

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4126azi-s445

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Functional Definition	6
CPU and Memory Subsystem	6
System Resources	6
Analog Blocks	7
Programmable Digital Blocks	8
Fixed Function Digital Blocks	
GPIO	8
Special Function Peripherals	
Pinouts	
Alternate Pin Functions	12
Power	14
Mode 1: 1.8 V to 5.5 V External Supply	14
Mode 2: 1.8 V ±5% External Supply	
Electrical Specifications	15
Absolute Maximum Ratings	
Device Level Specifications	
Analog Peripherals	19
Digital Peripherals	
Memory	
System Resources	

Ordering Information Packaging	
Package Diagrams	
Acronyms	
Document Conventions	40
Units of Measure	40
Revision History	41
Sales, Solutions, and Legal Information	42
Worldwide Sales and Design Support	42
Products	
PSoC® Solutions	42
Cypress Developer Community	42
Technical Support	

Watch Crystal Oscillator (WCO)

The PSoC 4100S Plus clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that can be used for precision timing applications.

External Crystal Oscillators (ECO)

The PSoC 4100S Plus also implements a 4 to 33 MHz crystal oscillator.

Watchdog Timer and Counters

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable. The Watchdog counters can be used to implement a Real-Time clock using the 32-kHz WCO.

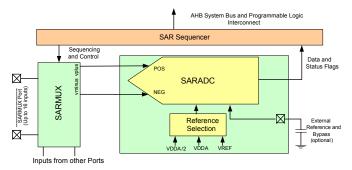
Reset

PSoC 4100S Plus can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.

Analog Blocks

12-bit SAR ADC

The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.


The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. It is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) with zero switching overhead (that is, aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range

values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is not available in Deep Sleep mode as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V.

Figure 4. SAR ADC

Two Opamps (Continuous-Time Block; CTB)

PSoC 4100S Plus has two opamps with Comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, Voltage Buffers, Filters, Trans-Impedance Amplifiers, and other functions can be realized, in some cases with external passives. saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering.

Low-power Comparators (LPC)

PSoC 4100S Plus has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event. The LPC outputs can be routed to pins.

Current DACs

PSoC 4100S Plus has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges.

Analog Multiplexed Buses

PSoC 4100S Plus has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator) to connect to any pin on the I/O Ports.

Pinouts

The following table provides the pin list for PSoC 4100S Plus for the 44-pin TQFP and 64-pin TQFP Normal and Fine Pitch packages.

	64-TQFP	44-TQFP					FP 44-TQFP		
Pin	Name	Pin	Name						
39	P0.0	24	P0.0						
40	P0.1	25	P0.1						
41	P0.2	26	P0.2						
42	P0.3	27	P0.3						
43	P0.4	28	P0.4						
44	P0.5	29	P0.5						
45	P0.6	30	P0.6						
46	P0.7	31	P0.7						
47	XRES	32	XRES						
48	VCCD	33	VCCD						
49	VSSD								
50	VDDD	34	VDDD						
51	P5.0								
52	P5.1								
53	P5.2								
54	P5.3								
55	P5.5								
56	VDDA	35	VDDA						
57	VSSA	36	VSSA						
58	P1.0	37	P1.0						
59	P1.1	38	P1.1						
60	P1.2	39	P1.2						
61	P1.3	40	P1.3						
62	P1.4	41	P1.4						
63	P1.5	42	P1.5						
64	P1.6	43	P1.6						
1	P1.7	44	P1.7						
		1	VSSD						
2	P2.0	2	P2.0						
3	P2.1	3	P2.1						
4	P2.2	4	P2.2						
5	P2.3	5	P2.3						
6	P2.4	6	P2.4						
7	P2.5	7	P2.5						
8	P2.6	8	P2.6						
9	P2.7	9	P2.7						
10	VSSD	10	P6.0						
11	No Connect (NC)								
12	P6.0								
13	P6.1								

	64-TQFP	44-TQFP			
Pin	Name	Pin	Name		
14	P6.2				
15	P6.4				
16	P6.5				
17	VSSD				
17	VSSD				
18	P3.0	11	P3.0		
19	P3.1	12	P3.1		
20	P3.2	13	P3.2		
21	P3.3	14	P3.3		
22	P3.4	15	P3.4		
23	P3.5	16	P3.5		
24	P3.6	17	P3.6		
25	P3.7	18	P3.7		
26	VDDD	19	VDDD		
27	P4.0	20	P4.0		
28	P4.1	21	P4.1		
29	P4.2	22	P4.2		
30	P4.3	23	P4.3		
31	P4.4				
32	P4.5				
33	P4.6				
34	P4.7				
35	P5.6				
36	P5.7				
37	P7.0				
38	P7.1				

Descriptions of the Power pins are as follows:

VDDD: Power supply for the digital section.

