXRTR   | —             | —       | DLC3    | DLC2          | DLC1    | DLC0    | -x xxxx              | 56, 301             |
| B0EIDL <sup>(8)</sup>                  | EID7    | EID6    | EID5          | EID4    | EID3    | EID2          | EID1    | EID0    | xxxx xxxx            | 58, 299             |
| B0EIDH <sup>(8)</sup>                  | EID15   | EID14   | EID13         | EID12   | EID11   | EID10         | EID9    | EID8    | xxxx xxxx            | 58, 298             |
| B0SIDL <sup>(8)</sup><br>Receive mode  | SID2    | SID1    | SID0          | SRR     | EXID    | _             | EID17   | EID16   | xxxx x-xx            | 56, 297             |
| B0SIDL <sup>(8)</sup><br>Transmit mode | SID2    | SID1    | SID0          | —       | EXIDE   | _             | EID17   | EID16   | xxx- x-xx            | 56, 297             |
| B0SIDH <sup>(8)</sup>                  | SID10   | SID9    | SID8          | SID7    | SID6    | SID5          | SID4    | SID3    | xxxx xxxx            | 58, 296             |
| B0CON <sup>(8)</sup><br>Receive mode   | RXFUL   | RXM1    | RXRTRRO       | FILHIT4 | FILHIT3 | FILHIT2       | FILHIT1 | FILHITO | 0000 0000            | 58, 295             |
| B0CON <sup>(8)</sup><br>Transmit mode  | TXBIF   | TXABT   | TXLARB        | TXERR   | TXREQ   | RTREN         | TXPRI1  | TXPRI0  | 0000 0000            | 58, 295             |
| TXBIE                                  |         | _       | —             | TXB2IE  | TXB1IE  | TXB0IE        | —       | —       | 0 00                 | 58, 318             |
| BIE0                                   | B5IE    | B4IE    | B3IE          | B2IE    | B1IE    | B0IE          | RXB1IE  | RXB0IE  | 0000 0000            | 58, 318             |
| BSEL0                                  | B5TXEN  | B4TXEN  | <b>B3TXEN</b> | B2TXEN  | B1TXEN  | <b>B0TXEN</b> | —       | —       | 0000 00              | 59, 301             |
| MSEL3                                  | FIL15_1 | FIL15_0 | FIL14_1       | FIL14_0 | FIL13_1 | FIL13_0       | FIL12_1 | FIL12_0 | 0000 0000            | 59, 310             |
| MSEL2                                  | FIL11_1 | FIL11_0 | FIL10_1       | FIL10_0 | FIL9_1  | FIL9_0        | FIL8_1  | FIL8_0  | 0000 0000            | 59, 309             |
| MSEL1                                  | FIL7_1  | FIL7_0  | FIL6_1        | FIL6_0  | FIL5_1  | FIL5_0        | FIL4_1  | FIL4_0  | 0000 0101            | 59, 308             |
| MSEL0                                  | FIL3_1  | FIL3_0  | FIL2_1        | FIL2_0  | FIL1_1  | FIL1_0        | FIL0_1  | FIL0_0  | 0101 0000            | 59, 307             |
| RXFBCON7                               | F15BP_3 | F15BP_2 | F15BP_1       | F15BP_0 | F14BP_3 | F14BP_2       | F14BP_1 | F14BP_0 | 0000 0000            | 59, 305             |
| RXFBCON6                               | F13BP_3 | F13BP_2 | F13BP_1       | F13BP_0 | F12BP_3 | F12BP_2       | F12BP_1 | F12BP_0 | 0000 0000            | 59, 305             |
| RXFBCON5                               | F11BP_3 | F11BP_2 | F11BP_1       | F11BP_0 | F10BP_3 | F10BP_2       | F10BP_1 | F10BP_0 | 0000 0000            | 59, 305             |
| RXFBCON4                               | F9BP_3  | F9BP_2  | F9BP_1        | F9BP_0  | F8BP_3  | F8BP_2        | F8BP_1  | F8BP_0  | 0000 0000            | 59, 305             |
| RXFBCON3                               | F7BP_3  | F7BP_2  | F7BP_1        | F7BP_0  | F6BP_3  | F6BP_2        | F6BP_1  | F6BP_0  | 0000 0000            | 59, 305             |
| RXFBCON2                               | F5BP_3  | F5BP_2  | F5BP_1        | F5BP_0  | F4BP_3  | F4BP_2        | F4BP_1  | F4BP_0  | 0001 0001            | 59, 305             |
| RXFBCON1                               | F3BP_3  | F3BP_2  | F3BP_1        | F3BP_0  | F2BP_3  | F2BP_2        | F2BP_1  | F2BP_0  | 0001 0001            | 59, 305             |
| RXFBCON0                               | F1BP_3  | F1BP_2  | F1BP_1        | F1BP_0  | F0BP_3  | F0BP_2        | F0BP_1  | F0BP_0  | 0000 0000            | 59, 305             |
| SDFLC                                  | _       | —       | —             | FLC4    | FLC3    | FLC2          | FLC1    | FLC0    | 0 0000               | 59, 305             |
| RXFCON1                                | RXF15EN | RXF14EN | RXF13EN       | RXF12EN | RXF11EN | RXF10EN       | RXF9EN  | RXF8EN  | 0000 0000            | 59, 306             |
| RXFCON0                                | RXF7EN  | RXF6EN  | RXF5EN        | RXF4EN  | RXF3EN  | RXF2EN        | RXF1EN  | RXF0EN  | 0000 0000            | 59, 305             |
| RXF15EIDL                              | EID7    | EID6    | EID5          | EID4    | EID3    | EID2          | EID1    | EID0    | xxxx xxxx            | 59, 303             |
| RXF15EIDH                              | EID15   | EID14   | EID13         | EID12   | EID11   | EID10         | EID9    | EID8    | xxxx xxxx            | 59, 303             |
| RXF15SIDL                              | SID2    | SID1    | SID0          | —       | EXIDEN  | _             | EID17   | EID16   | xxx- x-xx            | 59, 304             |
| RXF15SIDH                              | SID10   | SID9    | SID8          | SID7    | SID6    | SID5          | SID4    | SID3    | xxxx xxxx            | 59, 303             |
| RXF14EIDL                              | EID7    | EID6    | EID5          | EID4    | EID3    | EID2          | EID1    | EID0    | xxxx xxxx            | 59, 303             |
| RXF14EIDH                              | EID15   | EID14   | EID13         | EID12   | EID11   | EID10         | EID9    | EID8    | xxxx xxxx            | 59, 303             |
| RXF14SIDL                              | SID2    | SID1    | SID0          | _       | EXIDEN  | _             | EID17   | EID16   | xxx- x-xx            | 59, 304             |
| RXF14SIDH                              | SID10   | SID9    | SID8          | SID7    | SID6    | SID5          | SID4    | SID3    | xxxx xxxx            | 59, 303             |
| RXF13EIDL                              | EID7    | EID6    | EID5          | EID4    | EID3    | EID2          | EID1    | EID0    | xxxx xxxx            | 59, 303             |
| RXF13EIDH                              | EID15   | EID14   | EID13         | EID12   | EID11   | EID10         | EID9    | EID8    | xxxx xxxx            | 59, 303             |

#### TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2585/2680/4585/4680) (CONTINUED)

**Legend:** x = unknown, u = unchanged, - = unimplemented, q = value depends on condition **Note 1:** Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X8X devices and are read as '0'. Reset values are shown for PIC18F4X8X devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN<sup>™</sup> technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X8X devices only.

#### 9.1 **INTCON Registers**

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

#### **REGISTER 9-1:** INTCON: INTERRUPT CONTROL REGISTER

| R/W-0    | R/W-0                      | R/W-0                                      | R/W-0                                  | R/W-0                                             | R/W-0                                                      | R/W-0                                                                 | R/W-x                                                                       |
|----------|----------------------------|--------------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| GIE/GIEH | PEIE/GIEL                  | TMR0IE                                     | INT0IE                                 | RBIE                                              | TMR0IF                                                     | <b>INT0IF</b>                                                         | RBIF                                                                        |
| bit 7    |                            |                                            |                                        |                                                   |                                                            |                                                                       | bit 0                                                                       |
|          |                            |                                            |                                        |                                                   |                                                            |                                                                       |                                                                             |
|          | R/W-0<br>GIE/GIEH<br>bit 7 | R/W-0 R/W-0<br>GIE/GIEH PEIE/GIEL<br>bit 7 | R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEbit 7 | R/W-0R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEINT0IEbit 7 | R/W-0R/W-0R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEINT0IERBIEbit 7 | R/W-0R/W-0R/W-0R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFbit 7 | R/W-0R/W-0R/W-0R/W-0R/W-0GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFINT0IFbit 7 |

bit 7 **GIE/GIEH:** Global Interrupt Enable bit

When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1: 1 = Enables all high priority interrupts 0 = Disables all high priority interrupts bit 6 **PEIE/GIEL:** Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts TMR0IE: TMR0 Overflow Interrupt Enable bit bit 5 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4 **INTOIE:** INTO External Interrupt Enable bit 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt bit 3 **RBIE:** RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1 INTOIF: INTO External Interrupt Flag bit

1 = The INT0 external interrupt occurred (must be cleared in software)

- 0 = The INT0 external interrupt did not occur
- bit 0 **RBIF:** RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

- 0 = None of the RB7:RB4 pins have changed state
  - Note: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

### 9.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Request (Flag) registers (PIR1, PIR2).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit, GIE (INTCON<7>).
  - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

### REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

| R/W-0                | R/W-0 | R-0  | R-0  | R/W-0 | R/W-0  | R/W-0  | R/W-0  |
|----------------------|-------|------|------|-------|--------|--------|--------|
| PSPIF <sup>(1)</sup> | ADIF  | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF |
| bit 7                |       |      |      |       |        |        | bit 0  |

|     | <ul> <li>1 = A read or a write operation has taken place (must be cleared in software)</li> <li>0 = No read or write has occurred</li> </ul>        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Note 1: This bit is reserved on PIC18F2X8X devices; always maintain this bit clear.                                                                 |
| 6   | ADIF: A/D Converter Interrupt Flag bit                                                                                                              |
|     | <ul> <li>1 = An A/D conversion completed (must be cleared in software)</li> <li>0 = The A/D conversion is not complete</li> </ul>                   |
| 5   | RCIF: EUSART Receive Interrupt Flag bit                                                                                                             |
|     | <ul> <li>1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)</li> <li>0 = The EUSART receive buffer is empty</li> </ul>      |
| 4   | TXIF: EUSART Transmit Interrupt Flag bit                                                                                                            |
|     | <ul> <li>1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)</li> <li>0 = The EUSART transmit buffer is full</li> </ul> |
| 3   | SSPIF: Master Synchronous Serial Port Interrupt Flag bit                                                                                            |
|     | <ul> <li>1 = The transmission/reception is complete (must be cleared in software)</li> <li>0 = Waiting to transmit/receive</li> </ul>               |
| 2   | CCP1IF: CCP1 Interrupt Flag bit                                                                                                                     |
|     | <u>Capture mode:</u><br>1 = A TMR1 register capture occurred (must be cleared in software)<br>0 = No TMR1 register capture occurred                 |
|     | Compare mode:                                                                                                                                       |
|     | <ul> <li>1 = A TMR1 register compare match occurred (must be cleared in software)</li> <li>0 = No TMR1 register compare match occurred</li> </ul>   |
|     | <u>PWM mode:</u><br>Unused in this mode.                                                                                                            |
| : 1 | TMR2IF: TMR2 to PR2 Match Interrupt Flag bit                                                                                                        |
|     | <ul> <li>1 = TMR2 to PR2 match occurred (must be cleared in software)</li> <li>0 = No TMR2 to PR2 match occurred</li> </ul>                         |
| 0   | TMR1IF: TMR1 Overflow Interrupt Flag bit                                                                                                            |
|     | 1 = TMR1 register overflowed (must be cleared in software)                                                                                          |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

