

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

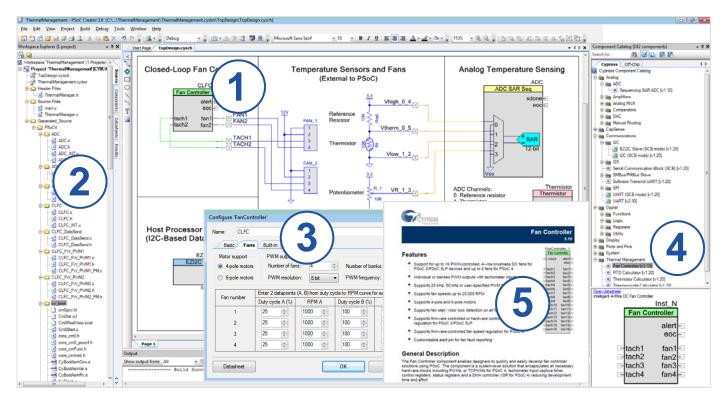
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4127axi-s445

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator

Programmable Digital Blocks

Smart I/O Block

The Smart I/O block is a fabric of switches and LUTs that allows Boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

Fixed Function Digital Blocks

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. Each block also incorporates a Quadrature decoder. There are eight TCPWM blocks in PSoC 4100S Plus.

Serial Communication Block (SCB)

PSoC 4100S Plus has five serial communication blocks, which can be programmed to have SPI, 1^{2} C, or UART functionality.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates a mailbox address range in the memory of PSoC 4100S Plus and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I²C peripheral is compatible with the I²C Standard-mode and Fast-mode devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

PSoC 4100S Plus is not completely compliant with the I²C spec in the following respect:

GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system. **UART Mode**: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

CAN

There is a CAN 2.0B block with support for TT-CAN.

GPIO

PSoC 4100S Plus has up to 54 GPIOs. The GPIO block implements the following:

- Eight drive modes:
- □ Analog input mode (input and output buffers disabled)
- Input only
- Weak pull-up with strong pull-down
- Strong pull-up with weak pull-down
- Open drain with strong pull-down
- Open drain with strong pull-up
- □ Strong pull-up with strong pull-down
- Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for Ports 5 and 6). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it.

Special Function Peripherals

CapSense

CapSense is supported in the PSoC 4100S Plus through a CapSense Sigma-Delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CapSense function can thus be provided on any available pin or group of pins in a system under software control. A PSoC Creator component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CapSense block has two IDACs, which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

The CapSense block also provides a 10-bit Slope ADC function which can be used in conjunction with the CapSense function.

The CapSense block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and ground to null out power-supply related noise.

LCD Segment Drive

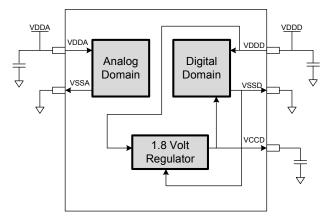
PSoC 4100S Plus has an LCD controller, which can drive up to 4 commons and up to 50 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as Digital Correlation and PWM. Digital Correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; one 32-bit register per port).

Alternate Pin Functions

Each Port pin has can be assigned to one of multiple functions; it can, for example, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin assignments are shown in the following table.

