E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Infrared, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	· · · · · · · · · · · · · · · · · · ·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l101f2p3tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM8L101x1 STM8L101x2 STM8L101x3 low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming.

All STM8L101xx microcontrollers feature low power low-voltage single-supply program Flash memory. The 8-Kbyte devices embed data EEPROM.

The STM8L101xx low power family is based on a generic set of state-of-the-art peripherals. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

All STM8L low power products are based on the same architecture with the same memory mapping and a coherent pinout.

Features		STM8L101xx			
Flash	2 Kbytes of Flash program memory	8 Kbytes of Flash program memory including up to 2 Kbytes of Data EEPROM			
RAM		1.5 Kbytes			
Peripheral functions	Independent watchdog (IWDG), Auto-wakeup unit (AWU), Beep, Serial peripheral interface (SPI), Inter-integrated circuit (I ² C), Universal synchronous / asynchronous receiver / transmitter (USART), 2 comparators, Infrared (IR) interface				
Timers	Т	wo 16-bit timers, one 8-bit time	er		
Operating voltage		1.65 to 3.6 V			
Operating temperature	-40 to	-40 to +85 °C -40 to +8 -40 to +			
Packages	UFQFPN20 3x3	UFQFPN28 4x 4 UFQFPN20 3x3 TSSOP20 4.4 x 6.4	UFQFPN28 4x4 UFQFPN20 3x3 UFQFPN32 LQFP32		

Table 2. STM8L101xx device feature summary

PC3 (HS)	d 1	20 🗖 PC2 (HS)	
PC4 (HS)	□ 2	¹⁹ 🗆 PC1	
PA0 (HS)	□ 3	18 D PC0	
NRST / PA1 (HS)	□ 4	17 🗆 PB7	
PA2 (HS)	⊑ 5	16 🗆 PB6 (HS)	
PA3 (HS)	□ 6	15 🗆 PB5 (HS)	
V _{SS}	□ 7	14 🗆 PB4 (HS)	
V _{DD}	□ 8	13 🗆 PB3 (HS)	
PD0 (HS)	□ 9	12 🗆 PB2 (HS)	
PB0 (HS)	□ 10	11 ⊐ PB1 (HS)	
			MS32613V1

Figure 4. 20-pin TSSOP package pinout

1. HS corresponds to 20 mA high sink/source capability.

 High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the STM8L reference manual (RM0013).

Figure 5. Standard 28-pin UFQFPN package pinout

1. HS corresponds to 20 mA high sink/source capability.

2. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the STM8L reference manual (RM0013).

Note: The COMP_REF pin is not available in this standard 28-pin UFQFPN package. It is available on Port A6 in the Figure 6: 28-pin UFQFPN package pinout for STM8L101G3U6ATR and STM8L101G2U6ATR part numbers.

Figure 6. 28-pin UFQFPN package pinout for STM8L101G3U6ATR and STM8L101G2U6ATR part numbers

1. HS corresponds to 20 mA high sink/source capability.

2. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the STM8L reference manual (RM0013).

Warning: For the STM8L101G3U6ATR and STM8L101G2U6ATR part numbers (devices with COMP_REF pin), all ports available on 32-pin packages must be considered as active ports. To avoid spurious effects, the user has to configure them as input pull-up. A small increase in consumption (typ. < 300 μA) may occur during the power up and reset phase until these ports are properly configured.

Address	Block	Register label	Register name	Reset status			
0x00 5050		FLASH_CR1	Flash control register 1	0x00			
0x00 5051		FLASH_CR2	Flash control register 2	0x00			
0x00 5052	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00			
0x00 5053		FLASH_DUKR	Data EEPROM unprotection register	0x00			
0x00 5054		FLASH _IAPSR	Flash in-application programming status register	0xX0			
0x00 5055 to 0x00 509F		Я	Reserved area (75 bytes)				
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00			
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00			
0x00 50A2		EXTI_CR3	External interrupt control register 3	0x00			
0x00 50A3	IIC-EAII	EXTI_SR1	External interrupt status register 1	0x00			
0x00 50A4		EXTI_SR2	External interrupt status register 2	0x00			
0x00 50A5		EXTI_CONF	External interrupt port select register	0x00			
0x00 50A6	WFE_CR1		WFE control register 1	0x00			
0x00 50A7		WFE_CR2	WFE control register 2	0x00			
0x00 50A8		_					
to 0x00 50AF		ŀ	Reserved area (8 bytes)				
0x00 50B0	RST	RST_CR	Reset control register	0x00			
0x00 50B1		RST_SR	Reset status register	0x01			
0x00 50B2 to 0x00 50BF		R	Reserved area (14 bytes)				
0x00 50C0		CLK_CKDIVR	Clock divider register	0x03			
0x00 50C1 to 0x00 50C2	CLK		Reserved area (2 bytes)				
0x00 50C3	OLK	CLK_PCKENR	0x00				
0x00 50C4			Reserved (1 byte)				
0x00 50C5		CLK_CCOR	Configurable clock control register	0x00			
0x00 50C6 to 0x00 50DF		R	Reserved area (25 bytes)				