| TABLE 10-4:         SUMMARY OF REGISTERS ASSOCIATED WITH PORTB |  |
|----------------------------------------------------------------|--|
|----------------------------------------------------------------|--|

| Name    | Bit 7     | Bit 6                                                    | Bit 5        | Bit 4   | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Reset<br>Values<br>on page |
|---------|-----------|----------------------------------------------------------|--------------|---------|--------|--------|--------|--------|----------------------------|
| PORTB   | RB7       | RB6                                                      | RB5          | RB4     | RB3    | RB2    | RB1    | RB0    | 52                         |
| LATB    | LATB Data | LATB Data Output Register (Read and Write to Data Latch) |              |         |        |        |        |        |                            |
| TRISB   | PORTB Dat | a Direction C                                            | Control Regi | ster    |        |        |        |        | 52                         |
| INTCON  | GIE/GIEH  | PEIE/GIEL                                                | TMR0IE       | INT0IE  | RBIE   | TMR0IF | INT0IF | RBIF   | 49                         |
| INTCON2 | RBPU      | INTEDG0                                                  | INTEDG1      | INTEDG2 |        | TMR0IP | _      | RBIP   | 49                         |
| INTCON3 | INT2IP    | INT1IP                                                   | —            | INT2IE  | INT1IE | —      | INT2IF | INT1IF | 49                         |
| ADCON1  |           |                                                          | VCFG1        | VCFG0   | PCFG3  | PCFG2  | PCFG1  | PCFG0  | 50                         |

**Legend:** — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

## 11.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 11-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 11-1. Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

| REGISTER IT-1. TOCON. HIMERO CONTROL REGISTER | REGISTER 11-1: | <b>T0CON: TIMER0 CONTROL</b> | . REGISTER |
|-----------------------------------------------|----------------|------------------------------|------------|
|-----------------------------------------------|----------------|------------------------------|------------|

| R/W-1  | R/W-1  | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|--------|--------|-------|-------|-------|-------|-------|-------|
| TMR0ON | T08BIT | TOCS  | T0SE  | PSA   | T0PS2 | T0PS1 | T0PS0 |
| bit 7  |        |       |       |       |       |       | bit 0 |

- bit 7 **TMR0ON:** Timer0 On/Off Control bit
  - 1 = Enables Timer0
  - 0 = Stops Timer0
- bit 6 **T08BIT**: Timer0 8-bit/16-bit Control bit
  - 1 = Timer0 is configured as an 8-bit timer/counter
  - 0 = Timer0 is configured as a 16-bit timer/counter
- bit 5 **TOCS**: Timer0 Clock Source Select bit
  - 1 = Transition on TOCKI pin
  - 0 = Internal instruction cycle clock (CLKO)
- bit 4 **TOSE**: Timer0 Source Edge Select bit
  - 1 = Increment on high-to-low transition on TOCKI pin
  - 0 = Increment on low-to-high transition on T0CKI pin
- bit 3 **PSA**: Timer0 Prescaler Assignment bit
  - 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.
  - 0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.
- bit 2-0 TOPS2:TOPS0: Timer0 Prescaler Select bits
  - 111 = 1:256 Prescale value
  - 110 = 1:128 Prescale value
  - 101 = 1:64 Prescale value
  - 100 = 1:32 Prescale value
  - 011 = 1:16 Prescale value
  - 010 = 1:8 Prescale value
  - 001 = 1:4 Prescale value
  - 000 = 1:2 Prescale value

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |



#### FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

#### 16.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 16-4). This mode can be used for half-bridge applications, as shown in Figure 16-5, or for full-bridge applications where four power switches are being modulated with two PWM signals.

In Half-Bridge Output mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits, PDC6:PDC0, sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 16.4.6** "**Programmable Dead-Band Delay**" for more details of the dead-band delay operations.

Since the P1A and P1B outputs are multiplexed with the PORTD<4> and PORTD<5> data latches, the TRISD<4> and TRISD<5> bits must be cleared to configure P1A and P1B as outputs.

