

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Infrared, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l101g3u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	. 1
Table 2.	STM8L101xx device feature summary	. 9
Table 3.	Legend/abbreviation for table 4	20
Table 4.	STM8L101xx pin description	20
Table 5.	Flash and RAM boundary addresses	24
Table 6.	I/O Port hardware register map	24
Table 7.	General hardware register map	25
Table 8.	CPU/SWIM/debug module/interrupt controller registers	30
Table 9.	Interrupt mapping	32
Table 10.	Option bytes	34
Table 11.	Option byte description	34
Table 12.	Unique ID registers (96 bits)	36
Table 13.	Voltage characteristics	38
Table 14.	Current characteristics	39
Table 15.	Thermal characteristics.	39
Table 16.	General operating conditions	40
Table 17.	Operating conditions at power-up / power-down	41
Table 18.	Total current consumption in Run mode	42
Table 19.	Total current consumption in Wait mode	43
Table 20.	Total current consumption and timing in Halt and Active-halt mode at	
	VDD = 1.65 V to 3.6 V	44
Table 21.	Peripheral current consumption	
Table 22.	HSI oscillator characteristics	45
Table 23.	LSI oscillator characteristics	47
Table 24.	RAM and hardware registers	47
Table 25.	Flash program memory	47
Table 26.	I/O static characteristics	48
Table 27.	Output driving current (High sink ports)	51
Table 28.	Output driving current (true open drain ports)	
Table 29.	Output driving current (PA0 with high sink LED driver capability)	51
Table 30.	NRST pin characteristics	53
Table 31.	SPI characteristics	55
Table 32.	I2C characteristics	58
Table 33.	Comparator characteristics	59
Table 34.	EMS data	
Table 35.	EMI data	61
Table 36.	ESD absolute maximum ratings	
Table 37.	Electrical sensitivities	62
Table 38.	Thermal characteristics.	63
Table 39.	UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5),	
	package mechanical data	
Table 40.	LQFP32- 32-pin low profile quad flat package (7x7), package mechanical data	68
Table 41.	UFQFPN28 - 28-lead ultra thin fine pitch quad flat no-lead package (4 x 4),	
	package mechanical data	
Table 42.	UFQFPN20 - 20-lead ultra thin fine pitch quad flat package (3 x 3 mm) mechanical data.	
Table 43.	TSSOP20 - 20-lead thin shrink small package mechanical data	
Table 44.	Document revision history	82

2 Description

The STM8L101x1 STM8L101x2 STM8L101x3 low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming.

All STM8L101xx microcontrollers feature low power low-voltage single-supply program Flash memory. The 8-Kbyte devices embed data EEPROM.

The STM8L101xx low power family is based on a generic set of state-of-the-art peripherals. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

All STM8L low power products are based on the same architecture with the same memory mapping and a coherent pinout.

Features	STM8L101xx							
Flash	2 Kbytes of Flash program memory	8 Kbytes of Flash program memory including up to 2 Kbytes of Data EEPROM						
RAM		1.5 Kbytes						
Peripheral functions	Independent watchdog (IWDG), Auto-wakeup unit (AWU), Beep, Serial peripheral interface (SPI), Inter-integrated circuit (I ² C), Universal synchronous / asynchronous receiver / transmitter (USART), 2 comparators, Infrared (IR) interface							
Timers	Т	wo 16-bit timers, one 8-bit time	er					
Operating voltage		1.65 to 3.6 V						
Operating temperature	-40 to +85 °C -40 to +85 -40 to +12							
Packages	UFQFPN20 3x3	UFQFPN28 4x 4 UFQFPN20 3x3 TSSOP20 4.4 x 6.4	UFQFPN28 4x4 UFQFPN20 3x3 UFQFPN32 LQFP32					

Table 2. STM8L101xx device feature summary

3.5 Memory

The STM8L101xx devices have the following main features:

- 1.5 Kbytes of RAM
- The EEPROM is divided into two memory arrays (see the STM8L reference manual for details on the memory mapping):
 - Up to 8 Kbytes of low-density embedded Flash program including up to 2 Kbytes of data EEPROM. Data EEPROM and Flash program areas can be write protected independently by using the memory access security mechanism (MASS).
 - 64 option bytes (one block) of which 5 bytes are already used for the device.