VDDA: Power supply for the analog section.

VSSD, VSSA: Ground pins for the digital and analog sections respectively.

VCCD: Regulated digital supply (1.8 V ±5%)

VDD: Power supply to all sections of the chip

VSS: Ground for all sections of the chip

GPIOs by package:

	64 TQFP	44 TQFP		
Number	54	37		

PSoC[®] 4: PSoC 4100S Plus Datasheet

Port/Pin	Analog	Smart I/O	ACT #0	ACT #1	ACT #3	DS #2	DS #3
P2.4	sarmux[4]	Smartlo[0].io[4]	tcpwm.line[0]:1	scb[3].uart_rx:1			scb[1].spi_select1:1
P2.5	sarmux[5]	Smartlo[0].io[5]	tcpwm.line_compl[0]:1	scb[3].uart_tx:1			scb[1].spi_select2:1
P2.6	sarmux[6]	Smartlo[0].io[6]	tcpwm.line[1]:1	scb[3].uart_cts:1			scb[1].spi_select3:1
P2.7	sarmux[7]	Smartlo[0].io[7]	tcpwm.line_compl[1]:1	scb[3].uart rts:1		lpcomp.comp[0]:0	scb[2].spi_mosi:1
1 2.7	odimax[/]			000[0].001(_10.1		ipoomp.comp[o].o	000[2].0pi_m00i.1
P6.0			tcpwm.line[4]:1	scb[3].uart_rx:0	can.can_tx_enb_n:0	scb[3].i2c_scl:1	scb[3].spi_mosi:0
P6.1			tcpwm.line_compl[4]:1	scb[3].uart_tx:0	can.can_rx:0	scb[3].i2c_sda:1	scb[3].spi_miso:0
P6.2			tcpwm.line[5]:0	scb[3].uart_cts:0	can.can_tx:0		scb[3].spi_clk:0
P6.3			tcpwm.line_compl[5]:0	scb[3].uart_rts:0			scb[3].spi_select0:0
P6.4			tcpwm.line[6]:0			scb[4].i2c_scl	scb[3].spi_select1:0
P6.5			tcpwm.line_compl[6]:0			scb[4].i2c_sda	scb[3].spi_select2:0
P3.0		Smartlo[1].io[0]	tcpwm.line[0]:0	scb[1].uart_rx:1		scb[1].i2c_scl:2	scb[1].spi_mosi:0
P3.1		Smartlo[1].io[1]	tcpwm.line_compl[0]:0	scb[1].uart_tx:1		scb[1].i2c_sda:2	scb[1].spi_miso:0
P3.2		Smartlo[1].io[2]	tcpwm.line[1]:0	scb[1].uart_cts:1		cpuss.swd_data	scb[1].spi_clk:0
P3.3		Smartlo[1].io[3]	tcpwm.line_compl[1]:0	scb[1].uart_rts:1		cpuss.swd_clk	scb[1].spi_select0:0
P3.4		Smartlo[1].io[4]	tcpwm.line[2]:0		tcpwm.tr_in[6]		scb[1].spi_select1:0
P3.5		Smartlo[1].io[5]	tcpwm.line_compl[2]:0				scb[1].spi_select2:0
P3.6		Smartlo[1].io[6]	tcpwm.line[3]:0			scb[4].spi_select3	scb[1].spi_select3:0
P3.7		Smartlo[1].io[7]	tcpwm.line_compl[3]:0			lpcomp.comp[1]:1	scb[2].spi_miso:1
P4.0	csd.vref_ext			scb[0].uart_rx:0	can.can_rx:1	scb[0].i2c_scl:1	scb[0].spi_mosi:0
P4.1	csd.cshield			scb[0].uart_tx:0	can.can_tx:1	scb[0].i2c_sda:1	scb[0].spi_miso:0
P4.2	csd.cmod			scb[0].uart_cts:0	can.can_tx_enb_n:1	lpcomp.comp[0]:1	scb[0].spi_clk:0
P4.3	csd.csh_tank			scb[0].uart_rts:0		lpcomp.comp[1]:2	scb[0].spi_select0:0
P4.4				scb[4].uart_rx		scb[4].spi_mosi	scb[0].spi_select1:2
P4.5				scb[4].uart_tx		scb[4].spi_miso	scb[0].spi_select2:2
P4.6				scb[4].uart_cts		scb[4].spi_clk	scb[0].spi_select3:2
P4.7				scb[4].uart_rts		scb[4].spi_select0	
P5.6			tcpwm.line[7]:0			scb[4].spi_select1	scb[2].spi_select3:0
P5.7			tcpwm.line_compl[7]:0			scb[4].spi_select2	
P7.0			tcpwm.line[0]:2	scb[3].uart_rx:2		scb[3].i2c_scl:2	scb[3].spi_mosi:1
P7.1			tcpwm.line_compl[0]:2	scb[3].uart_tx:2		scb[3].i2c_sda:2	scb[3].spi_miso:1
P7.2			tcpwm.line[1]:2	scb[3].uart_cts:2			scb[3].spi_clk:1