Port/Pin	Analog	Smart I/O	ACT #0	ACT #1	ACT #3	DS #2	DS #3
P0.0	lpcomp.in_p[0]			tcpwm.tr_in[0]	scb[2].uart_cts:0	scb[2].i2c_scl:0	scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]			tcpwm.tr_in[1]	scb[2].uart_rts:0	scb[2].i2c_sda:0	scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]						scb[2].spi_select0:1
P0.4	wco.wco_in			scb[1].uart_rx:0	scb[2].uart_rx:0	scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco.wco_out			scb[1].uart_tx:0	scb[2].uart_tx:0	scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6	exco.eco_in		srss.ext_clk:0	scb[1].uart_cts:0	scb[2].uart_tx:1		scb[1].spi_clk:1
P0.7	exco.eco_out		tcpwm.line[0]:3	scb[1].uart_rts:0			scb[1].spi_select0:1
P5.0			tcpwm.line[4]:2		scb[2].uart_rx:1	scb[2].i2c_scl:1	scb[2].spi_mosi:0
P5.1			tcpwm.line_compl[4]:2		scb[2].uart_tx:2	scb[2].i2c_sda:1	scb[2].spi_miso:0
P5.2			tcpwm.line[5]:2		scb[2].uart_cts:1	lpcomp.comp[0]:2	scb[2].spi_clk:0
P5.3			tcpwm.line_compl[5]:2		scb[2].uart_rts:1	lpcomp.comp[1]:0	scb[2].spi_select0:0
P5.4			tcpwm.line[6]:2				scb[2].spi_select1:0
P5.5			tcpwm.line_compl[6]:2				scb[2].spi_select2:0
P1.0	ctb0_oa0+	Smartlo[2].io[0]	tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	ctb0_oa0-	Smartlo[2].io[1]	tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0_oa0_out	Smartlo[2].io[2]	tcpwm.line[3]:1	scb[0].uart_cts:1	tcpwm.tr_in[2]	scb[2].i2c_scl:2	scb[0].spi_clk:1
P1.3	ctb0_oa1_out	Smartlo[2].io[3]	tcpwm.line_compl[3]:1	scb[0].uart_rts:1	tcpwm.tr_in[3]	scb[2].i2c_sda:2	scb[0].spi_select0:1
P1.4	ctb0_oa1-	Smartlo[2].io[4]	tcpwm.line[6]:1			scb[3].i2c_scl:0	scb[0].spi_select1:1
P1.5	ctb0_oa1+	Smartlo[2].io[5]	tcpwm.line_compl[6]:1			scb[3].i2c_sda:0	scb[0].spi_select2:1
P1.6	ctb0_oa0+	Smartlo[2].io[6]	tcpwm.line[7]:1				scb[0].spi_select3:1
P1.7	ctb0_oa1+ sar_ext_vref0 sar_ext_vref1	Smartlo[2].io[7]	tcpwm.line_compl[7]:1				scb[2].spi_clk:1
P2.0	sarmux[0]	Smartlo[0].io[0]	tcpwm.line[4]:0	csd.comp	tcpwm.tr_in[4]	scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux[1]	Smartlo[0].io[1]	tcpwm.line_compl[4]:0		tcpwm.tr_in[5]	scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux[2]	Smartlo[0].io[2]	tcpwm.line[5]:1				scb[1].spi_clk:2
P2.3	sarmux[3]	Smartlo[0].io[3]	tcpwm.line_compl[5]:1				scb[1].spi_select0:2

