E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Infrared, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l101f2p3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9	Electr	rical par	ameters	37
	9.1	Parame	ter conditions	37
		9.1.1	Minimum and maximum values	. 37
		9.1.2	Typical values	. 37
		9.1.3	Typical curves	. 37
		9.1.4	Loading capacitor	. 37
		9.1.5	Pin input voltage	. 38
	9.2	Absolute	e maximum ratings	38
	9.3	Operatir	ng conditions	40
		9.3.1	General operating conditions	. 40
		9.3.2	Power-up / power-down operating conditions	. 41
		9.3.3	Supply current characteristics	. 41
		9.3.4	Clock and timing characteristics	. 45
		9.3.5	Memory characteristics	. 47
		9.3.6	I/O port pin characteristics	. 48
		9.3.7	Communication interfaces	. 55
		9.3.8	Comparator characteristics	
		9.3.9	EMC characteristics	
	9.4	Thermal	characteristics	62
10	Packa	age info	rmation	64
	10.1	UFQFPI	N32 package information	64
	10.2	LQFP32	2 package information	67
	10.3	UFQFPI	N28 package information	70
	10.4	UFQFPI	N20 package information	73
	10.5	TSSOP	20 package information	76
11	Devic	e orderi	ing information	79
12	STM8	develo	pment tools	80
	12.1	Emulatio	on and in-circuit debugging tools	80
	12.2	Software	e tools	81
		12.2.1	STM8 toolset	. 81
		12.2.2	C and assembly toolchains	. 81
	12.3	Program	nming tools	81

1 Introduction

This datasheet provides the STM8L101x1 STM8L101x2 STM8L101x3 pinout, ordering information, mechanical and electrical device characteristics.

For complete information on the STM8L101x1 STM8L101x2 STM8L101x3 microcontroller memory, registers and peripherals, please refer to the STM8L reference manual. The STM8L101x1 STM8L101x2 STM8L101x3devices are members of the STM8L low-power 8-bit family. They are

referred to as low-density devices in the STM8L101x1 STM8L101x2 STM8L101x3 microcontroller family reference manual (RM0013) and in the STM8L Flash programming manual (PM0054).

All devices of the SM8L product line provide the following benefits:

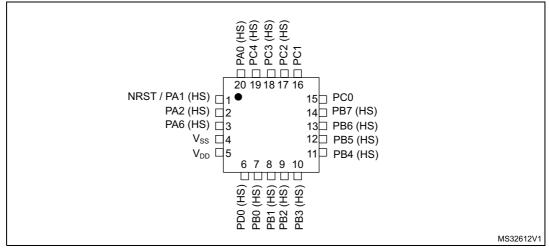
- Reduced system cost
 - Up to 8 Kbytes of low-density embedded Flash program memory including up to 2 Kbytes of data EEPROM
 - High system integration level with internal clock oscillators and watchdogs.
 - Smaller battery and cheaper power supplies.
- Low power consumption and advanced features
 - Up to 16 MIPS at 16 MHz CPU clock frequency
 - Less than 150 μA/MH, 0.8 μA in Active-halt mode, and 0.3 μA in Halt mode
 - Clock gated system and optimized power management
- Short development cycles
 - Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals.
 - Full documentation and a wide choice of development tools
- Product longevity
 - Advanced core and peripherals made in a state-of-the art technology
 - Product family operating from 1.65 V to 3.6 V supply.

2 Description

The STM8L101x1 STM8L101x2 STM8L101x3 low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming.

All STM8L101xx microcontrollers feature low power low-voltage single-supply program Flash memory. The 8-Kbyte devices embed data EEPROM.


The STM8L101xx low power family is based on a generic set of state-of-the-art peripherals. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

All STM8L low power products are based on the same architecture with the same memory mapping and a coherent pinout.