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V_{SS}	-0.5	-	6		_
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SS}	-0.5	-	1.95	V	-
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5	1	_
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25		-
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V_{DDD} , and Min for V _{IL} < V _{SS}	-0.5	-	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	-
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	v	-
BID46	LU	Pin current for latch-up	-140	-	140	mA	_

Device Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage	1.8	-	5.5		Internally regulated supply
SID255	V _{DD}	Power supply input voltage (V_{CCD} = V_{DDD} = V_{DDA})	1.71	-	1.89	V	Internally unregulated supply
SID54	V _{CCD}	Output voltage (for core logic)	-	1.8	-		_
SID55	C _{EFC}	External regulator voltage bypass	-	0.1	-		X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	_	1	-	μF	X5R ceramic or better
Active Mode, V	/ _{DD} = 1.8 V to 5	.5 V. Typical values measured at VDD	= 3.3 V an	d 25 °C.		•	
SID10	I _{DD5}	Execute from flash; CPU at 6 MHz	-	1.8	2.4		Max is at 85 °C and 5.5 V
SID16	I _{DD8}	Execute from flash; CPU at 24 MHz	-	3.0	4.6	mA	Max is at 85 °C and 5.5 V
SID19	I _{DD11}	Execute from flash; CPU at 48 MHz	_	5.4	7.1		Max is at 85 °C and 5.5 V

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 2. DC Specifications (continued)

Typical values measured at V_DD = 3.3 V and 25 $^\circ\text{C}.$

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions			
Sleep Mode, V	Sleep Mode, VDDD = 1.8 V to 5.5 V (Regulator on)									
SID22	I _{DD17}	I ² C wakeup WDT, and Comparators on	-	1.1	1.8	mA	6 MHZ. Max is at 85 °C and 5.5 V			
SID25	I _{DD20}	I ² C wakeup, WDT, and Comparators on	-	1.5	2.1	-	12 MHZ. Max is at 85 °C and 5.5 V			
Sleep Mode, V	_{DDD} = 1.71 V to	1.89 V (Regulator bypassed)								
SID28	I _{DD23}	I ² C wakeup, WDT, and Comparators on	-	1.1	1.8	mA	6 MHZ. Max is at 85 °C and 1.89 V			
SID28A	I _{DD23A}	I ² C wakeup, WDT, and Comparators on	_	1.5	2.1	mA	12 MHZ. Max is at 85 °C and 1.89 V			
Deep Sleep Me	ode, V _{DD} = 1.8 V	/ to 3.6 V (Regulator on)								
SID30	I _{DD25}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	-	2.5	40	μA	T = -40 °C to 60 °C			
SID31	I _{DD26}	I ² C wakeup and WDT on	_	2.5	125	μA	Max is at 3.6 V and 85 °C			
Deep Sleep Me	ode, V _{DD} = 3.6 V	/ to 5.5 V (Regulator on)								
SID33	I _{DD28}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	_	2.5	40	μA	T = -40 °C to 60 °C			
SID34	I _{DD29}	I ² C wakeup and WDT on	_	2.5	125	μA	Max is at 5.5 V and 85 °C			
Deep Sleep Me	ode, V _{DD} = V _{CC}	_D = 1.71 V to 1.89 V (Regulator bypasse	d)							
SID36	I _{DD31}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	_	2.5	60	μA	T = -40 °C to 60 °C			
SID37	I _{DD32}	I ² C wakeup and WDT on	_	2.5	180	μA	Max is at 1.89 V and 85 °C			
XRES Current	•	· · · · · ·		•	•	•	•			
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	-			