Table 7. General hardware register map

Address	Block	Register label	Register name	Reset status
0x00 521E to 0x00 522F		Я	eserved area (18 bytes)	
0x00 5230		USART_SR	USART status register	0xC0
0x00 5231		USART_DR	USART data register	0xXX
0x00 5232		USART_BRR1	USART baud rate register 1	0x00
0x00 5233	LISADT	USART_BRR2	USART baud rate register 2	0x00
0x00 5234	USAN	USART_CR1	USART control register 1	0x00
0x00 5235		USART_CR2	USART control register 2	0x00
0x00 5236		USART_CR3	USART control register 3	0x00
0x00 5237		USART_CR4	USART control register 4	0x00
0x00 5238 to 0x00 524F		R	leserved area (18 bytes)	

Table 7 Genera	al bardwaro rogisto	r man (continued)
Table 7. Genera	li naruware registe	r map (continueu)

			5 i (<i>)</i>	Posot	
Address	Block	Register label	Register name	status	
0x00 5250		TIM2_CR1	TIM2 control register 1	0x00	
0x00 5251		TIM2_CR2	TIM2 control register 2	0x00	
0x00 5252		TIM2_SMCR	TIM2 slave mode control register	0x00	
0x00 5253		TIM2_ETR	TIM2 external trigger register	0x00	
0x00 5254		TIM2_IER	TIM2 interrupt enable register	0x00	
0x00 5255		TIM2_SR1	TIM2 status register 1	0x00	
0x00 5256		TIM2_SR2	TIM2 status register 2	0x00	
0x00 5257		TIM2_EGR	TIM2 event generation register	0x00	
0x00 5258		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00	
0x00 5259		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00	
0x00 525A	тімо	TIM2_CCER1	TIM2 capture/compare enable register 1	0x00	
0x00 525B	T TIVIZ	TIM2_CNTRH	TIM2 counter high	0x00	
0x00 525C		TIM2_CNTRL	TIM2 counter low	0x00	
0x00 525D		TIM2_PSCR	TIM2 prescaler register	0x00	
0x00 525E		TIM2_ARRH	TIM2 auto-reload register high	0xFF	
0x00 525F		TIM2_ARRL	TIM2 auto-reload register low	0xFF	
0x00 5260		TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00	
0x00 5261		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00	
0x00 5262		TIM2_CCR2H	TIM2 capture/compare register 2 high	0x00	
0x00 5263		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00	
0x00 5264		TIM2_BKR	TIM2 break register	0x00	
0x00 5265		TIM2_OISR	TIM2 output idle state register	0x00	
0x00 5266		_			
to 0x00 527F		R	teserved area (26 bytes)		

 Table 7. General hardware register map (continued)

Address	Block	Register label	gister label Register name	
0x00 52E9 to 0x00 52FE		Я	eserved area (23 bytes)	
0x00 52FF	IRTIM	IR_CR Infra-red control register		0x00
0x00 5300		COMP_CR	Comparator control register	0x00
0x00 5301	COMP	COMP_CSR	Comparator status register	0x00
0x00 5302		COMP_CCS	Comparator channel selection register	0x00

 Table 7. General hardware register map (continued)