PSoC[®] 4: PSoC 4100S Plus Datasheet


Port/Pin	Analog	Smart I/O	ACT #0	ACT #1	ACT #3	DS #2	DS #3
P2.4	sarmux[4]	Smartlo[0].io[4]	tcpwm.line[0]:1	scb[3].uart_rx:1			scb[1].spi_select1:1
P2.5	sarmux[5]	Smartlo[0].io[5]	tcpwm.line_compl[0]:1	scb[3].uart_tx:1			scb[1].spi_select2:1
P2.6	sarmux[6]	Smartlo[0].io[6]	tcpwm.line[1]:1	scb[3].uart_cts:1			scb[1].spi_select3:1
P2.7	sarmux[7]	Smartlo[0].io[7]	tcpwm.line_compl[1]:1	scb[3].uart rts:1		lpcomp.comp[0]:0	scb[2].spi_mosi:1
1 2.7	odimax[/]			000[0].001(_10.1		ipoomp.comp[o].o	000[2].0pi_m00i.1
P6.0			tcpwm.line[4]:1	scb[3].uart_rx:0	can.can_tx_enb_n:0	scb[3].i2c_scl:1	scb[3].spi_mosi:0
P6.1			tcpwm.line_compl[4]:1	scb[3].uart_tx:0	can.can_rx:0	scb[3].i2c_sda:1	scb[3].spi_miso:0
P6.2			tcpwm.line[5]:0	scb[3].uart_cts:0	can.can_tx:0		scb[3].spi_clk:0
P6.3			tcpwm.line_compl[5]:0	scb[3].uart_rts:0			scb[3].spi_select0:0
P6.4			tcpwm.line[6]:0			scb[4].i2c_scl	scb[3].spi_select1:0
P6.5			tcpwm.line_compl[6]:0			scb[4].i2c_sda	scb[3].spi_select2:0
P3.0		Smartlo[1].io[0]	tcpwm.line[0]:0	scb[1].uart_rx:1		scb[1].i2c_scl:2	scb[1].spi_mosi:0
P3.1		Smartlo[1].io[1]	tcpwm.line_compl[0]:0	scb[1].uart_tx:1		scb[1].i2c_sda:2	scb[1].spi_miso:0
P3.2		Smartlo[1].io[2]	tcpwm.line[1]:0	scb[1].uart_cts:1		cpuss.swd_data	scb[1].spi_clk:0
P3.3		Smartlo[1].io[3]	tcpwm.line_compl[1]:0	scb[1].uart_rts:1		cpuss.swd_clk	scb[1].spi_select0:0
P3.4		Smartlo[1].io[4]	tcpwm.line[2]:0		tcpwm.tr_in[6]		scb[1].spi_select1:0
P3.5		Smartlo[1].io[5]	tcpwm.line_compl[2]:0				scb[1].spi_select2:0
P3.6		Smartlo[1].io[6]	tcpwm.line[3]:0			scb[4].spi_select3	scb[1].spi_select3:0
P3.7		Smartlo[1].io[7]	tcpwm.line_compl[3]:0			lpcomp.comp[1]:1	scb[2].spi_miso:1
P4.0	csd.vref_ext			scb[0].uart_rx:0	can.can_rx:1	scb[0].i2c_scl:1	scb[0].spi_mosi:0
P4.1	csd.cshield			scb[0].uart_tx:0	can.can_tx:1	scb[0].i2c_sda:1	scb[0].spi_miso:0
P4.2	csd.cmod			scb[0].uart_cts:0	can.can_tx_enb_n:1	lpcomp.comp[0]:1	scb[0].spi_clk:0
P4.3	csd.csh_tank			scb[0].uart_rts:0		lpcomp.comp[1]:2	scb[0].spi_select0:0
P4.4				scb[4].uart_rx		scb[4].spi_mosi	scb[0].spi_select1:2
P4.5				scb[4].uart_tx		scb[4].spi_miso	scb[0].spi_select2:2
P4.6				scb[4].uart_cts		scb[4].spi_clk	scb[0].spi_select3:2
P4.7				scb[4].uart_rts		scb[4].spi_select0	
P5.6			tcpwm.line[7]:0			scb[4].spi_select1	scb[2].spi_select3:0
P5.7			tcpwm.line_compl[7]:0			scb[4].spi_select2	
P7.0			tcpwm.line[0]:2	scb[3].uart_rx:2		scb[3].i2c_scl:2	scb[3].spi_mosi:1
P7.1			tcpwm.line_compl[0]:2	scb[3].uart_tx:2		scb[3].i2c_sda:2	scb[3].spi_miso:1
P7.2			tcpwm.line[1]:2	scb[3].uart_cts:2			scb[3].spi_clk:1

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4100S Plus. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input.