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[2]	T _{SLEEP}	Wakeup from Sleep mode	-	0	_	us	
SID50 ^[2]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	35	_	μο	

Table 5. GPIO AC Specifications (continued)

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions	
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	-	3.3 V V _{DDD} , Cload = 25 pF	
SID74	F _{GPIOUT1}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V Fast strong mode	_	-	33			90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO F _{OUT} ; 1.71 V≤ V _{DDD} ≤ 3.3 V Fast strong mode	_	_	16.7		90/10%, 25 pF load, 60/40 duty cycle	
SID76	F _{GPIOUT3}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V Slow strong mode	_	_	7	MHz	90/10%, 25 pF load, 60/40 duty cycle	
SID245	F _{GPIOUT4}	GPIO F_{OUT} ; 1.71 V \leq V _{DDD} \leq 3.3 V Slow strong mode.	_	-	3.5	-	90/10%, 25 pF load, 60/40 duty cycle	
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	_	48		90/10% V _{IO}	

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	$0.7 \times V_{DDD}$	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	$0.3\times V_{DDD}$	v	
SID79	R _{PULLUP}	Pull-up resistor	-	60	-	kΩ	-
SID80	C _{IN}	Input capacitance	-	-	7	pF	-
SID81 ^[5]	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5 V
SID82	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	_	_	100	μA	

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[5]	T _{RESETWIDTH}	Reset pulse width	1	-	-	μs	-
BID194 ^[5]	TRESETWAKE	Wake-up time from reset release	-	-	2.7	ms	-

Analog Peripherals

CTBm Opamp

Table 8. CTBm Opamp Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current, External load					
SID269	I _{DD_HI}	power=hi	-	1100	1850		-
SID270	I _{DD_MED}	power=med	-	550	950	μA	_
SID271	I _{DD_LOW}	power=lo	-	150	350		_
	G _{BW}	Load = 20 pF, 0.1 mA V _{DDA} = 2.7 V		-			
SID272	G _{BW_HI}	power=hi	6	-	-		Input and output are 0.2 V to V _{DDA} -0.2 V
SID273	G _{BW_MED}	power=med	3	-	-	MHz	Input and output are 0.2 V to V _{DDA} -0.2 V
SID274	G _{BW_LO}	power=lo	-	1	-		Input and output are 0.2 V to V _{DDA} -0.2 V
	I _{OUT_MAX}	V_{DDA} = 2.7 V, 500 mV from rail					
SID275	I _{OUT_MAX_HI}	power=hi	10	-	-		Output is 0.5 V to V _{DDA} -0.5 V
SID276	I _{OUT_MAX_MID}	power=mid	10	-	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID277	I _{OUT_MAX_LO}	power=lo	-	5	-		Output is 0.5 V to V _{DDA} -0.5 V
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail					
SID278	I _{OUT_MAX_HI}	power=hi	4	_	-		Output is 0.5 V to V _{DDA} -0.5 V
SID279	I _{OUT_MAX_MID}	power=mid	4	_	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID280	I _{OUT_MAX_LO}	power=lo	_	2	-		Output is 0.5 V to V _{DDA} -0.5 V
	I _{DD_Int}	Opamp block current Internal Load					
SID269_I	I _{DD_HI_Int}	power=hi	-	1500	1700		-
SID270_I	I _{DD_MED_Int}	power=med	-	700	900	μA	_
	I _{DD_LOW_Int}	power=lo	-	-	-		_
SID271_I	G _{BW}	V _{DDA} = 2.7 V	-	_	_		-
SID272_I	G _{BW_HI_Int}	power=hi	8	_	_	MHz	Output is 0.25 V to V _{DDA} -0.25 V
		General opamp specs for both internal and external modes			·I		
SID281	V _{IN}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	-	V _{DDA} -0 .2		-
SID282	V _{CM}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	-	V _{DDA} -0 .2	V	_
	V _{OUT}	V _{DDA} = 2.7 V		1	<u> </u>		1

