

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Infrared, POR, PWM, WDT
Number of I/O	26
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l101g2u6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM8L101xx device block diagram	. 10
Figure 2.	Standard 20-pin UFQFPN package pinout	. 15
Figure 3.	20-pin UFQFPN package pinout for STM8L101F1U6ATR,	
	STM8L101F2U6ATR and STM8L101F3U6ATR part numbers.	. 16
Figure 4.	20-pin TSSOP package pinout	. 17
Figure 5.	Standard 28-pin UFQFPN package pinout	. 17
Figure 6.	28-pin UFQFPN package pinout for STM8L101G3U6ATR and	
-	STM8L101G2U6ATR part numbers	. 18
Figure 7.	32-pin package pinout	. 19
Figure 8.	Memory map.	. 23
Figure 9.	Pin loading conditions.	. 37
Figure 10.	Pin input voltage	. 38
Figure 11.	IDD(RUN) vs. VDD, fCPU = 2 MHz	. 42
Figure 12.	IDD(RUN) vs. VDD, fCPU = 16 MHz	. 42
Figure 13.	IDD(WAIT) vs. VDD, fCPU = 2 MHz.	. 43
Figure 14.	IDD(WAIT) vs. VDD, fCPU = 16 MHz	. 43
Figure 15.	Typ. IDD(Halt) vs. VDD, fCPU = 2 MHz and 16 MHz	. 44
Figure 16.	Typical HSI frequency vs. Von	. 46
Figure 17.	Typical HSI accuracy vs. temperature. $V_{DD} = 3 V \dots \dots$. 46
Figure 18.	Typical HSI accuracy vs. temperature. VDD = 1.65 V to 3.6 V.	. 46
Figure 19.	Typical LSI RC frequency vs. VDD.	. 47
Figure 20.	Typical VII, and VIH vs. VDD (High sink I/Os)	49
Figure 21.	Typical VIL and VIH vs. VDD (true open drain I/Os).	. 50
Figure 22	Typical pull-up resistance R_{pu} vs. V_{pp} with VIN=VSS	50
Figure 23	Typical pull-up current lou vs. Voo with VIN=VSS	50
Figure 24	Typ VOL at VDD = 3.0 V (High sink ports)	. 52
Figure 25	Typ VOL at VDD = 1.8 V (High sink ports)	. 52
Figure 26	Typ. VOL at VDD = 3.0 V (true open drain ports)	. 52
Figure 27	Typ VOL at VDD = 1.8 V (true open drain ports)	. 52
Figure 28	Typ. VDD - VOH at VDD = 3.0 V (High sink ports)	52
Figure 29	Typ VDD - VOH at VDD = 1.8 V (High sink ports)	. 02
Figure 30	Typical NRST pull-up resistance R_{PU} vs. V_{PP}	53
Figure 31	Typical NRST pull-up current $L_{\rm u}$ vs. $V_{\rm DD}$	54
Figure 32	Recommended NRST pin configuration	54
Figure 33	SPI timing diagram - slave mode and CPHA = 0	56
Figure 34	SPI timing diagram - slave mode and CPHA = $1^{(1)}$	56
Figure 35	SPI timing diagram - master mode ⁽¹⁾	. 00
Figure 36	Typical application with I2C bus and timing diagram 1)	59
Figure 37	UEOEPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5)	. 00 64
Figure 38	UECEPN32 recommended footprint	65
Figure 30	UEOEPN32 marking example (nackage ton view)	66
Figure 40	$1 \cap EP32 = 32$ -nin low profile guad flat package outline (7 x 7)	. 00
Figure 41	$\Box OEP32$ recommended footorint	. 07 60
Figure 42	$I \cap EP32$ marking example (nackage ton view)	. 03 60
Figure 12	LIEOFPN28 - 28-lead ultra thin fine nitch quad flat no-lead nackade outline (4 v 4 mm)	. 03 70
Figure 43 .	IFOEPN28 recommended footorint	71
Figure 45		 70
Figure 45.	UECEDN20 20 lead ultra thin fine nitch guad flat nackage outling (2v2 mm)	. 1 2
i iyule 40.	$\sqrt{20}$ $\sqrt{20}$ $\sqrt{20}$. 13

Figure 47.	UFQFPN20 recommended footprint	74
Figure 48.	UFQFPN20 marking example (package top view)	75
Figure 49.	TSSOP20 - 20-lead thin shrink small package outline	76
Figure 50.	TSSOP20 recommended footprint	77
Figure 51.	TSSOP20 marking example (package top view)	78
Figure 52.	STM8L101xx ordering information scheme	79

3.10 Auto-wakeup counter

The auto-wakeup (AWU) counter is used to wakeup the device from Active-halt mode.