#### FIGURE 16-4: HALF-BRIDGE PWM OUTPUT



### FIGURE 16-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS



## REGISTER 16-3: ECCP1AS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

|         | R/W-0                                                                                                                                                                                                                                 | R/W-0                                                        | R/W-0                                         | R/W-0                       | R/W-0        | R/W-0              | R/W-0                 | R/W-0                 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------|--------------|--------------------|-----------------------|-----------------------|
|         | ECCPASE                                                                                                                                                                                                                               | ECCPAS2                                                      | ECCPAS1                                       | ECCPAS0                     | PSSAC1       | PSSAC0             | PSSBD1 <sup>(1)</sup> | PSSBD0 <sup>(1)</sup> |
|         | bit 7                                                                                                                                                                                                                                 |                                                              |                                               |                             |              |                    |                       | bit 0                 |
|         |                                                                                                                                                                                                                                       |                                                              |                                               |                             |              |                    |                       |                       |
| bit 7   | ECCPASE:                                                                                                                                                                                                                              | ECCP1 Auto                                                   | Shutdown                                      | Event Status                | bit          |                    |                       |                       |
|         | 1 = A shutd 0 = ECCP1                                                                                                                                                                                                                 | lown event h<br>outputs are                                  | as occurred;<br>operating                     | ECCP1 outp                  | outs are in  | shutdown s         | state                 |                       |
| bit 6-4 | ECCPAS2:                                                                                                                                                                                                                              | ECCPAS0: E                                                   | CCP1 Auto-                                    | Shutdown So                 | ource Sele   | ct bits            |                       |                       |
|         | <pre>111 = RB0 or Comparator 1 or Comparator 2 110 = RB0 or Comparator 2 101 = RB0 or Comparator 1 100 = RB0 011 = Either Comparator 1 or 2 010 = Comparator 2 output 001 = Comparator 1 output 000 = Auto-shutdown is disabled</pre> |                                                              |                                               |                             |              |                    |                       |                       |
| bit 3-2 | PSSAC1:PS<br>1x = Pins A<br>01 = Drive F<br>00 = Drive F                                                                                                                                                                              | SSAC0: Pins<br>and C tri-sta<br>Pins A and C<br>Pins A and C | A and C Sh<br>te (PIC18F4<br>to '1'<br>to '0' | utdown State<br>X8X devices | e Control bi | its                |                       |                       |
| bit 1-0 | PSSBD1:PS                                                                                                                                                                                                                             | SSBD0: Pins                                                  | B and D Sh                                    | utdown State                | e Control bi | its <sup>(1)</sup> |                       |                       |
|         | 1x = Pins B<br>01 = Drive F<br>00 = Drive F                                                                                                                                                                                           | and D tri-sta<br>Pins B and D<br>Pins B and D                | te<br>to '1'<br>to '0'                        |                             |              |                    |                       |                       |
|         | Note 1:                                                                                                                                                                                                                               | Reserved on                                                  | PIC18F2X8                                     | X devices; m                | naintain the | ese bits clea      | ar.                   |                       |

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |



#### FIGURE 18-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

#### TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

| Name    | Bit 7                                         | Bit 6       | Bit 5       | Bit 4      | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Reset<br>Values<br>on page |
|---------|-----------------------------------------------|-------------|-------------|------------|-------|--------|--------|--------|----------------------------|
| INTCON  | GIE/GIEH                                      | PEIE/GIEL   | TMR0IE      | INT0IE     | RBIE  | TMR0IF | INT0IF | RBIF   | 49                         |
| PIR1    | PSPIF <sup>(1)</sup>                          | ADIF        | RCIF        | TXIF       | SSPIF | CCP1IF | TMR2IF | TMR1IF | 52                         |
| PIE1    | PSPIE <sup>(1)</sup>                          | ADIE        | RCIE        | TXIE       | SSPIE | CCP1IE | TMR2IE | TMR1IE | 52                         |
| IPR1    | PSPIP <sup>(1)</sup>                          | ADIP        | RCIP        | TXIP       | SSPIP | CCP1IP | TMR2IP | TMR1IP | 52                         |
| RCSTA   | SPEN RX9 SREN CREN ADDEN FERR OERR RX9D       |             |             |            |       |        |        |        | 51                         |
| TXREG   | EUSART Transmit Register                      |             |             |            |       |        |        |        |                            |
| TXSTA   | CSRC                                          | TX9         | TXEN        | SYNC       | SENDB | BRGH   | TRMT   | TX9D   | 51                         |
| BAUDCON | ABDOVF                                        | RCIDL       | _           | SCKP       | BRG16 | —      | WUE    | ABDEN  | 51                         |
| SPBRGH  | EUSART Baud Rate Generator Register High Byte |             |             |            |       |        |        |        | 51                         |
| SPBRG   | EUSART E                                      | Baud Rate G | enerator Re | gister Low | Byte  |        |        |        | 51                         |

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

**Note 1:** Reserved in PIC18F2X8X devices; always maintain these bits clear.

#### **TXBnSIDH: TRANSMIT BUFFER n STANDARD IDENTIFIER REGISTERS,** REGISTER 23-6: **HIGH BYTE** $[0 \le n \le 2]$

|       | -     | -     |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W-x |
| SID10 | SID9  | SID8  | SID7  | SID6  | SID5  | SID4  | SID3  |
| bit 7 |       |       |       |       |       |       | bit 0 |

**SID10:SID3:** Standard Identifier bits (if EXIDE (TXBnSIDL<3>) = 0) bit 7-0 Extended Identifier bits EID28:EID21 (if EXIDE = 1).

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### **REGISTER 23-7: TXBnSIDL: TRANSMIT BUFFER n STANDARD IDENTIFIER REGISTERS,**

| LOW BYI | $E[0 \le n \le 1]$ | 2]    |     |  |
|---------|--------------------|-------|-----|--|
| B/W-x   | B/W-x              | B/W-x | U-0 |  |

| R/W-x | R/W-x | R/W-x | U-0 | R/W-x | U-0 | R/W-x | R/W-x |
|-------|-------|-------|-----|-------|-----|-------|-------|
| SID2  | SID1  | SID0  | —   | EXIDE | _   | EID17 | EID16 |
| bit 7 |       |       |     |       |     |       | bit 0 |

| bit 7-5 | SID2:SID0: Standard Identifier bits (if EXIDE (TXBnSIDL<3>) = 0)                                                                                                |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Extended Identifier bits EID20:EID18 (if EXIDE = 1).                                                                                                            |
| bit 4   | Unimplemented: Read as '0'                                                                                                                                      |
| bit 3   | EXIDE: Extended Identifier Enable bit                                                                                                                           |
|         | <ul> <li>1 = Message will transmit extended ID, SID10:SID0 become EID28:EID18</li> <li>0 = Message will transmit standard ID, EID17:EID0 are ignored</li> </ul> |
| bit 2   | Unimplemented: Read as '0'                                                                                                                                      |
| bit 1-0 | EID17:EID16: Extended Identifier bits                                                                                                                           |
|         |                                                                                                                                                                 |
|         | Logond                                                                                                                                                          |