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID300	TPD1	Response time; power=hi	-	150	-		Input is 0.2 V to V _{DDA} -0.2 V
SID301	TPD2	Response time; power=med	-	500	-	ns	Input is 0.2 V to V _{DDA} -0.2 V
SID302	TPD3	Response time; power=lo	-	2500	_		Input is 0.2 V to V _{DDA} -0.2 V
SID303	VHYST_OP	Hysteresis	-	10	Ι	mV	_
SID304	WUP_CTB	Wake-up time from Enabled to Usable	-	-	25	μs	_
	Deep Sleep Mode	Mode 2 is lowest current range. Mode 1 has higher GBW.					
SID_DS_1	I _{DD_HI_M1}	Mode 1, High current	-	1400	-		25 °C
SID_DS_2	I _{DD_MED_M1}	Mode 1, Medium current	-	700	-		25 °C
SID_DS_3	I _{DD_LOW_M1}	Mode 1, Low current	-	200	I		25 °C
SID_DS_4	I _{DD_HI_M2}	Mode 2, High current	-	120	-	μA	25 °C
SID_DS_5	I _{DD_MED_M2}	Mode 2, Medium current	-	60	-		25 °C
SID_DS_6	I _{DD_LOW_M2}	Mode 2, Low current	-	15	-		25 °C
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	-	4	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	-	2	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M1}	Mode 1, Low current	-	0.5	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	-	0.5	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	-	0.2	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	-	0.1	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	-	5	_	mV	With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	_	5	_		With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	-	5	_		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V

Table 8. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID_DS_19	I _{OUT_HI_M1}	Mode 1, High current	_	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	_	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	_	4	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	_	1	_		
SID_DS_23	I _{OU_MED_M2}	Mode 2, Medium current	_	1	_		
SID_DS_24	I _{OU_LOW_M2}	Mode 2, Low current	_	0.5	_		

Table 8. CTBm Opamp Specifications (continued)

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID84	V _{OFFSET1}	Input offset voltage, Factory trim	-	-	±10		
SID85	V _{OFFSET2}	Input offset voltage, Custom trim	_	_	±4	mV	
SID86	V _{HYST}	Hysteresis when enabled	_	10	35		
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	_	V _{DDD} -0.1		Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	_	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	_	V _{DDD} -1.15		V _{DDD} ≥ 2.2 V at –40 °C
SID88	C _{MRR}	Common mode rejection ratio	50	_	_	dB	V _{DDD} ≥ 2.7V
SID88A	C _{MRR}	Common mode rejection ratio	42	_	_	uБ	V _{DDD} ≤ 2.7V
SID89	I _{CMP1}	Block current, normal mode	-	_	400		
SID248	I _{CMP2}	Block current, low power mode	-	_	100	μA	
SID259	I _{CMP3}	Block current in ultra low-power mode	-	—	6		V _{DDD} ≥ 2.2 V at –40 °C
SID90	Z _{CMP}	DC Input impedance of comparator	35	-	-	MΩ	

Table 10. Comparator AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID91	TRESP1	Response time, normal mode, 50 mV overdrive	-	38	110	ns	
SID258	TRESP2	Response time, low power mode, 50 mV overdrive	-	70	200	115	
SID92	TRESP3	Response time, ultra-low power mode, 200 mV overdrive	-	2.3	15	μs	V _{DDD} ≥ 2.2 V at –40 °C

Note

6. Guaranteed by characterization.

Table 13.	CSD and	IDAC Specifications	(continued)
-----------	---------	----------------------------	-------------