Error correction code is implemented on the EEPROM.

3.6 Low power modes

To minimize power consumption, the product features three low power modes:

- Wait mode: CPU clock stopped, selected peripherals at full clock speed.
- Active-halt mode: CPU and peripheral clocks are stopped. The programmable wakeup time is controlled by the AWU unit.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. Wakeup is triggered by an external interrupt.

3.7 Voltage regulators

The STM8L101xx embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.

This regulator has two different modes: main voltage regulator mode (MVR) and low power voltage regulator mode (LPVR). When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.

3.8 Clock control

The STM8L101xx embeds a robust clock controller. It is used to distribute the system clock to the core and the peripherals and to manage clock gating for low power modes. This system clock is a 16-MHz High Speed Internal RC oscillator (HSI RC), followed by a programmable prescaler.

In addition, a 38 kHz low speed internal RC oscillator is used by the independent watchdog (IWDG) and Auto-wakeup unit (AWU).

3.9 Independent watchdog

The independent watchdog (IWDG) peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 38 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure.

DocID15275 Rev 15

3.15 USART

The USART interface (USART) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.

3.16 SPI

The serial peripheral interface (SPI) provides half/ full duplex synchronous serial communication with external devices. It can be configured as the master and in this case it provides the communication clock (SCK) to the external slave device. The interface can also operate in multi-master configuration.

3.17 I²C

The inter-integrated circuit (I2C) bus interface is designed to serve as an interface between the microcontroller and the serial I^2C bus. It provides multi-master capability, and controls all I^2C bus-specific sequencing, protocol, arbitration and timing. It manages standard and fast speed modes.

	Pi	n nu	ımb	er					Input			utput		,		
standard UFQFPN20	UFQFPN20 with COMP_REF ⁽¹⁾	TSSOP20	standard UFQFPN28	UFQFPN28 with COMP_REF ⁽¹⁾	UFQFPN32 or LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink/source	QO	ЬP	Main function (after reset)	Alternate function	
-	-	-	26	26	30	PC5	I/O	Х	Х	Х	HS	Х	Х	Port C5	-	
-	-	-	27	27	31	PC6	I/O	Х	Х	Х	HS	Х	Х	Port C6	-	
20	20	3	28	28	32	PA0 ⁽⁵⁾ /SWIM/ BEEP/IR_TIM ⁽⁶⁾	I/O	x	X ⁽⁵⁾	x	HS ⁽⁶⁾	x	x	Port A0	SWIM input and output /Beep output/Timer Infrared output	

Table 4. STM8L101xx pin description (continued)

1. Please refer to the warning below.

 At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as a general purpose pin (PA1), it can be configured only as output push-pull, not neither as output opendrain nor as a general purpose input. Refer to Section *Configuring NRST/PA1 pin as general purpose output* in the STM8L reference manual (RM0013).

3. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.

4. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V_{DD} are not implemented).

5. The PA0 pin is in input pull-up during the reset phase and after reset release.

6. High sink LED driver capability available on PA0.

Slope control of all GPIO pins can be programmed except true open drain pins and by default is limited to 2 MHz.

Warning:	For the STM8L101F1U6ATR, STM8L101F2U6ATR, STM8L101F3U6ATR, STM8L101G2U6ATR and STM8L101G3U6ATR part numbers (devices with COMP_REF
	pin), all ports available on 32-pin packages must be considered as active ports. To avoid spurious effects, the user has to configure them as input pull-up. A small increase in consumption (typ. < 300 μ A) may occur during the power up and reset phase until these ports are properly configured.