Features	STM8L101xx							
Flash	2 Kbytes of Flash program memory	8 Kbytes of Flash program memory including up to 2 Kbytes of Data EEPROM						
RAM		1.5 Kbytes						
Peripheral functions	Independent watchdog (IWDG), Auto-wakeup unit (AWU), Beep, Serial peripheral interface (SPI), Inter-integrated circuit (I ² C), Universal synchronous / asynchronous receiver / transmitter (USART), 2 comparators, Infrared (IR) interface							
Timers	Т	wo 16-bit timers, one 8-bit time	er					
Operating voltage		1.65 to 3.6 V						
Operating temperature	-40 to	+85 °C	-40 to +85 °C or -40 to +125 °C					
Packages	UFQFPN20 3x3	UFQFPN28 4x 4 UFQFPN20 3x3 TSSOP20 4.4 x 6.4	UFQFPN28 4x4 UFQFPN20 3x3 UFQFPN32 LQFP32					

Table 2. STM8L101xx device feature summary

Figure 3. 20-pin UFQFPN package pinout for STM8L101F1U6ATR, STM8L101F2U6ATR and STM8L101F3U6ATR part numbers

1. Please refer to the warning below.

2. HS corresponds to 20 mA high sink/source capability.

3. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the STM8L reference manual (RM0013).

Warning: For the STM8L101F1U6ATR, STM8L101F2U6ATR and STM8L101F3U6ATR part numbers (devices with COMP_REF pin), all ports available on 32-pin packages must be considered as active ports. To avoid spurious effects, the user has to configure them as input pull-up. A small increase in consumption (typ. < 300 μA) may occur during the power up and reset phase until these ports are properly configured.

	Pi	n nu	ımb	er					Input			utput		,	
standard UFQFPN20	UFQFPN20 with COMP_REF ⁽¹⁾	TSSOP20	standard UFQFPN28	UFQFPN28 with COMP_REF ⁽¹⁾	UFQFPN32 or LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink/source	Q	dd	Main function (after reset)	Alternate function
7	7	10	12	12	13	PB0/TIM2_CH1/ COMP1_CH1 ⁽³⁾	I/O	X ⁽³⁾	X ⁽³⁾	х	HS	х	х	Port B0	Timer 2 - channel 1 / Comparator 1 - channel 1
8	8	11	13	13	14	PB1/TIM3_CH1/ COMP1_CH2	I/O	x	х	х	HS	x	х	Port B1	Timer 3 - channel 1 / Comparator 1 - channel 2
9	9	12	14	14	15	PB2/ TIM2_CH2/ COMP2_CH1/	I/O	x	х	х	HS	x	х	Port B2	Timer 2 - channel 2 / Comparator 2 - channel 1
10	10	13	15	15	16	PB3/TIM2_ETR/ COMP2_CH2	I/O	x	х	х	HS	x	х	Port B3	Timer 2 - trigger / Comparator 2 - channel 2
11	11	14	16	16	17	PB4/SPI_NSS ⁽³⁾	I/O	X ⁽³⁾	X ⁽³⁾	х	HS	х	х	Port B4	SPI master/slave select
12	12	15	17	17	18	PB5/SPI_SCK	I/O	Х	Х	Х	HS	Х	Х	Port B5	SPI clock
13	13	16	18	18	19	PB6/SPI_MOSI	I/O	x	х	х	HS	х	х	Port B6	SPI master out/ slave in
14	14	17	19	19	20	PB7/SPI_MISO	I/O	x	х	Х	HS	х	х	Port B7	SPI master in/ slave out
-	-	-	20	20	21	PD4	I/O	X	Х	Х	HS	Х	х	Port D4	-
-	-	-	-	-	22	PD5	I/O	X	Х	Х	HS	Х	Х	Port D5	-
-	-	-	-	-	23	PD6	I/O	X	Х	Х	HS	Х	Х	Port D6	-
-	-	-	-	-	24	PD7	I/O	X	Х	Х	HS	Х	Х	Port D7	-
15	15	18	21	21	25	PC0/I2C_SDA	I/O	X	-	Х	-	T ⁽⁴⁾		Port C0	I2C data
16	16	19	22	22	26	PC1/I2C_SCL	I/O	Х	-	Х	-	T ⁽⁴⁾		Port C1	I2C clock
17	17	20	23	23	27	PC2/USART_RX	I/O	Х	Х	Х	HS	Х	Х	Port C2	USART receive
18	18	1	24	24	28	PC3/USART_TX	I/O	Х	Х	Х	HS	Х	Х	Port C3	USART transmit
19	19	2	25	25	29	PC4/USART_CK/ CCO	I/O	x	х	х	HS	х	х	Port C4	USART synchronous clock / Configurable clock output