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID315G	IDAC3CRT23	Output current of IDAC in 8-bit mode in medium range	69	-	82	μA	LSB = 300-nA typ
SID315H	IDAC3CRT33	Output current of IDAC in 8-bit mode in high range	540	-	660	μA	LSB = 2.4-µA typ
SID320	IDACOFFSET	All zeroes input	-	_	1	LSB	Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode
SID321	IDACGAIN	Full-scale error less offset	_	-	±10	%	
SID322	IDACMISMATCH1	Mismatch between IDAC1 and IDAC2 in Low mode	_	-	9.2	LSB	LSB = 37.5-nA typ
SID322A	IDACMISMATCH2	Mismatch between IDAC1 and IDAC2 in Medium mode	-	-	5.6	LSB	LSB = 300-nA typ
SID322B	IDACMISMATCH3	Mismatch between IDAC1 and IDAC2 in High mode	_	-	6.8	LSB	LSB = 2.4-µA typ
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	_	-	5	μs	Full-scale transition. No external load
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	_	_	5	μs	Full-scale transition. No external load
SID325	CMOD	External modulator capacitor.	_	2.2	-	nF	5-V rating, X7R or NP0 cap

10-bit CapSense ADC

Table 14. 10-bit CapSense ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SIDA94	A_RES	Resolution	-	-	10	bits	Auto-zeroing is required every millisecond
SIDA95	A_CHNLS_S	Number of channels - single ended	-	-	16		Defined by AMUX Bus
SIDA97	A-MONO	Monotonicity	-	-	-	Yes	
SIDA98	A_GAINERR	Gain error	-	-	±3	%	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA99	A_OFFSET	Input offset voltage	_	_	±18	mV	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA100	A_ISAR	Current consumption	-	-	0.25	mA	
SIDA101	A_VINS	Input voltage range - single ended	V _{SSA}	-	V _{DDA}	V	
SIDA103	A_INRES	Input resistance	_	2.2	-	KΩ	
SIDA104	A_INCAP	Input capacitance	_	20	-	pF	
SIDA106	A_PSRR	Power supply rejection ratio	-	60	_	dB	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA107	A_TACQ	Sample acquisition time	-	1	-	μs	
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	-	21.3	μs	Does not include acqui- sition time. Equivalent to 44.8 ksps including acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	_	85.3	μs	Does not include acqui- sition time. Equivalent to 11.6 ksps including acquisition time.

SPI

Table 18. SPI DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	ISPI1	Block current consumption at 1 Mbps	-	-	360		-
SID164	ISPI2	Block current consumption at 4 Mbps	-	-	560	μA	-
SID165	ISPI3	Block current consumption at 8 Mbps	-	-	600		-

Table 19. SPI AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions			
SID166	FSPI	SPI Operating frequency (Master; 6X Oversampling)	-	-	8	MHz				
Fixed SPI	Fixed SPI Master Mode AC Specifications									
SID167	TDMO	MOSI Valid after SClock driving edge	-	-	15		_			
SID168	TDSI	MISO Valid before SClock capturing edge	20	-	-	ns	Full clock, late MISO sampling			
SID169	тнмо	Previous MOSI data hold time	0	-	_		Referred to Slave capturing edge			
Fixed SPI	Slave Mode AC	Specifications			-					
SID170	томі	MOSI Valid before Sclock Capturing edge	40	-	-		-			
SID171	TDSO	MISO Valid after Sclock driving edge	-	-	42 + 3*Tcpu	ns	T _{CPU} = 1/F _{CPU}			
SID171A	TDSO_EXT	MISO Valid after Sclock driving edge in Ext. Clk mode	_	-	48	113	_			
SID172	THSO	Previous MISO data hold time	0	_	-		_			
SID172A	TSSELSSCK	SSEL Valid to first SCK Valid edge	-	-	100	ns	-			

UART

Table 20. UART DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbps	-	-	55	μA	_
SID161	I _{UART2}	Block current consumption at 1000 Kbps	-	-	312	μA	-

Table 21. UART AC Specifications^[8]

Spec ID	Parameter	Description	Min	Typ Max		Units	Details/Conditions	
SID162	F _{UART}	Bit rate	-	_	1	Mbps	_	