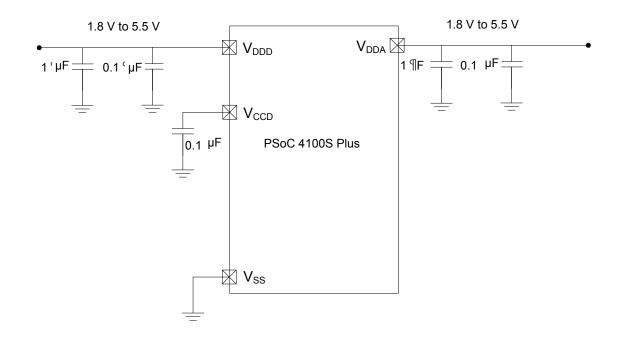
Figure 5. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is $1.8 \text{ V} \pm 5\%$ (externally regulated; 1.71 to 1.89, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, PSoC 4100S Plus is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC 4100S Plus supplies the internal logic and its output is connected to the V_{CCD} pin. The V_{CCD} pin must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, PSoC 4100S Plus is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 6. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V_{SS}	-0.5	-	6		_
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SS}	-0.5	-	1.95	V	-
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5		_
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25		_
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V_{DDD} , and Min for V _{IL} < V _{SS}	-0.5	-	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	-
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	v	-
BID46	LU	Pin current for latch-up	-140	-	140	mA	_

Device Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage	1.8	-	5.5		Internally regulated supply
SID255	V _{DD}	Power supply input voltage (V_{CCD} = V_{DDD} = V_{DDA})	1.71	-	1.89	V	Internally unregulated supply
SID54	V _{CCD}	Output voltage (for core logic)	-	1.8	-		_
SID55	C _{EFC}	External regulator voltage bypass	-	0.1	-	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	_	1	-	μ	X5R ceramic or better
Active Mode, V	/ _{DD} = 1.8 V to 5	.5 V. Typical values measured at VDD	= 3.3 V an	d 25 °C.		•	
SID10	I _{DD5}	Execute from flash; CPU at 6 MHz	-	1.8	2.4		Max is at 85 °C and 5.5 V
SID16	I _{DD8}	Execute from flash; CPU at 24 MHz	-	3.0	4.6	mA	Max is at 85 °C and 5.5 V
SID19	I _{DD11}	Execute from flash; CPU at 48 MHz	_	5.4	7.1		Max is at 85 °C and 5.5 V

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 2. DC Specifications (continued)

Typical values measured at V_DD = 3.3 V and 25 $^\circ\text{C}.$

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
Sleep Mode, V	DDD = 1.8 V to	5.5 V (Regulator on)					
SID22	I _{DD17}	I ² C wakeup WDT, and Comparators on	-	1.1	1.8	mA	6 MHZ. Max is at 85 °C and 5.5 V
SID25	I _{DD20}	I ² C wakeup, WDT, and Comparators on	-	1.5	2.1	-	12 MHZ. Max is at 85 °C and 5.5 V
Sleep Mode, V	_{DDD} = 1.71 V to	1.89 V (Regulator bypassed)					
SID28	I _{DD23}	I ² C wakeup, WDT, and Comparators on	-	1.1	1.8	mA	6 MHZ. Max is at 85 °C and 1.89 V
SID28A	I _{DD23A}	I ² C wakeup, WDT, and Comparators on	_	1.5	2.1	mA	12 MHZ. Max is at 85 °C and 1.89 V
Deep Sleep Me	ode, V _{DD} = 1.8 V	/ to 3.6 V (Regulator on)					
SID30	I _{DD25}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	-	2.5	40	μA	T = -40 °C to 60 °C
SID31	I _{DD26}	I ² C wakeup and WDT on	_	2.5	125	μA	Max is at 3.6 V and 85 °C
Deep Sleep Me	ode, V _{DD} = 3.6 V	/ to 5.5 V (Regulator on)					
SID33	I _{DD28}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	_	2.5	40	μA	T = -40 °C to 60 °C
SID34	I _{DD29}	I ² C wakeup and WDT on	_	2.5	125	μA	Max is at 5.5 V and 85 °C
Deep Sleep Me	ode, V _{DD} = V _{CC}	_D = 1.71 V to 1.89 V (Regulator bypasse	d)				
SID36	I _{DD31}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	_	2.5	60	μA	T = -40 °C to 60 °C
SID37	I _{DD32}	I ² C wakeup and WDT on	_	2.5	180	μA	Max is at 1.89 V and 85 °C
XRES Current	•	· · · · · ·		•	•	•	•
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	-