Table 4. STM8L101xx pin description (continued)

	Table 7. General hardware register map (continued)								
Address	Block	Register label	Register name	Reset status					
0x00 5280		TIM3_CR1	TIM3 control register 1	0x00					
0x00 5281		TIM3_CR2	TIM3 control register 2	0x00					
0x00 5282		TIM3_SMCR	TIM3 slave mode control register	0x00					
0x00 5283		TIM3_ETR	TIM3 external trigger register	0x00					
0x00 5284		TIM3_IER	TIM3 interrupt enable register	0x00					
0x00 5285		TIM3_SR1	TIM3 status register 1	0x00					
0x00 5286		TIM3_SR2	TIM3 status register 2	0x00					
0x00 5287		TIM3_EGR	TIM3 event generation register	0x00					
0x00 5288		TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00					
0x00 5289		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00					
0x00 528A	ТІМЗ	TIM3_CCER1	TIM3 capture/compare enable register 1	0x00					
0x00 528B	TIMO	TIM3_CNTRH	TIM3 counter high	0x00					
0x00 528C		TIM3_CNTRL TIM3 counter low							
0x00 528D		TIM3_PSCR	TIM3 prescaler register	0x00					
0x00 528E		TIM3_ARRH	TIM3 auto-reload register high	0xFF					
0x00 528F		TIM3_ARRL	TIM3 auto-reload register low	0xFF					
0x00 5290		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00					
0x00 5291		TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00					
0x00 5292		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00					
0x00 5293		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00					
0x00 5294		TIM3_BKR	TIM3 break register	0x00					
0x00 5295		TIM3_OISR	TIM3 output idle state register	0x00					
0x00 5296 to 0x00 52DF		F	Reserved area (74 bytes)						
0x00 52E0		TIM4_CR1	TIM4 control register 1	0x00					
0x00 52E1		TIM4_CR2	TIM4 control register 2	0x00					
0x00 52E2		TIM4_SMCR	TIM4 Slave mode control register	0x00					
0x00 52E3		TIM4_IER	TIM4 interrupt enable register	0x00					
0x00 52E4	TIM4	TIM4_SR1	TIM4 Status register 1	0x00					
0x00 52E5		TIM4_EGR	TIM4 event generation register	0x00					
0x00 52E6		TIM4_CNTR	TIM4 counter	0x00					
0x00 52E7		TIM4_PSCR	TIM4 prescaler register	0x00					
0x00 52E8		TIM4_ARR	TIM4 auto-reload register low	0xFF					

 Table 7. General hardware register map (continued)