5 Memory and register map

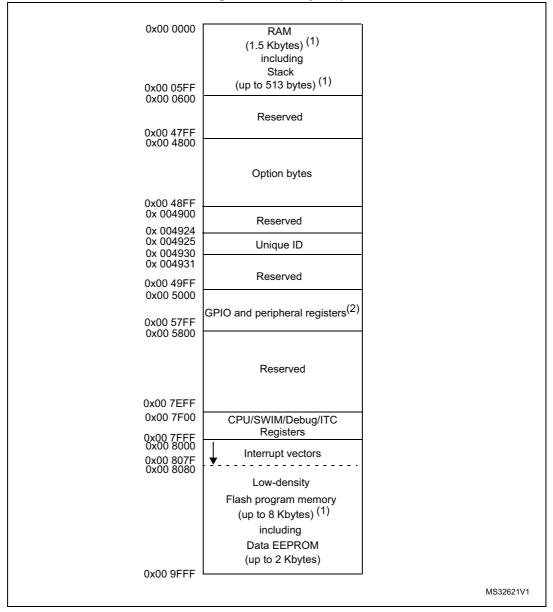


Figure 8. Memory map

1. *Table 5* lists the boundary addresses for each memory size. The top of the stack is at the RAM end address.

2. Refer to *Table 7* for an overview of hardware register mapping, to *Table 6* for details on I/O port hardware registers, and to *Table 8* for information on CPU/SWIM/debug module controller registers.

Table 7. General hardware register map (continued)								
Address	Block	Register label	Register name	Reset status				
0x00 5280		TIM3_CR1	TIM3 control register 1	0x00				
0x00 5281		TIM3_CR2	TIM3 control register 2	0x00				
0x00 5282		TIM3_SMCR	TIM3 slave mode control register	0x00				
0x00 5283		TIM3_ETR	TIM3 external trigger register	0x00				
0x00 5284		TIM3_IER	TIM3 interrupt enable register	0x00				
0x00 5285		TIM3_SR1	TIM3 status register 1	0x00				
0x00 5286		TIM3_SR2	TIM3 status register 2	0x00				
0x00 5287		TIM3_EGR	TIM3 event generation register	0x00				
0x00 5288		TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00				
0x00 5289		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00				
0x00 528A	ТІМЗ	TIM3_CCER1	TIM3 capture/compare enable register 1	0x00				
0x00 528B	TIMO	TIM3_CNTRH	TIM3 counter high	0x00				
0x00 528C		TIM3_CNTRL	TIM3 counter low	0x00				
0x00 528D		TIM3_PSCR	TIM3 prescaler register	0x00				
0x00 528E		TIM3_ARRH	TIM3 auto-reload register high	0xFF				
0x00 528F		TIM3_ARRL	TIM3 auto-reload register low	0xFF				
0x00 5290		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00				
0x00 5291		TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00				
0x00 5292		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00				
0x00 5293		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00				
0x00 5294		TIM3_BKR TIM3 break register		0x00				
0x00 5295		TIM3_OISR	TIM3 output idle state register	0x00				
0x00 5296 to 0x00 52DF		F	Reserved area (74 bytes)					
0x00 52E0		TIM4_CR1	TIM4 control register 1	0x00				
0x00 52E1		TIM4_CR2	TIM4 control register 2	0x00				
0x00 52E2		TIM4_SMCR	TIM4 Slave mode control register	0x00				
0x00 52E3		TIM4_IER	TIM4 interrupt enable register	0x00				
0x00 52E4	TIM4 TIM4_SR1 TIM4 Status re		TIM4 Status register 1	0x00				
0x00 52E5		TIM4_EGR TIM4 event generation register		0x00				
0x00 52E6		TIM4_CNTR	TIM4 counter	0x00				
0x00 52E7		TIM4_PSCR	TIM4 prescaler register	0x00				
0x00 52E8		TIM4_ARR	TIM4 auto-reload register low	0xFF				