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[2]	T _{SLEEP}	Wakeup from Sleep mode	-	0	_	us	
SID50 ^[2]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	35	_	μο	

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID300	TPD1	Response time; power=hi	-	150	-		Input is 0.2 V to V _{DDA} -0.2 V
SID301	TPD2	Response time; power=med	-	500	-	ns	Input is 0.2 V to V _{DDA} -0.2 V
SID302	TPD3	Response time; power=lo	-	2500	_		Input is 0.2 V to V _{DDA} -0.2 V
SID303	VHYST_OP	Hysteresis	-	10	Ι	mV	_
SID304	WUP_CTB	Wake-up time from Enabled to Usable	-	-	25	μs	_
	Deep Sleep Mode	Mode 2 is lowest current range. Mode 1 has higher GBW.					
SID_DS_1	I _{DD_HI_M1}	Mode 1, High current	-	1400	-		25 °C
SID_DS_2	I _{DD_MED_M1}	Mode 1, Medium current	-	700	-		25 °C
SID_DS_3	I _{DD_LOW_M1}	Mode 1, Low current	-	200	I		25 °C
SID_DS_4	I _{DD_HI_M2}	Mode 2, High current	-	120	-	μA	25 °C
SID_DS_5	I _{DD_MED_M2}	Mode 2, Medium current	-	60	-		25 °C
SID_DS_6	I _{DD_LOW_M2}	Mode 2, Low current	-	15	-		25 °C
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	_	4	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	-	2	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M1}	Mode 1, Low current	-	0.5	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	-	0.5	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	-	0.2	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	-	0.1	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	-	5	_		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	_	5	_	mV	With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	-	5	_		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V

Table 8. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID_DS_19	I _{OUT_HI_M1}	Mode 1, High current	_	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	_	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	_	4	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	_	1	_		
SID_DS_23	I _{OU_MED_M2}	Mode 2, Medium current	_	1	_		
SID_DS_24	I _{OU_LOW_M2}	Mode 2, Low current	_	0.5	_		

Table 8. CTBm Opamp Specifications (continued)

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID84	V _{OFFSET1}	Input offset voltage, Factory trim	-	-	±10		
SID85	V _{OFFSET2}	Input offset voltage, Custom trim	_	_	±4	mV	
SID86	V _{HYST}	Hysteresis when enabled	_	10	35		
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	_	V _{DDD} -0.1		Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	_	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	_	V _{DDD} -1.15		V _{DDD} ≥ 2.2 V at –40 °C
SID88	C _{MRR}	Common mode rejection ratio	50	_	_	dB	V _{DDD} ≥ 2.7V
SID88A	C _{MRR}	Common mode rejection ratio	42	_	_	uБ	V _{DDD} ≤ 2.7V
SID89	I _{CMP1}	Block current, normal mode	-	_	400		
SID248	I _{CMP2}	Block current, low power mode	-	_	100	μA	
SID259	I _{CMP3}	Block current in ultra low-power mode	-	—	6		V _{DDD} ≥ 2.2 V at –40 °C
SID90	Z _{CMP}	DC Input impedance of comparator	35	-	-	MΩ	

Table 10. Comparator AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID91	TRESP1	Response time, normal mode, 50 mV overdrive	-	38	110	ns	
SID258	TRESP2	Response time, low power mode, 50 mV overdrive	-	70	200	115	
SID92	TRESP3	Response time, ultra-low power mode, 200 mV overdrive	-	2.3	15	μs	V _{DDD} ≥ 2.2 V at –40 °C

Note

6. Guaranteed by characterization.

Table 13.	CSD and	IDAC Specifications	(continued)
-----------	---------	----------------------------	-------------