3.11 General purpose and basic timers

STM8L101xx devices contain two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).

16-bit general purpose timers

The 16-bit timers consist of 16-bit up/down auto-reload counters driven by a programmable prescaler. They perform a wide range of functions, including:

- Time base generation
- Measuring the pulse lengths of input signals (input capture)
- Generating output waveforms (output compare, PWM and One pulse mode)
- Interrupt capability on various events (capture, compare, overflow, break, trigger)

8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow.

3.12 Beeper

The STM8L101xx devices include a beeper function used to generate a beep signal in the range of 1, 2 or 4 kHz when the LSI clock is operating at a frequency of 38 kHz.

3.13 Infrared (IR) interface

The STM8L101xx devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

3.14 Comparators

The STM8L101xx features two zero-crossing comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal (comparison with ground) or external (comparison to a reference pin voltage).

Each comparator is connected to 4 channels, which can be used to generate interrupt, timer input capture or timer break. Their polarity can be inverted.

4 Pin description

Figure 2. Standard 20-pin UFQFPN package pinout

1. HS corresponds to 20 mA high sink/source capability.

2. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the STM8L reference manual (RM0013).

Note: The COMP_REF pin is not available in this standard 20-pin UFQFPN package. It is available on Port A6 in the Figure 3: 20-pin UFQFPN package pinout for STM8L101F1U6ATR, STM8L101F2U6ATR and STM8L101F3U6ATR part numbers.

5 Memory and register map

Figure 8. Memory map

1. *Table 5* lists the boundary addresses for each memory size. The top of the stack is at the RAM end address.

2. Refer to *Table 7* for an overview of hardware register mapping, to *Table 6* for details on I/O port hardware registers, and to *Table 8* for information on CPU/SWIM/debug module controller registers.

Address	Block	Register label Register name		Reset status					
0x00 50E0		IWDG_KR IWDG key register		0xXX					
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00					
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF					
0x00 50E3 to 0x00 50EF	Reserved area (13 bytes)								
0x00 50F0		AWU_CSR	AWU control/status register	0x00					
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F					
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00					
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F					
0x00 50F4 to 0x00 51FF	Reserved area (268 bytes)								
0x00 5200		SPI_CR1	SPI control register 1	0x00					
0x00 5201		SPI_CR2	SPI control register 2	0x00					
0x00 5202	SPI	SPI_ICR	SPI interrupt control register	0x00					
0x00 5203		SPI_SR	SPI status register	0x02					
0x00 5204		SPI_DR	SPI data register	0x00					
0x00 5205 to 0x00 520F		Reserved area (11 bytes)							
0x00 5210		I2C_CR1	I2C control register 1	0x00					
0x00 5211		I2C_CR2	I2C control register 2	0x00					
0x00 5212		I2C_FREQR	I2C frequency register	0x00					
0x00 5213		I2C_OARL	I2C own address register low	0x00					
0x00 5214		I2C_OARH	I2C own address register high	0x00					
0x00 5215			Reserved area (1 byte)						
0x00 5216	120	I2C_DR	I2C data register	0x00					
0x00 5217	120	I2C_SR1	I2C status register 1	0x00					
0x00 5218		I2C_SR2	I2C status register 2	0x00					
0x00 5219		I2C_SR3	I2C status register 3	0x00					
0x00 521A		I2C_ITR	I2C interrupt control register	0x00					
0x00 521B		I2C_CCRL	I2C Clock control register low	0x00					
0x00 521C		I2C_CCRH	I2C Clock control register high	0x00					
0x00 521D		I2C_TRISER	I2C TRISE register	0x02					

 Table 7. General hardware register map (continued)