Table 8. CPU/SWIM/debug module/interrupt controller registers

Address	Block	Register label	Register name	Reset status	
0x00 7F00		A	Accumulator	0x00	
0x00 7F01		PCE	Program counter extended	0x00	
0x00 7F02		PCH	Program counter high	0x80	
0x00 7F03		PCL	Program counter low	0x00	
0x00 7F04		ХН	X index register high	0x00	
0x00 7F05	CPU	XL	X index register low	0x00	
0x00 7F06		YH	Y index register high	0x00	
0x00 7F07		YL	Y index register low	0x00	
0x00 7F08		SPH	Stack pointer high	0x05	
0x00 7F09	9 SPL Stack pointer low		Stack pointer low	0xFF	
0x00 7F0A		СС	Condition code register	0x28	
0x00 7F0B to 0x00 7F5F	Reserved area (85 bytes)				
0x00 7F60	CFG	CFG_GCR	Global configuration register	0x00	
0x00 7F61 0x00 7F6F		Res	served area (15 bytes)		
0x00 7F70		ITC_SPR1	Interrupt Software priority register 1	0xFF	
0x00 7F71		ITC_SPR2	Interrupt Software priority register 2	0xFF	
0x00 7F72		ITC_SPR3	Interrupt Software priority register 3	0xFF	
0x00 7F73	ITC-SPR	ITC_SPR4	Interrupt Software priority register 4	0xFF	
0x00 7F74	(1)	ITC_SPR5	Interrupt Software priority register 5	0xFF	
0x00 7F75		ITC_SPR6	Interrupt Software priority register 6	0xFF	
0x00 7F76		ITC_SPR7	Interrupt Software priority register 7	0xFF	
0x00 7F77		ITC_SPR8	Interrupt Software priority register 8	0xFF	

Address	Block	Register label	Register name	Reset status		
0x00 7F78 to 0x00 7F79		Reserved area (2 bytes)				
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00		
0x00 7F81 to 0x00 7F8F		Rea	served area (15 bytes)			
0x00 7F90		DM_BK1RE	Breakpoint 1 register extended byte	0xFF		
0x00 7F91		DM_BK1RH	Breakpoint 1 register high byte	0xFF		
0x00 7F92		DM_BK1RL	Breakpoint 1 register low byte	0xFF		
0x00 7F93		DM_BK2RE	Breakpoint 2 register extended byte	0xFF		
0x00 7F94		DM_BK2RH	Breakpoint 2 register high byte	0xFF		
0x00 7F95	DM	DM_BK2RL	Breakpoint 2 register low byte	0xFF		
0x00 7F96		DM_CR1	Debug module control register 1	0x00		
0x00 7F97		DM_CR2	Debug module control register 2	0x00		
0x00 7F98		DM_CSR1	Debug module control/status register 1	0x10		
0x00 7F99		DM_CSR2	Debug module control/status register 2	0x00		
0x00 7F9A		DM_ENFCTR	Enable function register	0xFF		

Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Refer to Table 7: General hardware register map on page 25 (addresses 0x00 50A0 to 0x00 50A5) for a list of external interrupt registers.

8 Unique ID

STM8L101xx devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory
- To activate secure boot processes.

Address	Content	Unique ID bits							
Audress	description	7	6	5	4	3	2	1	0
0x4925	X co-ordinate on	U_ID[7:0]							
0x4926	the wafer		U_ID[15:8]						
0x4927	Y co-ordinate on				U_II	D[23:16]			
0x4928	the wafer	U_ID[31:24]							
0x4929	Wafer number	U_ID[39:32]							
0x492A		U_ID[47:40]							
0x492B		U_ID[55:48] U_ID[63:56]							
0x492C									
0x492D	Lot number	U_ID[71:64]							
0x492E		U_ID[79:72]							
0x492F		U_ID[87:80]							
0x4930					U_I	D[95:88]			

Table 12. Unique ID registers (96 bits)

9.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

Figure 10. Pin input voltage

9.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 13: Voltage characteristics*, *Table 14: Current characteristics* and *Table 15: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. The device mission profile is compliant with the JEDEC JESD47 qualification standard; extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
V_{DD} - V_{SS}	External supply voltage	-0.3	4.0	
V _{IN}	Input voltage on true open drain pins (PC0 and PC1) ⁽¹⁾	V _{SS} -0.3	V _{DD} + 4.0	V
	Input voltage on any other pin ⁽²⁾	V _{SS} -0.3	4.0	
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum ratings (electrical sensitivity) on page 61		-

Table 13. Voltage characteristics

1. Positive injection is not possible on these I/Os. V_{IN} maximum must always be respected. $I_{INJ(PIN)}$ must never be exceeded. A negative injection is induced by $V_{IN} < V_{SS}$.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power line (source)	80	
I _{VSS}	Total current out of V _{SS} ground line (sink)	80	
	Output current sunk by IR_TIM pin (with high sink LED driver capability)	80	
I _{IO}	Output current sunk by any other I/O and control pin	25	mA
	Output current sourced by any I/Os and control pin	-25	
	Injected current on true open-drain pins (PC0 and PC1) ⁽¹⁾	-5	
'INJ(PIN)	Injected current on any other pin ⁽²⁾	±5	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) $^{(3)}$	±25	