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID315G	IDAC3CRT23	Output current of IDAC in 8-bit mode in medium range	69	-	82	μA	LSB = 300-nA typ
SID315H	IDAC3CRT33	Output current of IDAC in 8-bit mode in high range	540	-	660	μA	LSB = 2.4-µA typ
SID320	IDACOFFSET	All zeroes input	-	_	1	LSB	Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode
SID321	IDACGAIN	Full-scale error less offset	_	-	±10	%	
SID322	IDACMISMATCH1	Mismatch between IDAC1 and IDAC2 in Low mode	_	-	9.2	LSB	LSB = 37.5-nA typ
SID322A	IDACMISMATCH2	Mismatch between IDAC1 and IDAC2 in Medium mode	-	-	5.6	LSB	LSB = 300-nA typ
SID322B	IDACMISMATCH3	Mismatch between IDAC1 and IDAC2 in High mode	_	-	6.8	LSB	LSB = 2.4-µA typ
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	_	-	5	μs	Full-scale transition. No external load
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	_	_	5	μs	Full-scale transition. No external load
SID325	CMOD	External modulator capacitor.	_	2.2	-	nF	5-V rating, X7R or NP0 cap

10-bit CapSense ADC

Table 14. 10-bit CapSense ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SIDA94	A_RES	Resolution	-	-	10	bits	Auto-zeroing is required every millisecond
SIDA95	A_CHNLS_S	Number of channels - single ended	-	-	16		Defined by AMUX Bus
SIDA97	A-MONO	Monotonicity	-	-	-	Yes	
SIDA98	A_GAINERR	Gain error	-	-	±3	%	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA99	A_OFFSET	Input offset voltage	_	_	±18	mV	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA100	A_ISAR	Current consumption	-	-	0.25	mA	
SIDA101	A_VINS	Input voltage range - single ended	V _{SSA}	-	V _{DDA}	V	
SIDA103	A_INRES	Input resistance	_	2.2	-	KΩ	
SIDA104	A_INCAP	Input capacitance	_	20	-	pF	
SIDA106	A_PSRR	Power supply rejection ratio	-	60	_	dB	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA107	A_TACQ	Sample acquisition time	-	1	-	μs	
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	-	21.3	μs	Does not include acqui- sition time. Equivalent to 44.8 ksps including acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	_	85.3	μs	Does not include acqui- sition time. Equivalent to 11.6 ksps including acquisition time.

Table 14. 10-bit CapSense ADC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SIDA109	A_SND	Signal-to-noise and Distortion ratio (SINAD)	-	61	-		With 10-Hz input sine wave, external 2.4-V reference, V _{REF} (2.4 V) mode
SIDA110	A_BW	Input bandwidth without aliasing	_	-	22.4	KHz	8-bit resolution
SIDA111	A_INL	Integral Non Linearity. 1 ksps	-	_	2	LSB	V _{REF} = 2.4 V or greater
SIDA112	A_DNL	Differential Non Linearity. 1 ksps	-	—	1	LSB	

Digital Peripherals

Timer Counter Pulse-Width Modulator (TCPWM)

Table 15. TCPWM Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	-	45		All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	-	-	155	μA	All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	-	650		All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	_	-	Fc	MHz	Fc max = CLK_SYS Maximum = 48 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width	2/Fc	-	-		For all trigger events ^[7]
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	2/Fc	-	_		Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	TC _{RES}	Resolution of counter	1/Fc	-	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	-	_		Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_		Minimum pulse width between Quadrature phase inputs

ľC

Table 16. Fixed I²C DC Specifications^[7]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50		_
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135		_
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μA	_
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	1	-		

Table 17. Fixed I²C AC Specifications^[7]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Msps	-

Note 7. Guaranteed by characterization.