 Table 7. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status					
0x00 7F78 to 0x00 7F79		Reserved area (2 bytes)							
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00					
0x00 7F81 to 0x00 7F8F		Reserved area (15 bytes)							
0x00 7F90		DM_BK1RE	Breakpoint 1 register extended byte	0xFF					
0x00 7F91		DM_BK1RH	Breakpoint 1 register high byte	0xFF					
0x00 7F92		DM_BK1RL	Breakpoint 1 register low byte	0xFF					
0x00 7F93		DM_BK2RE	Breakpoint 2 register extended byte	0xFF					
0x00 7F94		DM_BK2RH	Breakpoint 2 register high byte	0xFF					
0x00 7F95	DM	DM_BK2RL	Breakpoint 2 register low byte	0xFF					
0x00 7F96		DM_CR1	Debug module control register 1	0x00					
0x00 7F97	DM_CR2		Debug module control register 2	0x00					
0x00 7F98		DM_CSR1	Debug module control/status register 1	0x10					
0x00 7F99		DM_CSR2	Debug module control/status register 2	0x00					
0x00 7F9A		DM_ENFCTR	Enable function register	0xFF					

Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Refer to Table 7: General hardware register map on page 25 (addresses 0x00 50A0 to 0x00 50A5) for a list of external interrupt registers.

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated row of the memory.

All option bytes can be modified only in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 10* for details on option byte addresses.

Refer to the STM8L Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Addu	Ontion nome	Option		Option bits							Factory default
Addr.	Option name	byte No.	7	6	5	4	3	2	1	0	setting
0x4800	Read-out protection (ROP)	OPT1		ROP[7:0]						0x00	
0x4807	-	-		Must be programmed to 0x00							
0x4802	UBC (User Boot code size)	OPT2		UBC[7:0]							0x00
0x4803	DATASIZE	OPT3	DATASIZE[7:0]							0x00	
0x4808	Independent watchdog option	OPT4 [1:0]	Reserved IWDG _HALT				IWDG _HW	0x00			

Table 11. Option byte description

OPT1	ROP[7:0] <i>Memory readout protection (ROP)</i> 0xAA: Enable readout protection (write access via SWIM protocol) Refer to <i>Read-out protection</i> section in the STM8L reference manual (RM0013) for details.						
OPT2	 UBC[7:0] Size of the user boot code area 0x00: no UBC 0x01-0x02: UBC contains only the interrupt vectors. 0x03: Page 0 and 1 reserved for the interrupt vectors. Page 2 is available to store user boot code. Memory is write protected 0x7F - Page 0 to 126 reserved for UBC, memory is write protected Refer to User boot area (UBC) section in the STM8L reference manual (RM0013) for more details. UBC[7] is forced to 0 internally by HW. 						

8 Unique ID

STM8L101xx devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory
- To activate secure boot processes.

Addrooo	Content			5					
Address	description	7	6	5	4	3	2	1	0
0x4925	X co-ordinate on				U_	ID[7:0]			
0x4926	the wafer				U_I	D[15:8]			
0x4927	Y co-ordinate on				U_II	D[23:16]			
0x4928	the wafer	U_ID[31:24]							
0x4929	Wafer number	U_ID[39:32]							
0x492A					U_II	D[47:40]			
0x492B					U_II	D[55:48]			
0x492C					U_II	D[63:56]			
0x492D	Lot number	U_ID[71:64]							
0x492E		U_ID[79:72] U_ID[87:80]							
0x492F									
0x4930					U_II	D[95:88]			

Table 12. Unique ID registers (96 bits)

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

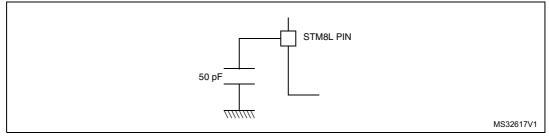
9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A = 25 °C and T_A = T_A max (given by the selected temperature range).

Note: The values given at 85 °C < $T_A \le 125$ °C are only valid for suffix 3 versions.

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

9.1.2 Typical values


Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3$ V. They are given only as design guidelines and are not tested.

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 9*.

Figure 9. Pin loading conditions

Current consumption of on-chip peripherals

Measurement made for f_{MASTER} = from 2 MHz to 16 MHz

Symbol	Parameter	Typ. V _{DD} = 3.0 V	Unit
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾	9	
I _{DD(TIM3)}	TIM3 supply current ⁽¹⁾	9	
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾	4	
I _{DD(USART)}	USART supply current ⁽²⁾	7	µA/MHz
I _{DD(SPI)}	SPI supply current ⁽²⁾	4	
I _{DD(I²C1)}	I2C supply current ⁽²⁾	4	
I _{DD(COMP)}	Comparator supply current ⁽²⁾	20	μA

Table 21. Peri	oheral current	consumption
----------------	----------------	-------------

 Data based on a differential I_{DD} measurement between all peripherals off and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pin toggling. Not tested in production.