DocID15275 Rev 15

Address	Block	Register label Register name		Reset status				
0x00 7F78 to 0x00 7F79	Reserved area (2 bytes)							
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00				
0x00 7F81 to 0x00 7F8F	Reserved area (15 bytes)							
0x00 7F90		DM_BK1RE	Breakpoint 1 register extended byte	0xFF				
0x00 7F91		DM_BK1RH	Breakpoint 1 register high byte	0xFF				
0x00 7F92		DM_BK1RL	Breakpoint 1 register low byte	0xFF				
0x00 7F93		DM_BK2RE	Breakpoint 2 register extended byte	0xFF				
0x00 7F94		DM_BK2RH	Breakpoint 2 register high byte	0xFF				
0x00 7F95	DM	DM_BK2RL	Breakpoint 2 register low byte	0xFF				
0x00 7F96		DM_CR1	Debug module control register 1	0x00				
0x00 7F97		DM_CR2	Debug module control register 2	0x00				
0x00 7F98		DM_CSR1	Debug module control/status register 1	0x10				
0x00 7F99		DM_CSR2	Debug module control/status register 2	0x00				
0x00 7F9A		DM_ENFCTR	Enable function register	0xFF				

Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Refer to Table 7: General hardware register map on page 25 (addresses 0x00 50A0 to 0x00 50A5) for a list of external interrupt registers.

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated row of the memory.

All option bytes can be modified only in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 10* for details on option byte addresses.

Refer to the STM8L Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Addr. Option name	Option		Option bits							Factory
	No.	7	6	5	4	3	2	1	0	setting
0x4800	Read-out protection (ROP)	OPT1		ROP[7:0]						0x00
0x4807	-	-		Must be programmed to 0x00					0x00	
0x4802	UBC (User Boot code size)	OPT2		UBC[7:0]					0x00	
0x4803	DATASIZE	OPT3		DATASIZE[7:0]					0x00	
0x4808	Independent watchdog option	OPT4 [1:0]	Reserved IWDG IWDG _HALT _HW			0x00				

Table	10.	Option	bvtes
		• • • • • • •	~ ,

Table 11. Option byte description

OPT1	ROP[7:0] <i>Memory readout protection (ROP)</i> 0xAA: Enable readout protection (write access via SWIM protocol) Refer to <i>Read-out protection</i> section in the STM8L reference manual (RM0013) for details.
OPT2	 UBC[7:0] Size of the user boot code area 0x00: no UBC 0x01-0x02: UBC contains only the interrupt vectors. 0x03: Page 0 and 1 reserved for the interrupt vectors. Page 2 is available to store user boot code. Memory is write protected 0x7F - Page 0 to 126 reserved for UBC, memory is write protected Refer to User boot area (UBC) section in the STM8L reference manual (RM0013) for more details. UBC[7] is forced to 0 internally by HW.

	DATASIZE[7:0] Size of the data EEPROM area 0x00: no data EEPROM area ⁽¹⁾ 0x01: 1 page reserved for data storage from 0x9FC0 to 0x9FFF ⁽¹⁾ 0x02: 2 pages reserved for data storage from 0x9F80 to 0x9FFF ⁽¹⁾
OP13	0x20: 32 pages reserved for data storage from 0x9800 to 0x9FFF ⁽¹⁾
	Refer to <i>Data EEPROM (DATA)</i> section in the STM8L reference manual (RM0013) for more details.
	DATASIZE[7:6] are forced to 0 internal by HW.
	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware
OP14	IWDG_HALT: Independent window watchdog reset on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode

Table 11. Option byte description (continued)

1. 0x00 is the only allowed value for 4 Kbyte STM8L101xx devices.

Caution: After a device reset, read access to the program memory is not guaranteed if address 0x4807 is not programmed to 0x00.

9.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

Figure 10. Pin input voltage

9.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 13: Voltage characteristics*, *Table 14: Current characteristics* and *Table 15: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. The device mission profile is compliant with the JEDEC JESD47 qualification standard; extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
V_{DD} - V_{SS}	External supply voltage -0.3 4.0			
V _{IN}	Input voltage on true open drain pins (PC0 and PC1) ⁽¹⁾	V _{SS} -0.3	V _{DD} + 4.0	V
	Input voltage on any other pin ⁽²⁾	V _{SS} -0.3	4.0	
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum ratings (electrical sensitivity) on page 61		-

Table 13. Voltage characteristics

1. Positive injection is not possible on these I/Os. V_{IN} maximum must always be respected. $I_{INJ(PIN)}$ must never be exceeded. A negative injection is induced by $V_{IN} < V_{SS}$.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