Smart I/O

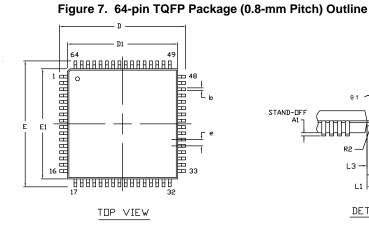
Table 38. Smart I/O Pass-through Time (Delay in Bypass Mode)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID252	—	Max delay added by Smart I/O in bypass mode	Ι	-	1.6	ns	

CAN

Table 39. CAN Specifications

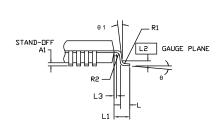
Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID420	IDD_CAN	Block current consumption	-	-	200	μA	
SID421	CAN_bits	CAN Bit rate	_	-	1	Mbps	Min 8-MHZ clock


Ordering Information

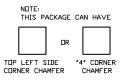
The marketing part numbers for the PSoC 4100S Plus devices are listed in the following table.

									Features								Pa	ckag	es
Category	NAW	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	Op-amp (CTBm)	CSD	10-bit CSD ADC	12-bit SAR ADC	SAR ADC Sample Rate	LP Comparators	TCPWM Blocks	SCB Blocks	ECO	CAN Controller	Smart I/Os	GPIO	44-TQFP (0.8-mm pitch)	64-TQFP (0.5-mm pitch)	64-TQFP (0.8-mm pitch)
	CY8C4126AXI-S443	24	64	8	2	0	1	1	806 ksps	2	8	4	>	0	24	36	~	Ι	-
	CY8C4126AZI-S445	24	64	8	2	0	1	1	806 ksps	2	8	5	~	0	24	54	Ι	>	-
4126	CY8C4126AXI-S445	24	64	8	2	0	1	1	806 ksps	2	8	5	~	0	24	54	I	I	~
	CY8C4126AZI-S455	24	64	8	2	1	1	1	806 ksps	2	8	5	~	0	24	54	I	~	-
	CY8C4126AXI-S455	24	64	8	2	1	1	1	806 ksps	2	8	5	>	0	24	54	I	Ι	~
	CY8C4146AXI-S443	48	64	8	2	0	1	1	1 Msps	2	8	4	~	0	24	36	~	-	-
	CY8C4146AZI-S445	48	64	8	2	0	1	1	1 Msps	2	8	5	~	0	24	54	-	~	-
4146	CY8C4146AXI-S445	48	64	8	2	0	1	1	1 Msps	2	8	5	~	0	24	54	Ι	Ι	~
4140	CY8C4146AXI-S453	48	64	8	2	1	1	1	1 Msps	2	8	4	~	0	24	36	~	Ι	_
	CY8C4146AZI-S455	48	64	8	2	1	1	1	1 Msps	2	8	5	~	0	24	54	Ι	~	_
	CY8C4146AXI-S455	48	64	8	2	1	1	1	1 Msps	2	8	5	~	0	24	54	Ι	Ι	~
	CY8C4127AXI-S443	24	128	16	2	0	1	1	806 ksps	2	8	4	~	0	24	36	~	-	-
	CY8C4127AZI-S445	24	128	16	2	0	1	1	806 ksps	2	8	5	~	0	24	54	-	~	-
4127	CY8C4127AXI-S445	24	128	16	2	0	1	1	806 ksps	2	8	5	~	0	24	54	Ι	Ι	~
4127	CY8C4127AXI-S453	24	128	16	2	1	1	1	806 ksps	2	8	4	~	0	24	36	~	-	-
	CY8C4127AZI-S455	24	128	16	2	1	1	1	806 ksps	2	8	5	~	0	24	54	-	~	-
	CY8C4127AXI-S455	24	128	16	2	1	1	1	806 ksps	2	8	5	~	0	24	54	-	-	~
	CY8C4147AXI-S443	48	128	16	2	0	1	1	1 Msps	2	8	4	~	0	24	36	~	-	_
	CY8C4147AZI-S445	48	128	16	2	0	1	1	1 Msps	2	8	5	~	0	24	54	-	~	_
	CY8C4147AXI-S445	48	128	16	2	0	1	1	1 Msps	2	8	5	~	0	24	54	-	-	~
	CY8C4147AXI-S453	48	128	16	2	1	1	1	1 Msps	2	8	4	V	0	24	36	~	-	-
4147	CY8C4147AZI-S455	48	128	16	2	1	1	1	1 Msps	2	8	5	V	0	24	54	-	~	-
4147	CY8C4147AXI-S455	48	128	16	2	1	1	1	1 Msps	2	8	5	~	0	24	54	-	-	~
	CY8C4147AZI-S465	48	128	16	2	0	1	1	1 Msps	2	8	5	V	1	24	54	-	~	-
	CY8C4147AXI-S465	48	128	16	2	0	1	1	1 Msps	2	8	5	~	1	24	54	-	-	~
	CY8C4147AZI-S475	48	128	16	2	1	1	1	1 Msps	2	8	5	~	1	24	54	-	~	-
	CY8C4147AXI-S475	48	128	16	2	1	1	1	1 Msps	2	8	5	~	1	24	54	-	-	~