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### **TXBnEIDH: TRANSMIT BUFFER n EXTENDED IDENTIFIER REGISTERS,** REGISTER 23-8: **HIGH BYTE** $[0 \le n \le 2]$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9  | EID8  |
| bit 7 |       |       |       |       |       |       | bit 0 |

bit 7-0

EID15:EID8: Extended Identifier bits (not used when transmitting standard identifier message)

| Legend:                           |                  |                                    |                    |  |  |  |
|-----------------------------------|------------------|------------------------------------|--------------------|--|--|--|
| R = Readable bit W = Writable bit |                  | U = Unimplemented bit, read as '0' |                    |  |  |  |
| -n = Value at POR                 | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

|         | R/P-0                                                                                                    | R/P-0          | U-0            | U-0            | R/P-0         | R/P-1       | R/P-1        | R/P-1   |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|---------------|-------------|--------------|---------|--|--|--|
|         | IESO                                                                                                     | FCMEN          | —              |                | FOSC3         | FOSC2       | FOSC1        | FOSC0   |  |  |  |
|         | bit 7                                                                                                    |                |                |                |               |             |              | bit 0   |  |  |  |
|         |                                                                                                          |                |                |                |               |             |              |         |  |  |  |
| bit 7   | IESO: Inter                                                                                              | rnal/External  | Oscillator S   | Switchover b   | it            |             |              |         |  |  |  |
|         | <ul><li>1 = Oscillator Switchover mode enabled</li><li>0 = Oscillator Switchover mode disabled</li></ul> |                |                |                |               |             |              |         |  |  |  |
| bit 6   | FCMEN: Fail-Safe Clock Monitor Enable bit                                                                |                |                |                |               |             |              |         |  |  |  |
|         | 1 = Fail-Safe Clock Monitor enabled                                                                      |                |                |                |               |             |              |         |  |  |  |
|         | 0 = Fail-Safe Clock Monitor disabled                                                                     |                |                |                |               |             |              |         |  |  |  |
| bit 5-4 | Unimplemented: Read as '0'                                                                               |                |                |                |               |             |              |         |  |  |  |
| bit 3-0 | FOSC3:FOSC0: Oscillator Selection bits                                                                   |                |                |                |               |             |              |         |  |  |  |
|         | 11xx = <b>Ex</b>                                                                                         | ternal RC os   | cillator, CL   | O function o   | on RA6        |             |              |         |  |  |  |
|         | 101x = Ext                                                                                               | ternal RC os   | cillator, CL   | CO function o  | on RA6        |             | D 4 7        |         |  |  |  |
|         | 1001 = Interior                                                                                          | ernal oscillat | or block, CL   | KO function    | on RA6, pc    |             | n RA7        |         |  |  |  |
|         | 1000 = IIII0111 = Ext                                                                                    | ternal RC os   | cillator, port | function on    | RA6           |             |              |         |  |  |  |
|         | 0110 = HS                                                                                                | oscillator, F  | LL enabled     | (Clock Freq    | uency = $4 x$ | FOSC1)      |              |         |  |  |  |
|         | 0101 = EC                                                                                                | oscillator, p  | ort function   | on RA6         | -             | ,           |              |         |  |  |  |
|         | 0100 = EC                                                                                                | coscillator, C | LKO functio    | on on RA6      |               |             |              |         |  |  |  |
|         | 0011 = Ext                                                                                               | ternal RC os   | cillator, CLF  | CO function of | on RA6        |             |              |         |  |  |  |
|         | 0010 = HS                                                                                                | oscillator     |                |                |               |             |              |         |  |  |  |
|         | 0001 = X1<br>0000 = LP                                                                                   | oscillator     |                |                |               |             |              |         |  |  |  |
|         |                                                                                                          |                |                |                |               |             |              |         |  |  |  |
|         | Legend:                                                                                                  |                |                |                |               |             |              |         |  |  |  |
|         | R = Reada                                                                                                | ıble bit       | P = Progr      | ammable bit    | U = Unir      | nplemented  | bit, read as | '0'     |  |  |  |
|         | -n = Value                                                                                               | when device    | e is unprogra  | ammed          | u = Uncł      | nanged from | n programme  | d state |  |  |  |

## REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

| BNC                       | v                | Branch if                                                                                 | Not Overflo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w                                                                     | BNZ              | Branch i                                                                          | f Not Zero                                                                                                                                                                                                                 |             |  |  |
|---------------------------|------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Syntax:                   |                  | BNOV n                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Syntax:          | BNZ n                                                                             | BNZ n                                                                                                                                                                                                                      |             |  |  |
| Oper                      | ands:            | -128 ≤ n ≤ 127                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Operands:        | -128 ≤ n ≤                                                                        | 127                                                                                                                                                                                                                        |             |  |  |
| Operation:                |                  | if Overflow bit is '0'<br>(PC) + 2 + 2n $\rightarrow$ PC                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Operation:       | if Zero bit i<br>(PC) + 2 +                                                       | s '0'<br>2n → PC                                                                                                                                                                                                           |             |  |  |
| Status Affected:          |                  | None                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Status Affected: | None                                                                              |                                                                                                                                                                                                                            |             |  |  |
| Encoding:<br>Description: |                  | 1110                                                                                      | 0101 nni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n nnnn                                                                | Encodina:        | 1110                                                                              | 0001 nm                                                                                                                                                                                                                    | nn nnnn     |  |  |
| Description:              |                  | If the Overfl<br>program wil                                                              | low bit is '0', the low bit is the l | nen the                                                               | Description:     | If the Zero<br>will branch                                                        | bit is '0', then t                                                                                                                                                                                                         | he program  |  |  |
|                           |                  | The 2's con<br>added to the<br>incremented<br>instruction,<br>PC + 2 + 2r<br>two-cycle in | nplement num<br>e PC. Since th<br>d to fetch the r<br>the new addre<br>n. This instruct<br>nstruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ber '2n' is<br>e PC will have<br>hext<br>ess will be<br>ion is then a |                  | The 2's co<br>added to th<br>incremente<br>instruction<br>PC + 2 + 2<br>two-cycle | The 2's complement number '2n' is<br>added to the PC. Since the PC will have<br>incremented to fetch the next<br>instruction, the new address will be<br>PC + 2 + 2n. This instruction is then a<br>two-cycle instruction. |             |  |  |
| Word                      | ls:              | 1                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Words:           | 1                                                                                 |                                                                                                                                                                                                                            |             |  |  |
| Cycle                     | es:              | 1(2)                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Cycles:          | 1(2)                                                                              |                                                                                                                                                                                                                            |             |  |  |
| Q C                       | vcle Activity:   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Q Cycle Activity | <i>I</i> :                                                                        |                                                                                                                                                                                                                            |             |  |  |
| lf Ju                     | mp:              |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | If Jump:         | ,-                                                                                |                                                                                                                                                                                                                            |             |  |  |
|                           | Q1               | Q2                                                                                        | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q4                                                                    | Q1               | Q2                                                                                | Q3                                                                                                                                                                                                                         | Q4          |  |  |
|                           | Decode           | Read literal<br>'n'                                                                       | Process<br>Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Write to PC                                                           | Decode           | Read literal<br>'n'                                                               | Process<br>Data                                                                                                                                                                                                            | Write to PC |  |  |
|                           | No               | No                                                                                        | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                                                                    | No               | No                                                                                | No                                                                                                                                                                                                                         | No          |  |  |
|                           | operation        | operation                                                                                 | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | operation                                                             | operation        | n operation                                                                       | operation                                                                                                                                                                                                                  | operation   |  |  |
| If No                     | o Jump:          |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | If No Jump:      |                                                                                   |                                                                                                                                                                                                                            |             |  |  |
|                           | Q1               | Q2                                                                                        | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q4                                                                    | Q1               | Q2                                                                                | Q3                                                                                                                                                                                                                         | Q4          |  |  |
|                           | Decode           | Read literal                                                                              | Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                                                                    | Decode           | Read literal                                                                      | Process                                                                                                                                                                                                                    | No          |  |  |
|                           |                  | 'n'                                                                                       | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | operation                                                             |                  | 'n'                                                                               | Data                                                                                                                                                                                                                       | operation   |  |  |
| <u>Exan</u>               | <u>iple:</u>     | HERE                                                                                      | BNOV Jump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       | Example:         | HERE                                                                              | BNZ Jump                                                                                                                                                                                                                   |             |  |  |
|                           | Before Instruc   | tion                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Before Inst      | ruction                                                                           |                                                                                                                                                                                                                            |             |  |  |
|                           | PC               | = ad                                                                                      | dress (HERE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                                     | PC               | = a                                                                               | ddress (HERE)                                                                                                                                                                                                              |             |  |  |
|                           | After Instructio | on                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | After Instru     | ction                                                                             |                                                                                                                                                                                                                            |             |  |  |
|                           | It Overflo<br>PC | w = 0;<br>= ade                                                                           | dress (Jumo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )                                                                     | If Zero<br>F     | PC = 0                                                                            | ddress (Jump)                                                                                                                                                                                                              |             |  |  |
|                           | If Overflo       | w = 1;                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | If Zero          | = 1;                                                                              |                                                                                                                                                                                                                            |             |  |  |
|                           | PC               | = ad                                                                                      | dress (HERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + 2)                                                                  | F                | PC = a                                                                            | ddress (HERE                                                                                                                                                                                                               | + 2)        |  |  |