6 Interrupt vector mapping

	Table 9. Interrupt mapping										
IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode)	Vector address				
-	RESET	Reset	Yes	Yes	Yes	Yes	0x00 8000				
-	TRAP	Software interrupt	-	-	-	-	0x00 8004				
0	-	Reserved	-	-	-	-	0x00 8008				
1	FLASH	EOP/WR_PG_DIS	-	-	Yes	Yes ⁽¹⁾	0x00 800C				
2-3	-	Reserved	-	-	-	-	0x00 8010 -0x00 8017				
4	AWU	Auto wakeup from Halt	-	Yes	Yes	Yes ⁽¹⁾	0x00 8018				
5	-	Reserved	-	-	-	-	0x00 801C				
6	EXTIB	External interrupt port B	Yes	Yes	Yes	Yes	0x00 8020				
7	EXTID	External interrupt port D	Yes	Yes	Yes	Yes	0x00 8024				
8	EXTI0	External interrupt 0	Yes	Yes	Yes	Yes	0x00 8028				
9	EXTI1	External interrupt 1	Yes	Yes	Yes	Yes	0x00 802C				
10	EXTI2	External interrupt 2	Yes	Yes	Yes	Yes	0x00 8030				
11	EXTI3	External interrupt 3	Yes	Yes	Yes	Yes	0x00 8034				
12	EXTI4	External interrupt 4	Yes	Yes	Yes	Yes	0x00 8038				
13	EXTI5	External interrupt 5	Yes	Yes	Yes	Yes	0x00 803C				
14	EXTI6	External interrupt 6	Yes	Yes	Yes	Yes	0x00 8040				
15	EXTI7	External interrupt 7	Yes	Yes	Yes	Yes	0x00 8044				
16	-	Reserved	-	-	-	-	0x00 8048				
17	-	Reserved	-	-	-	-	0x00 804C -0x00 804F				
18	COMP	Comparators	-	-	Yes	Yes ⁽¹⁾	0x00 8050				
19	TIM2	Update /Overflow/Trigger/Break	-	-	Yes	Yes	0x00 8054				
20	TIM2	Capture/Compare	-	-	Yes	Yes	0x00 8058				
21	TIM3	Update /Overflow/Break	-	-	Yes	Yes ⁽¹⁾	0x00 805C				
22	TIM3	Capture/Compare	-	-	Yes	Yes ⁽¹⁾	0x00 8060				
23- 24	-	Reserved	-	-	-	-	0x00 8064- 0x00 806B				
25	TIM4	Update /Trigger	-	-	Yes	Yes ⁽¹⁾	0x00 806C				
26	SPI	End of Transfer	Yes	Yes	Yes	Yes ⁽¹⁾	0x00 8070				

Table 9. Interrupt mapping

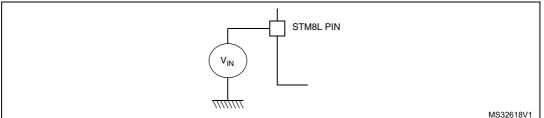
7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated row of the memory.

All option bytes can be modified only in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 10* for details on option byte addresses.

Refer to the STM8L Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Addr.	Ontion nome	Option	•							Option bits							
	Option name	byte No.	7	6	5	4	3	2	1	0	default setting						
0x4800	Read-out protection (ROP)	OPT1		ROP[7:0]							0x00						
0x4807	-	-		Must be programmed to 0x00													
0x4802	UBC (User Boot code size)	OPT2		UBC[7:0]													
0x4803	DATASIZE	OPT3		DATASIZE[7:0]							0x00						
0x4808	Independent watchdog option	OPT4 [1:0]			Re	served			IWDG _HALT	IWDG _HW	0x00						


Table 11. Option byte description

OPT1	ROP[7:0] <i>Memory readout protection (ROP)</i> 0xAA: Enable readout protection (write access via SWIM protocol) Refer to <i>Read-out protection</i> section in the STM8L reference manual (RM0013) for details.					
OPT2	 UBC[7:0] Size of the user boot code area 0x00: no UBC 0x01-0x02: UBC contains only the interrupt vectors. 0x03: Page 0 and 1 reserved for the interrupt vectors. Page 2 is available to store user boot code. Memory is write protected 0x7F - Page 0 to 126 reserved for UBC, memory is write protected Refer to User boot area (UBC) section in the STM8L reference manual (RM0013) for more details. UBC[7] is forced to 0 internally by HW. 					

9.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

Figure 10. Pin input voltage

9.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 13: Voltage characteristics*, *Table 14: Current characteristics* and *Table 15: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. The device mission profile is compliant with the JEDEC JESD47 qualification standard; extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
V _{DD} - V _{SS}	External supply voltage	-0.3	4.0	
V _{IN}	Input voltage on true open drain pins (PC0 and PC1) ⁽¹⁾	V _{SS} -0.3	V _{DD} + 4.0	v
	Input voltage on any other pin ⁽²⁾	V _{SS} -0.3	4.0	
V _{ESD}	Electrostatic discharge voltage	see Absolut ratings (electri on pa	• •	-

Table 13. Voltage characteristics

1. Positive injection is not possible on these I/Os. $V_{\rm IN}$ maximum must always be respected. $I_{\rm INJ(PIN)}$ must never be exceeded. A negative injection is induced by $V_{\rm IN}{<}V_{SS}$.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