Table 14. Current characteristics

 Positive injection is not possible on these I/Os. V_{IN} maximum must always be respected. I_{INJ(PIN)} must never be exceeded. A negative injection is induced by V_{IN}<V_{SS}.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

 When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Table 15.	Thermal	characteristics

Symbol	Ratings	Value	Unit		
T _{STG}	Storage temperature range	-65 to +150	°C		
TJ	Maximum junction temperature	150	C		

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

I/О Туре	Symbol	Parameter	Conditions	Min	Мах	Unit
Standard	V _{OL} ⁽¹⁾	V _{OL} ⁽¹⁾ Output low level voltage for an I/O pin V _{OL} ⁽²⁾ Output high level voltage for an I/O pin	I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	۷
			I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	۷
			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	1.2	V
			I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	۷
			I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -1.2	-	V

Table 27.	Output	driving	current	(High	sink ports)	
-----------	--------	---------	---------	-------	-------------	--

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 14* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IQ} current sourced must always respect the absolute maximum rating specified in *Table 14* and the sum of I_{IQ} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
drain	drain	V _{OL} ⁽¹⁾ Output low level voltage for an I/O pin	I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V
Open	VOL		I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V

Table 28. Output driving current (true open drain ports)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 14* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
R	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.9	V

Table 29. Output driving current (PA0 with high sink LED driver capability)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 14* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

NRST pin

The NRST pin input driver is CMOS. A permanent pull-up is present. $R_{PU(NRST)}$ has the same value as R_{PU} (see *Table 26 on page 48*).

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур (1)	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	V_{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	1.4	-	V_{DD}	V
V _{OL(NRST)}	NRST output low level voltage	I _{OL} = 2 mA	-	-	V _{DD} -0.8	
R _{PU(NRST)}	NRST pull-up equivalent resistor ⁽²⁾	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse ⁽³⁾	-	-	-	50	ns
t _{OP(NRST)}	NRST output pulse width	-	20	-	-	ns
V _{NF(NRST)}	NRST input not filtered pulse ⁽³⁾	_	300	-	-	ns

Table 30. NRST pin characteristics

1. Data based on characterization results, not tested in production.

The R_{PU} pull-up equivalent resistor is based on a resistive transistor (*Figure 30*). Corresponding I_{PU} current characteristics are described in *Figure 31*.

3. Data guaranteed by design, not tested in production.

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

9.3.9 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. Refer to application note *Software techniques for improving microcontrollers EMC performance* (AN1015).

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	LQFP32, V _{DD} = 3.3 V	3B
	Fast transient voltage burst limits to be	LQFP32, V _{DD} = 3.3 V, f _{HSI}	3B
V _{EFTB}	pins to induce a functional disturbance	LQFP32, V _{DD} = 3.3 V, f _{HSI} /2	4A

Table 34. EMS data

10 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK® is an ST trademark.

10.1 UFQFPN32 package information

Figure 37. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5)

1. Drawing is not to scale.

2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.

3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Dim	mm			inches ⁽¹⁾			
Dini.	Min	Тур	Мах	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0	0.020	0.050	0	0.0008	0.002	
A3	-	0.152	-	-	0.0060	-	
b	0.180	0.250	0.300	0.0071	0.0098	0.0118	
D	-	4.000	-	-	0.1575	-	
E	-	4.000	-	-	0.1575	-	
е	-	0.500	-	-	0.0197	-	
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177	
L2	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	0.080	-	-	0.0031	-	
-	Number of pins						
N			2	28			

Table 41. UFQFPN28 - 28-lead ultra thin fine pitch quad flat no-lead package (4 x 4),package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 44. UFQFPN28 recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

12.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8. A free version that outputs up to 32 Kbytes of code is available.

12.2.1 STM8 toolset

STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at *www.st.com*. This package includes:

ST Visual Develop - Full-featured integrated development environment from ST, featuring

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read, write and verify of the STM8 microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences.

12.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of user application directly from an easy-to-use graphical interface.

Available toolchains include:

- Cosmic C compiler for STM8 One free version that outputs up to 32 Kbytes of code is available. For more information, see www.cosmic-software.com.
- Raisonance C compiler for STM8 One free version that outputs up to 32 Kbytes of code. For more information, see www.raisonance.com.
- **STM8 assembler linker** Free assembly toolchain included in the STVD toolset, which allows the user to assemble and link their application source code.

12.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the user's application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the STM8.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