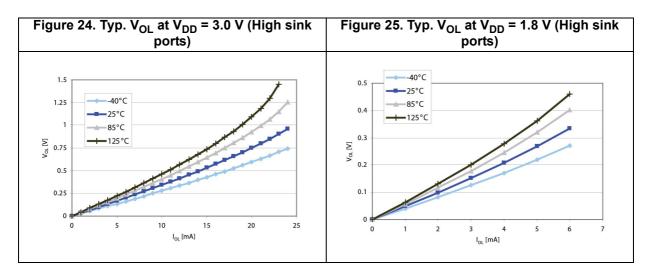
 Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pin toggling. Not tested in production.

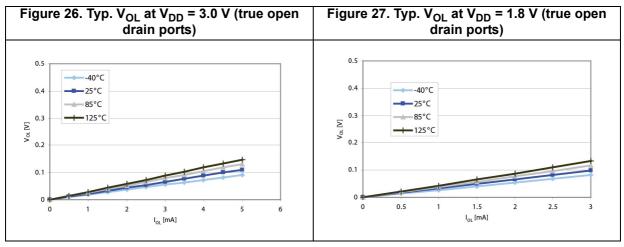
9.3.4 Clock and timing characteristics

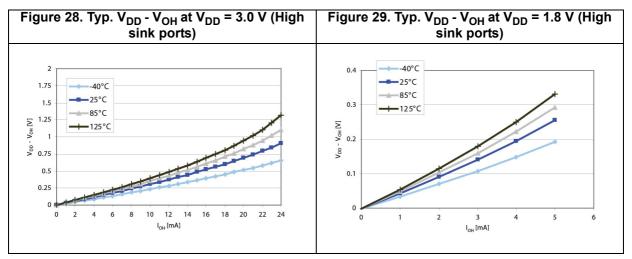
Internal clock sources

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

High speed internal RC oscillator (HSI)


Table 22. HSI oscillato	r characteristics ⁽¹⁾
-------------------------	----------------------------------


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
	V _{DD} = 3.0 V, T _A = 25 °C	-1	-	1	%	
		V _{DD} = 3.0 V, -10 °C ≤T _A ≤85 °C	-2.5 ⁽²⁾	-	2 ⁽²⁾	%
ACC _{HSI} Accuracy of HSI oscillator	V _{DD} = 3.0 V, -10 °C ≤T _A ≤ 125 °C	-4.5 ⁽²⁾	-	2 ⁽²⁾	%	
		V _{DD} = 3.0 V, 0 °C ≤T _A ≤ 55 °C	-1.5 ⁽²⁾	-	1.5 ⁽²⁾	%
	(factory calibrated)	V _{DD} = 3.0 V, -10 °C ≤T _A ≤ 70 °C	-2 ⁽²⁾	-	2 ⁽²⁾	%
		1.65 V ≤ V _{DD} ≤ 3.6 V, -40 °C ≤ T _A ≤125 °C	-4.5 ⁽²⁾	-	3 ⁽²⁾	%
I _{DD(HSI)}	HSI oscillator power consumption	-	-	70	100 ⁽²⁾	μA


1. V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.

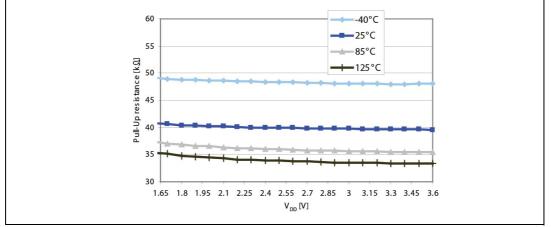
2. Data based on characterization results, not tested in production.

NRST pin

The NRST pin input driver is CMOS. A permanent pull-up is present. $R_{PU(NRST)}$ has the same value as R_{PU} (see *Table 26 on page 48*).