| втс                   | ì                 | Bit Toggl                      | e f                                       |                               | BOV         | 1                         | Branch if                                                      | Overflow                                                 |             |  |
|-----------------------|-------------------|--------------------------------|-------------------------------------------|-------------------------------|-------------|---------------------------|----------------------------------------------------------------|----------------------------------------------------------|-------------|--|
| Syntax: BTG f, b {,a} |                   | Synta                          | ax:                                       | BOV n                         |             |                           |                                                                |                                                          |             |  |
| Oper                  | ands:             | $0 \le f \le 255$              |                                           |                               | Oper        | ands:                     | -128 ≤ n ≤ 127                                                 |                                                          |             |  |
|                       |                   | 0 ≤ b < 7<br>a ∈ [0,1]         |                                           |                               | Oper        | Operation:                |                                                                | if Overflow bit is '1'<br>(PC) + 2 + 2n $\rightarrow$ PC |             |  |
| Operation:            |                   | $(\overline{f} < b >) \to f <$ | :b>                                       |                               | Statu       | Status Affected: None     |                                                                |                                                          |             |  |
| Statu                 | is Affected:      | None                           |                                           |                               | Enco        | dina:                     | 1110                                                           | 0100 nm                                                  | nn nnnn     |  |
| Encoding:             |                   | 0111 bbba ffff ffff            |                                           |                               | Desc        | rintion:                  | If the Overf                                                   | low bit is '1' th                                        | nen the     |  |
| Description:          |                   | Bit 'b' in da                  | ta memory loc                             | ation 'f' is                  | 2000        | npuon.                    | program will branch.                                           |                                                          |             |  |
|                       |                   | If 'a' is '0'. t               | he Access Ba                              | nk is selected.               |             |                           | The 2's complement number '2n' is                              |                                                          |             |  |
|                       |                   | If 'a' is '1', t<br>GPR bank   | he BSR is use<br>(default).               | d to select the               |             | n the next<br>ess will be |                                                                |                                                          |             |  |
|                       |                   | lf 'a' is 'o' a<br>set is enab | nd the extend                             | ed instruction                |             |                           | PC + 2 + 2n. This instruction is then a two-cycle instruction. |                                                          |             |  |
|                       |                   | in Indexed                     | Literal Offset a                          | addressing                    | Word        | Words: 1                  |                                                                |                                                          |             |  |
|                       |                   | mode wher<br>Section 25        | never f ≤ 95 (5<br>5 <b>.2.3 "Byte-Or</b> | Fh). See<br><b>iented and</b> | Cycle       | Cycles: 1(2)              |                                                                |                                                          |             |  |
|                       |                   | Bit-Oriente                    | ed Instruction                            | s in Indexed                  | QC          | ycle Activity:            |                                                                |                                                          |             |  |
|                       |                   | Literal Off                    | set Mode" for                             | details.                      | lf Ju       | mp:                       |                                                                |                                                          |             |  |
| Word                  | ls:               | 1                              |                                           |                               |             | Q1                        | Q2                                                             | Q3                                                       | Q4          |  |
| Cycle                 | es:               | 1                              |                                           |                               |             | Decode                    | Read literal<br>'n'                                            | Process<br>Data                                          | Write to PC |  |
| QC                    | ycle Activity:    |                                |                                           |                               |             | No                        | No                                                             | No                                                       | No          |  |
|                       | Q1                | Q2                             | Q3                                        | Q4                            |             | operation                 | operation                                                      | operation                                                | operation   |  |
|                       | Decode            | Read                           | Process                                   | Write                         | lf No       | o Jump:                   |                                                                |                                                          |             |  |
|                       |                   | register i                     | Dala                                      | register i                    |             | Q1                        | Q2                                                             | Q3                                                       | Q4          |  |
| Evon                  | nnlo:             | ת מיתית                        |                                           | <b>`</b>                      |             | Decode                    | Read literal                                                   | Process                                                  | No          |  |
|                       |                   | BIG P                          | ORIC, 4, 0                                | J                             | ļ           |                           | 'n'                                                            | Data                                                     | operation   |  |
|                       |                   | - 0111                         | 0101 <b>[75b]</b>                         |                               |             |                           |                                                                |                                                          |             |  |
|                       | After Instruction | on:                            | 0101 [ <b>/</b> 01]                       |                               | <u>Exam</u> | <u>nple:</u>              | HERE                                                           | BOV Jump                                                 |             |  |
|                       | PORTC             | = 0110 0                       | 0101 <b>[65h]</b>                         |                               |             | Before Instruc            | ction                                                          |                                                          |             |  |
|                       |                   |                                |                                           |                               |             | PC                        | = ad                                                           | dress (HERE                                              | )           |  |
|                       |                   |                                |                                           |                               |             | After Instruction         | on                                                             |                                                          |             |  |
|                       |                   |                                |                                           |                               |             | If Overflo                | ow = 1;<br>- ad                                                | dress (Jump                                              | )           |  |
|                       |                   |                                |                                           |                               |             | If Overflo                | w = 0;                                                         |                                                          | ,           |  |
|                       |                   |                                |                                           |                               |             | PC                        | = ad                                                           | dress (HERE                                              | + 2)        |  |

| RETFIE Return from Interrupt |                                   | RET                                                                                                                | LW                                             | Return Li                                   | Return Literal to W |                                      |                                                                                                 |                                                                                |                                     |  |  |
|------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|---------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|--|--|
| Syntax:                      |                                   | RETFIE {s}                                                                                                         |                                                |                                             | Synt                | ax:                                  | RETLW k                                                                                         | RETLW k                                                                        |                                     |  |  |
| Operands:                    |                                   | s ∈ [0,1]                                                                                                          |                                                |                                             | Ope                 | Operands: 0                          |                                                                                                 |                                                                                |                                     |  |  |
| Operation:                   |                                   | $(TOS) \rightarrow P$<br>1 $\rightarrow$ GIE/G<br>if s = 1                                                         | C,<br>IEH or PEIE/G                            | iIEL,                                       | Ope                 | Operation:                           |                                                                                                 | $k \rightarrow W$ ,<br>(TOS) $\rightarrow$ PC,<br>PCLATU, PCLATH are unchanged |                                     |  |  |
|                              |                                   | $(WS) \rightarrow W,$                                                                                              |                                                |                                             | Statu               | is Affected:                         | None                                                                                            |                                                                                |                                     |  |  |
|                              |                                   | $(BSRS) \rightarrow$                                                                                               | BSR,                                           |                                             | Enco                | oding:                               | 0000                                                                                            | 1100 kk                                                                        | kk kkkk                             |  |  |
|                              |                                   | PCLATU, F                                                                                                          | CLATH are ur                                   | nchanged.                                   | Desc                | cription:                            | W is loaded                                                                                     | d with the eigh                                                                | t-bit literal 'k'.                  |  |  |
| Statu                        | is Affected:                      | GIE/GIEH,                                                                                                          | PEIE/GIEL.                                     |                                             |                     |                                      | The progra                                                                                      | m counter is lo                                                                | baded from the                      |  |  |
| Enco<br>Desc                 | oding:<br>cription:               | 0000 0000 0001 000s<br>Return from Interrupt. Stack is popped                                                      |                                                |                                             |                     |                                      | top of the stack (the return address).<br>The high address latch (PCLATH)<br>remains unchanged. |                                                                                |                                     |  |  |
|                              |                                   | and Top-of-                                                                                                        | Stack (TOS) is                                 | s loaded into                               | Wor                 | ds:                                  | 1                                                                                               | •                                                                              |                                     |  |  |
|                              |                                   | the PC. Interrupts are enabled by setting either the high or low priority                                          |                                                |                                             | Cycl                | Cvcles:                              |                                                                                                 |                                                                                |                                     |  |  |
|                              |                                   | global inter                                                                                                       | global interrupt enable bit. If $s' = 1$ , the |                                             |                     | ycle Activity:                       |                                                                                                 |                                                                                |                                     |  |  |
|                              |                                   | CONTENTS OF                                                                                                        | contents of the shadow registers, WS,          |                                             |                     | Q1                                   | Q2                                                                                              | Q3                                                                             | Q4                                  |  |  |
|                              |                                   | their corresponding registers, W,<br>STATUS and BSR. If 's' = 0, no update<br>of these registers occurs (default). |                                                |                                             |                     | Decode                               | Read<br>literal 'k'                                                                             | Process<br>Data                                                                | POP PC<br>from stack,<br>Write to W |  |  |
| Word                         | ls:                               | 1                                                                                                                  | 1                                              |                                             |                     | No                                   | No                                                                                              | No                                                                             | No                                  |  |  |
| Cvcle                        | es:                               | 2                                                                                                                  |                                                |                                             |                     | operation                            | operation                                                                                       | operation                                                                      | operation                           |  |  |
| QC                           | vcle Activitv:                    |                                                                                                                    |                                                |                                             | Eva                 | nnlo:                                |                                                                                                 |                                                                                |                                     |  |  |
|                              | Q1                                | Q2                                                                                                                 | Q3                                             | Q4                                          |                     | CALL TABL                            | E ; W cont                                                                                      | ains table                                                                     |                                     |  |  |
|                              | Decode                            | No<br>operation                                                                                                    | No<br>operation                                | POP PC<br>from stack<br>Set GIEH or<br>GIEL |                     | :                                    | ; offset<br>; W now<br>; table                                                                  | value<br>has<br>value                                                          |                                     |  |  |
|                              | No<br>operation                   | No<br>operation                                                                                                    | No<br>operation                                | No<br>operation                             | TAB.                | LE<br>ADDWF PCL<br>RETLW k0          | ; W = of<br>; Begin                                                                             | fset<br>table                                                                  |                                     |  |  |
| Exan                         | nple:                             | RETFIE                                                                                                             | 1                                              |                                             |                     | KEILW KI                             | ;                                                                                               |                                                                                |                                     |  |  |
|                              | After Interrupt<br>PC<br>W<br>BSR |                                                                                                                    | = TOS<br>= WS<br>= BSRS                        | 166                                         |                     | :<br>RETLW kn<br>Before Instruc<br>W | ; End of<br>ction<br>= 07h                                                                      | table                                                                          |                                     |  |  |
|                              | GIE/GIE                           | H, PEIE/GIEL                                                                                                       | = 5 ATC<br>= 1                                 | 100                                         |                     | After Instruction<br>W = value of kn |                                                                                                 |                                                                                |                                     |  |  |