Low speed internal RC oscillator (LSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	26	38	56	kHz
f _{drift(LSI)}	LSI oscillator frequency drift ⁽²⁾	0 °C ≤T _A ≤ 85 °C	-12	-	11	%

Table 23. LSI osci	ator characteristics ⁽¹⁾)
--------------------	-------------------------------------	---

1. V_{DD} = 1.65 V to 3.6 V, T_A = -40 to 125 °C unless otherwise specified.

2. For each individual part, this value is the frequency drift from the initial measured frequency.

Figure 19. Typical LSI RC frequency vs. V_{DD}

9.3.5 Memory characteristics

 T_A = -40 to 125 °C unless otherwise specified.

Table 24. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V_{RM}	Data retention mode ⁽¹⁾	Halt mode (or Reset)	1.4	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production.

Flash memory

Symbol	Parameter	Conditions	Min	Тур	Max (1)	Unit
V _{DD}	Operating voltage (all modes, read/write/erase)	f _{MASTER} = 16 MHz	1.65	-	3.6	V
t _{prog}	Programming time for 1- or 64-byte (block) erase/write cycles (on programmed byte)	-	-	6	-	ms
	Programming time for 1- to 64-byte (block) write cycles (on erased byte)	-	-	3	-	ms

Table 25. Flash program memory

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

10 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK® is an ST trademark.

10.1 UFQFPN32 package information

Figure 37. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5)

1. Drawing is not to scale.

2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.

3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.3 UFQFPN28 package information

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах	
D	-	3.000	-	-	0.1181	-	
E	-	3.000	-	-	0.1181	-	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.152	-	-	0.0060	-	
е	-	0.500	-	-	0.0197	-	
L1	0.500	0.550	0.600	0.0197	0.0217	0.0236	
L2	0.300	0.350	0.400	0.0118	0.0138	0.0157	
L3	-	0.375	-	-	0.0148	-	
L4	-	0.200	-	-	0.0079	-	
L5	-	0.150	-	-	0.0059	-	
b	0.180	0.250	0.300	0.0071	0.0098	0.0118	
ddd	-	0.050	-	-	0.0020	-	

Table 42. UFQFPN20 - 20-lead ultra thin fine pitch quad flat package (3 x 3 mm) mechanical data

1. Values in inches are rounded to 4 decimal digits

Figure 47. UFQFPN20 recommended footprint

1. Dimensions are in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.5 TSSOP20 package information

Figure 49. TSSOP20 - 20-lead thin shrink small package outline

1. Drawing is not to scale.

Dim.	mm				inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.200	-	-	0.0472	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413	
b	0.190	-	0.300	0.0075	-	0.0118	
CP	-	-	0.100	-	-	0.0039	
С	0.090	-	0.200	0.0035	-	0.0079	
D ⁽²⁾	6.400	6.500	6.600	0.2520	0.2559	0.2598	
E	6.200	6.400	6.600	0.2441	0.2520	0.2598	
E1 ⁽³⁾	4.300	4.400	4.500	0.1693	0.1732	0.1772	
е	-	0.650	-	0.1693	0.0256	-	
L	0.450	0.600	0.750	0.1693	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	

12 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

12.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows the users to order exactly what they need to meet their development requirements and to adapt their emulation system to support existing and future ST microcontrollers.

STice key features

- Occurrence and time profiling and code coverage (new features)
- Program and data trace recording up to 128 KB records
- Read/write on the fly of memory during emulation
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows the users to specify the components that they need to meet their development requirements and adapt to future requirements
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

12.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8. A free version that outputs up to 32 Kbytes of code is available.

12.2.1 STM8 toolset

STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at *www.st.com*. This package includes:

ST Visual Develop - Full-featured integrated development environment from ST, featuring

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read, write and verify of the STM8 microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences.

12.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of user application directly from an easy-to-use graphical interface.

Available toolchains include:

- Cosmic C compiler for STM8 One free version that outputs up to 32 Kbytes of code is available. For more information, see www.cosmic-software.com.
- Raisonance C compiler for STM8 One free version that outputs up to 32 Kbytes of code. For more information, see www.raisonance.com.
- **STM8 assembler linker** Free assembly toolchain included in the STVD toolset, which allows the user to assemble and link their application source code.

12.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the user's application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the STM8.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