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур ⁽¹⁾	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	V_{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	1.4	-	V _{DD}	V
V _{OL(NRST)}	NRST output low level voltage	I _{OL} = 2 mA	-	-	V _{DD} -0.8	
R _{PU(NRST)}	NRST pull-up equivalent resistor ⁽²⁾	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse ⁽³⁾	-	-	-	50	ns
t _{OP(NRST)}	NRST output pulse width	-	20	-	-	ns
V _{NF(NRST)}	NRST input not filtered pulse ⁽³⁾	-	300	-	_	ns


Table 30. NRST pin characteristics

1. Data based on characterization results, not tested in production.

The R_{PU} pull-up equivalent resistor is based on a resistive transistor (*Figure 30*). Corresponding I_{PU} current characteristics are described in *Figure 31*.

3. Data guaranteed by design, not tested in production.

Static latch-up

• LU: 2 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Tahlo	37	Floctrical	sensitivities
Iable	31.	Electrical	Selisitivities

Symbol	Parameter	Class
LU	Static latch-up class	II

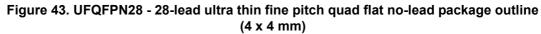
9.4 Thermal characteristics

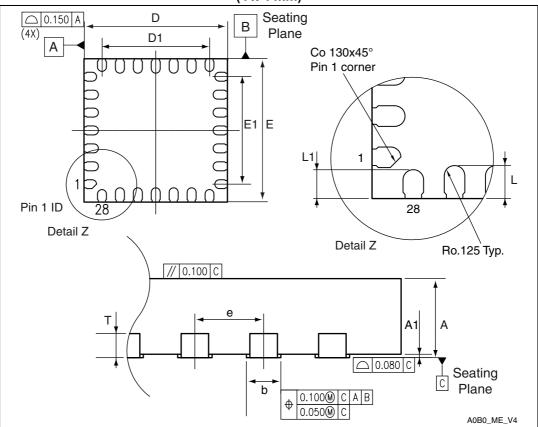
The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 16: General operating conditions on page 40.*

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

 $\mathsf{T}_{\mathsf{Jmax}} = \mathsf{T}_{\mathsf{Amax}} + (\mathsf{P}_{\mathsf{Dmax}} \times \Theta_{\mathsf{JA}})$

Where:


- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins where:


 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma (\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) * \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual $V_{OL}/I_{OL and} V_{OH}/I_{OH}$ of the I/Os at low and high level in the application.

10.3 UFQFPN28 package information

10.5 TSSOP20 package information

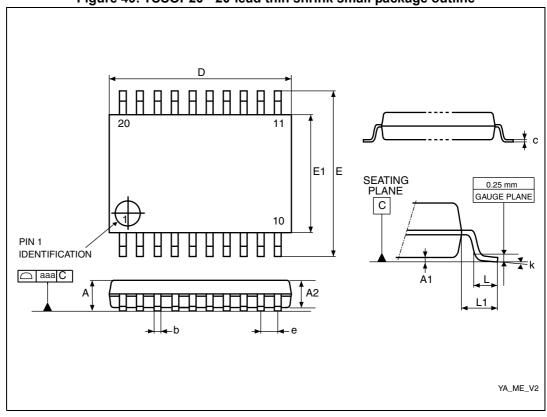


Figure 49. TSSOP20 - 20-lead thin shrink small package outline

1. Drawing is not to scale.

Dim.	mm				inches ⁽¹⁾		
Dini.	Dim. Min		Мах	Min	Тур	Max	
A	-	-	1.200	-	-	0.0472	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413	
b	0.190	-	0.300	0.0075	-	0.0118	
CP	-	-	0.100	-	-	0.0039	
с	0.090	-	0.200	0.0035	-	0.0079	
D ⁽²⁾	6.400	6.500	6.600	0.2520	0.2559	0.2598	
E	6.200	6.400	6.600	0.2441	0.2520	0.2598	
E1 ⁽³⁾	4.300	4.400	4.500	0.1693	0.1732	0.1772	
е	-	0.650	-	0.1693	0.0256	-	
L	0.450	0.600	0.750	0.1693	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	