9.3 Operating conditions

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

9.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{MASTER} ⁽¹⁾	Master clock frequency	1.65 V ≤V _{DD} < 3.6 V	2	16	MHz	
V _{DD}	Standard operating voltage	-	1.65	3.6	V	
		LQFP32	-	288		
		UFQFPN32	-	288		
	Power dissipation at T _A = 85 °C for suffix 6 devices	UFQFPN28	_	250		
		TSSOP20	-	181		
D (2)		UFQFPN20	-	196		
P _D ⁽²⁾		LQFP32	-	83	mW	
		UFQFPN32	-	185		
	Power dissipation at T _A = 125 °C for suffix 3 devices	UFQFPN28	-	62		
		TSSOP20	-	45		
		UFQFPN20	-	49		
Ŧ	T	1.65 V ≤V _{DD} < 3.6 V (6 suffix version)	-40	85	- °C	
T _A	Temperature range	1.65 V ≤V _{DD} < 3.6 V (3 suffix version)	-40	125		
т		-40 °C ≤T _A ≤85 °C (6 suffix version)	- 40	105	°C	
Τ _J	Junction temperature range	-40 °C ≤T _A ≤125 °C (3 suffix version)	-40	130	°C	

Table 16. General operating conditions

1. $f_{MASTER} = f_{CPU}$

2. To calculate $P_{Dmax}(T_A)$ use the formula given in thermal characteristics $P_{Dmax}=(T_{Jmax} - T_A)/\Theta_{JA}$ with T_{Jmax} in this table and Θ_{JA} in table "Thermal characteristics"

Symbol	Parameter	Conditions	Min	Тур	Max (1)	Unit
1	Programming/ erasing consumption	T _A =+25 °C, V _{DD} = 3.0 V	-	0.7	-	mA
Iprog		T _A =+25 °C, V _{DD} = 1.8 V	-	0.7	-	ШA
	Data retention (program memory) after 10k erase/write cycles at $T_A = +85$ °C	T _{RET} = 55 °C	20 ⁽¹⁾	-	-	
t _{RET}	Data retention (data memory) after 10k erase/write cycles at T _A = +85 °C	T _{RET} = 55 °C	20 ⁽¹⁾	-	-	years
	Data retention (data memory) after 300k erase/write cycles at $T_A = +125$ °C	T _{RET} = 85 °C	1 ⁽¹⁾	-	-	
Ν	Erase/write cycles (program memory)	See notes ⁽¹⁾⁽²⁾	10 ⁽¹⁾	-	-	kovolca
N _{RW}	Erase/write cycles (data memory)	See notes ⁽¹⁾⁽³⁾	300 ⁽¹⁾⁽⁴⁾	-	-	kcycles

Table 25.	Flash	program memory	(continued)
-----------	-------	----------------	-------------

1. Data based on characterization results, not tested in production.

2. Retention guaranteed after cycling is 10 years at 55 °C.

3. Retention guaranteed after cycling is 1 year at 55 °C.

4. Data based on characterization performed on the whole data memory (2 Kbytes).

9.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V	Input low lovel veltage ⁽²⁾	Standard I/Os	V _{SS} -0.3	-	0.3 x V _{DD}	v
V _{IL}	Input low level voltage ⁽²⁾	True open drain I/Os	V _{SS} -0.3	-	0.3 x V _{DD}	v
		Standard I/Os	0.70 x V _{DD}	-	V _{DD} +0.3	V
V _{IH}	Input high level voltage ⁽²⁾	True open drain I/Os V _{DD} < 2 V	0.70 x V _{DD}	-	5.2	
		True open drain I/Os $V_{DD} \ge 2 V$	0.70 X V _{DD}		5.5	
V	Schmitt trigger voltage hysteresis (3)	Standard I/Os	-	200	-	mV
V _{hys}		True open drain I/Os	-	250	-	

Table 26. I/O static characteristics (1))
--	---

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

l/O Type	Symbol	Parameter	Conditions	Min	Мах	Unit
			I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	۷
	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	V
dard			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	1.2	V
Standard			I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	V
V _{OH} ⁽²⁾	V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -1.2	-	V