Package Diagrams


SIDE VIEW

SEATING PLANE


Ĺ c

۲A

0.10

SYMBOL	DIMENSIONS							
STMBOL	MIN.	NOM.	MAX.					
Α	—	—	1.60					
A1	0.05	—	0.15					
A2	1.35	1.40	1.45					
D	15.75	16.00	16.25					
D1	13.95	14.00	14.05					
E	15.75	16.00	16.25					
E1	13.95	14.00	14.05					
R1	0.08	—	0.20					
R2	0.08	—	0.20					
θ	0°	—	7°					
θ1	0°	—	—					
θ2	11°	12°	13°					
С	—	—	0.20					
b	0.30	0.35	0.40					
L	0.45	0.60	0.75					
L1	1	.00 REF						
L2	0	.25 BSC						
L3	0.20	—	—					
е	0.80 TYP							

θ2-(8X)

SEE DETAIL A

NOTE:

A2

- 1. JEDEC STD REF MS-026 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIONS ARE MAX PLASTIC
- BODY SIZE INCLUDING MOLD MISMATCH 3. DIMENSIONS IN MILLIMETERS

51-85046 *H

Description
program counter
printed circuit board
programmable gain amplifier
peripheral hub
physical layer
port interrupt control unit
programmable logic array
programmable logic device, see also PAL
phase-locked loop
package material declaration data sheet
power-on reset
precise power-on reset
pseudo random sequence
port read data register
Programmable System-on-Chip™
power supply rejection ratio
pulse-width modulator
random-access memory
reduced-instruction-set computing
root-mean-square
real-time clock
register transfer language
remote transmission request
receive
successive approximation register
switched capacitor/continuous time
I ² C serial clock
I ² C serial data
sample and hold
signal to noise and distortion ratio
special input/output, GPIO with advanced features. See GPIO.
start of conversion
start of frame
Serial Peripheral Interface, a communications protocol
slew rate
static random access memory
software reset
serial wire debug, a test protocol

Table 44. Acronyms Used in this Document (continued)

Table 44. Acronyms Used in this Document (continued)

Acronym	Description
SWV	single-wire viewer
TD	transaction descriptor, see also DMA
THD	total harmonic distortion
TIA	transimpedance amplifier
TRM	technical reference manual
TTL	transistor-transistor logic
TX	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UDB	universal digital block
USB	Universal Serial Bus
USBIO	USB input/output, PSoC pins used to connect to a USB port
VDAC	voltage DAC, see also DAC, IDAC
WDT	watchdog timer
WOL	write once latch, see also NVL
WRES	watchdog timer reset
XRES	external reset I/O pin
XTAL	crystal

Document Conventions

Units of Measure

Table 45. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Revision History

Description Title: PSoC [®] 4: PSoC 4100S Plus Datasheet Programmable System-on-Chip (PSoC) Document Number: 002-19966								
Revision	ECN	Orig. of Change	Submission Date	Description of Change				
*E	5995731	WKA	12/15/2017	New release				
*F	6069640	JIAO	02/13/2018	Updated Pinouts and DC Specifications.				
*G	6169676	WKA	05/09/2018	Updated Clock Diagram to show Watchdog details and clock divider infor- mation. Removed preliminary statement in Pinouts.				

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation 2017-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other countries intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, under the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of the applications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to the reform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from any conducts.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.