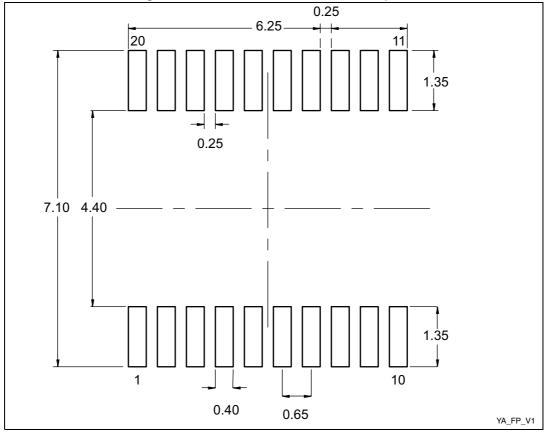
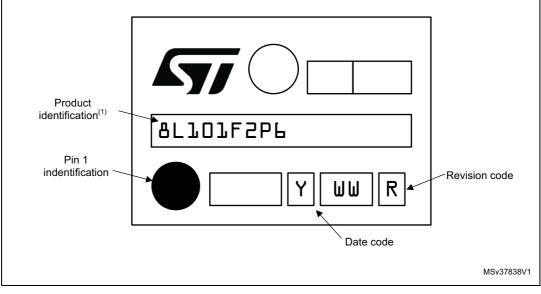

Dim	mm				inch	es ⁽¹⁾
Dim.	Min	Тур	Мах	Min	Тур	Max
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039
Number of pins	20					

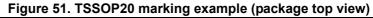
Table 43. TSSOP20 - 20-lead thin shrink small package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

 Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side.


Figure 50. TSSOP20 recommended footprint


1. Dimensions are in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

13 Revision history

Date	Revision	Changes		
19-Dec-2008	1	Initial release.		
22-Apr-2009	2	Added TSSOP28 package Modified packages on first page COMPx_OUT pins removed Added <i>Figure 6: 28-pin TSSOP package pinout on page 17</i> Modified <i>Section 9: Electrical parameters on page 37</i> . Updated UBC[7:0] description in <i>Section 7: Option bytes</i> . Updated low power current consumption on cover page. Updated <i>Table 13: Voltage characteristics, Table 20: Total current</i> <i>consumption and timing in Halt and Active-halt mode at VDD = 1.65</i> V to 3.6 V, <i>Table 26: I/O static characteristics, Table 30: NRST pin</i> <i>characteristics, and Section 9.3.9: EMC characteristics.</i> Updated PA1/NRST, PC0 and PC1 in <i>Table 4: STM8L101xx pin</i> <i>description.</i> Added ECC feature. Changed internal RC frequency to 38 kHz. Updated electrical characteristics in <i>Table 16, Table 18, Table 19,</i> <i>Table 20, Table 22, Table 23,</i> and <i>Table 26.</i>		
24-Apr-2009	3	Corrected title on cover page. Changed VFQFPN32 to WFQFPN32 and updated <i>Table 39:</i> <i>UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package</i> (5 x 5), package mechanical data. Updated <i>Table 13, Table 26,</i> and <i>Table 33.</i>		
14-May-2009	4	Replaced WFQFPN20 3 x 3 mm 0.8 mm package by UFQFPN20 3 x 3 mm 0.6 mm package (first page, <i>Table 16: General operating</i> <i>conditions on page 40, Table 38: Thermal characteristics on</i> <i>page 63, Section 10.2: Package mechanical data on page 67</i>) Added one UFQFPN20 version with COMP_REF Modified <i>Figure 40: LQFP32 recommended footprint</i> ⁽¹⁾ <i>on page 69</i> Added I _{PROG} values in <i>Table 25: Flash program memory on page 47</i> Updated <i>Table 31: SPI characteristics on page 55</i>		
15-May-2009	5	Added STM8L101F3U6ATR part number in <i>Section 4: Pin</i> description on page 15 and in Figure 47: STM8L101xx ordering information scheme on page 74		

Table 44. Document revision history