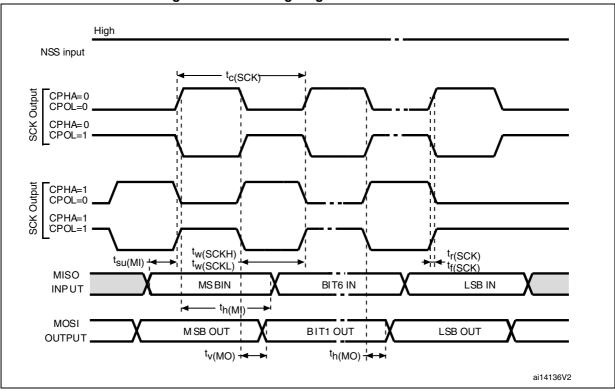
Table 27. Output	driving	current	(High	sink ports)
------------------	---------	---------	-------	-------------

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 14* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IQ} current sourced must always respect the absolute maximum rating specified in *Table 14* and the sum of I_{IQ} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Мах	Unit
drain	V ⁽¹⁾	(1) Output low lowely of the set for any 1/O min	I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V
pundo V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +1 mA, V _{DD} = 1.8 V	_	0.45	۷	

Table 28. Output driving current (true open drain ports)


1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 14* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

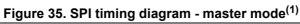

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
R	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.9	۷

Table 29. Output driving current (PA0 with high sink LED driver capability)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 14* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Inter IC control interface (I2C)

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

The STM8L I²C interface meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter		rd mode :C	Fast mo	Unit	
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0 (3)	-	0 (4)	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table 32	. I2C	characteristics
----------	-------	-----------------

1. f_{SCK} must be at least 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low period of SCL signal.

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL).

Note:

For speeds around 200 kHz, achieved speed can have \pm 5% tolerance For other speed ranges, achieved speed can have \pm 2% tolerance The above variations depend on the accuracy of the external components used.

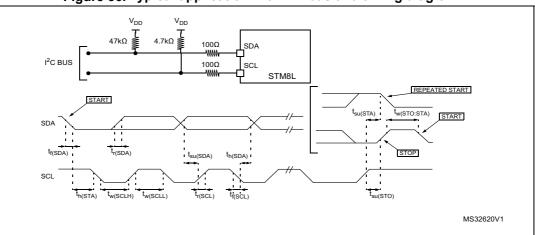


Figure 36. Typical application with I2C bus and timing diagram¹⁾

1. Measurement points are done at CMOS levels: 0.3 x V_{DD} and 0.7 x V_{DD}

9.3.8 **Comparator characteristics**

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{IN(COMP_REF)}	Comparator external reference	-	-0.1	-	V _{DD} -1.25	V
V _{IN}	Comparator input voltage range	-	-0.25	-	V _{DD} +0.25	V
V _{offset} ⁽²⁾	Comparator offset error -		-	-	±20	mV
t _{START}	Startup time (after BIAS_EN)	-	-	-	3 ⁽¹⁾	μs
	Analog comparator consumption	-	-	-	25 ⁽¹⁾	μA
I _{DD(COMP)}	Analog comparator consumption during power-down	-	-	-	60 ⁽¹⁾	nA
t _{propag} ⁽²⁾ Comparator propagation delay		100-mV input step with 5-mV overdrive, input rise time = 1 ns	-	-	2 ⁽¹⁾	μs

Table 33. Comparator characteristics

1. Data guaranteed by design, not tested in production.

The comparator accuracy depends on the environment. In particular, the following cases may reduce the accuracy of the 2. comparator and must be avoided:

- Negative injection current on the I/Os close to the comparator inputs

Switching on I/Os close to the comparator inputs
Negative injection current on not used comparator input.
Switching with a high dV/dt on not used comparator input.
These phenomena are even more critical when a big external serial resistor is added on the inputs.

10 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK® is an ST trademark.