## TABLE 27-17: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

| Param<br>No. | Symbol                | Characteristic                                                         | Min                            | Max          | Units | Conditions |            |
|--------------|-----------------------|------------------------------------------------------------------------|--------------------------------|--------------|-------|------------|------------|
| 70           | TssL2scH,<br>TssL2scL | $\overline{SS} \downarrow$ to SCK $\downarrow$ or SCK $\uparrow$ Input | Тсү                            |              | ns    |            |            |
| 71           | TscH                  | SCK Input High Time                                                    | 1.25 Tcy + 30                  |              | ns    |            |            |
| 71A          |                       |                                                                        | Single Byte                    |              |       | ns         | (Note 1)   |
| 72           | TscL                  | SCK Input Low Time                                                     | CK Input Low Time Continuous 1 |              |       | ns         |            |
| 72A          |                       |                                                                        | Single Byte                    |              |       | ns         | (Note 1)   |
| 73A          | Тв2в                  | Last Clock Edge of Byte 1 to the fIrst                                 | Clock Edge of Byte 2           | 1.5 Tcy + 40 |       | ns         | (Note 2)   |
| 74           | TscH2DIL,<br>TscL2DIL | Hold Time of SDI Data Input to SCI                                     | K Edge                         | 100          |       | ns         |            |
| 75           | TDOR                  | SDO Data Output Rise Time                                              | PIC18FXXXX                     | —            | 25    | ns         |            |
|              |                       |                                                                        | PIC18LFXXXX                    |              | 45    | ns         | VDD = 2.0V |
| 76           | TDOF                  | SDO Data Output Fall Time                                              |                                | _            | 25    | ns         |            |
| 77           | TssH2doZ              | SS↑ to SDO Output High-Impedan                                         | ce                             | 10           | 50    | ns         |            |
| 80           | TscH2doV,             | SDO Data Output Valid after SCK                                        | PIC18FXXXX                     | _            | 50    | ns         |            |
|              | TscL2DoV              | Edge                                                                   | PIC18LFXXXX                    | _            | 100   | ns         | VDD = 2.0V |
| 82           | TssL2doV              | SDO Data Output Valid after $\overline{\text{SS}}\downarrow$           | PIC18FXXXX                     | _            | 50    | ns         |            |
|              |                       | Edge                                                                   | PIC18LFXXXX                    | _            | 100   | ns         | VDD = 2.0V |
| 83           | TscH2ssH,<br>TscL2ssH | SS ↑ after SCK Edge                                                    |                                | 1.5 Tcy + 40 | —     | ns         |            |

**Note 1:** Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

### 29.2 Package Details

The following sections give the technical details of the packages.

### 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | INCHES           |       |          |       |
|----------------------------|------------------|-------|----------|-------|
| Dimensior                  | Dimension Limits |       |          |       |
| Number of Pins             | Ν                |       | 28       |       |
| Pitch                      | е                |       | .100 BSC |       |
| Top to Seating Plane       | Α                | -     | -        | .200  |
| Molded Package Thickness   | A2               | .120  | .135     | .150  |
| Base to Seating Plane      | A1               | .015  | -        | -     |
| Shoulder to Shoulder Width | E                | .290  | .310     | .335  |
| Molded Package Width       | E1               | .240  | .285     | .295  |
| Overall Length             | D                | 1.345 | 1.365    | 1.400 |
| Tip to Seating Plane       | L                | .110  | .130     | .150  |
| Lead Thickness             | с                | .008  | .010     | .015  |
| Upper Lead Width           | b1               | .040  | .050     | .070  |
| Lower Lead Width           | b                | .014  | .018     | .022  |
| Overall Row Spacing §      | eB               | -     | -        | .430  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B