10.1 UFQFPN32 package information

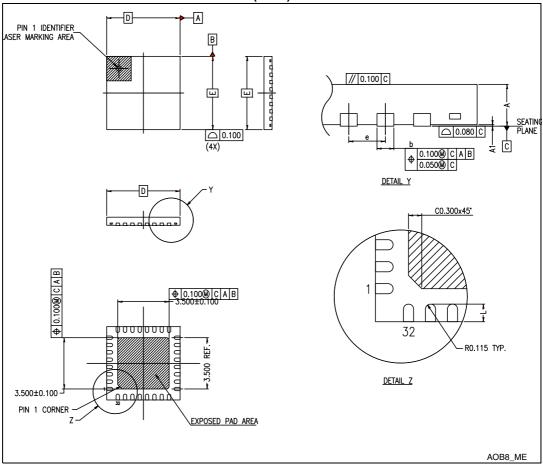
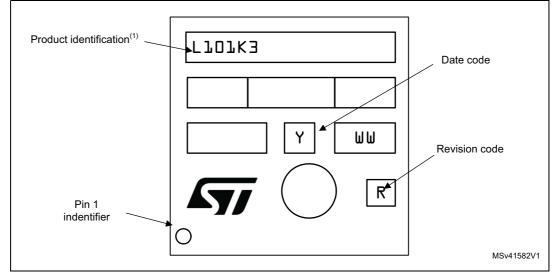


Figure 37. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5)

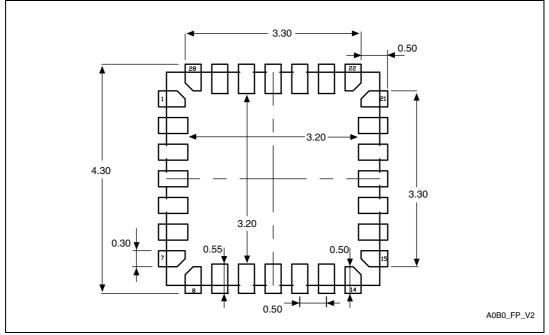
1. Drawing is not to scale.


2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.


3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Device marking

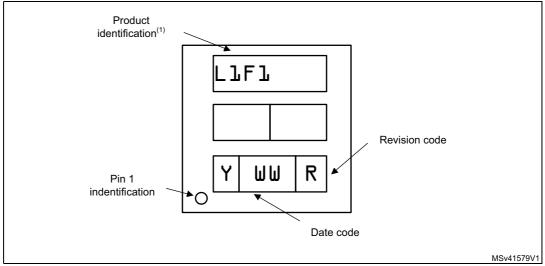
The following figure gives an example of topside marking orientation versus pin 1 identifier location.

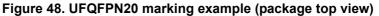

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

package mechanical data						
Dim	mm			inches ⁽¹⁾		
Dim.	Min	Тур	Max	Min	Тур	Мах
A	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0	0.020	0.050	0	0.0008	0.002
A3	-	0.152	-	-	0.0060	-
b	0.180	0.250	0.300	0.0071	0.0098	0.0118
D	-	4.000	-	-	0.1575	-
E	-	4.000	-	-	0.1575	-
е	-	0.500	-	-	0.0197	-
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
L2	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	0.080	-	-	0.0031	-
-			Numbe	r of pins		•
Ν			2	28		

Table 41. UFQFPN28 - 28-lead ultra thin fine pitch quad flat no-lead package (4 x 4),package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 44. UFQFPN28 recommended footprint


1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Date	Revision	Changes
18-Dec-2014	14	 Updated: Figure 46: UFQFPN20 - 20-lead ultra thin fine pitch quad flat package outline (3x3 mm), Table 42: UFQFPN20 - 20-lead ultra thin fine pitch quad flat package (3 x 3 mm) mechanical data.
02-Aug-2016	15	Added: - Figure 39: UFQFPN32 marking example (package top view) - Figure 42: LQFP32 marking example (package top view) - Figure 45: UFQFPN28 marking example (package top view) - Figure 48: UFQFPN20 marking example (package top view) - Figure 51: TSSOP20 marking example (package top view) Updated: - Section 9.2: Absolute maximum ratings.

Table 44	Document	revision	history	(continued)	١
	Document	164131011	matory	(continueu)	