SWD Interface

Table 28. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \leq V_{DD} \leq 5.5~V$	-	Ι	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \leq \text{V}_{DD} \leq 3.3 \text{ V}$	-	-	7		SWDCLK ≤ 1/3 CPU clock frequency
SID215 ^[12]	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	_		-
SID216 ^[12]	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	_	ne	-
SID217 ^[12]	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5*T	ns	-
SID217A ^[12]	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	—		_

Internal Main Oscillator

Table 29. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	-	-	250	μA	-
SID219	I _{IMO2}	IMO operating current at 24 MHz	-	-	180	μA	_

Table 30. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation at 24, 32, and 48 MHz (trimmed)	_	-	±2	%	
SID226	T _{STARTIMO}	IMO startup time	-	-	7	μs	_
SID228	T _{JITRMSIMO2}	RMS jitter at 24 MHz	_	145	-	ps	_

Internal Low-Speed Oscillator

Table 31. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current		0.3	1.05	μA	_

Table 32. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234 ^[12]	T _{STARTILO1}	ILO startup time	-	-	2	ms	-
SID236 ^[12]	T _{ILODUTY}	ILO duty cycle	40	50	60	%	-
SID237	F _{ILOTRIM1}	ILO frequency range	20	40	80	kHz	_

Smart I/O

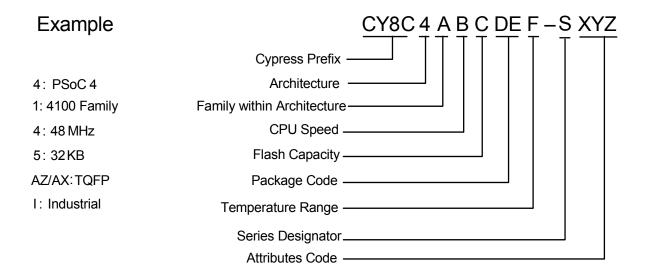
Table 38. Smart I/O Pass-through Time (Delay in Bypass Mode)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID252	—	Max delay added by Smart I/O in bypass mode	Ι	Ι	1.6	ns	

CAN

Table 39. CAN Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID420	IDD_CAN	Block current consumption	-	-	200	μA	
SID421	CAN_bits	CAN Bit rate	_	-	1	Mbps	Min 8-MHZ clock



Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
А	Family	1	4100 Family
В	CPU Speed	2	24 MHz
		4	48 MHz
С	Flash Capacity	4	16 KB
		5	32 KB
		6	64 KB
		7	128 KB
DE	Package Code	AX	TQFP (0.8-mm pitch)
		AZ	TQFP (0.5-mm pitch)
		LQ	QFN
		PV	SSOP
		FN	CSP
F	Temperature Range	I	Industrial
S	Series Designator	S	PSoC 4 S-Series
		М	PSoC 4 M-Series
		L	PSoC 4 L-Series
		BL	PSoC 4 BLE-Series
XYZ	Attributes Code	000-999	Code of feature set in the specific family

The nomenclature used in the preceding table is based on the following part numbering convention:

The following is an example of a part number:

Packaging

The PSoC 4100S Plus will be offered in 44 TQFP, 64 TQFP Normal pitch, and 64 TQFP Fine Pitch packages.

Package dimensions and Cypress drawing numbers are in the following table.

Table 40. Package List

Spec ID#	Package	Description	Package Dwg
BID20	64-pin TQFP	14 × 14 × 1.4-mm height with 0.8-mm pitch	51-85046
BID27	64-pin TQFP	10 × 10 × 1.6-mm height with 0.5-mm pitch	51-85051
BID34A	44-pin TQFP	10 × 10 × 1.4-mm height with 0.8-mm pitch	51-85064

Table 41. Package Thermal Characteristics

Parameter	Description	Package	Min	Тур	Max	Units
Та	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	_	100	°C
Tja	Package θ _{JA}	44-pin TQFP	-	55.6	-	°C/Watt
TJC	Package θ _{JC}	44-pin TQFP	-	14.4	_	°C/Watt
Tja	Package θ _{JA}	64-pin TQFP (0.5-mm pitch)	-	46	_	°C/Watt
TJC	Package θ _{JC}	64-pin TQFP (0.5-mm pitch)	_	10	_	°C/Watt
Tja	Package θ _{JA}	64-pin TQFP (0.8-mm pitch)	-	36.8	_	°C/Watt
TJC	Package θ _{JC}	64-pin TQFP (0.8-mm pitch)	-	9.4	_	°C/Watt

Table 42. Solder Reflow Peak Temperature

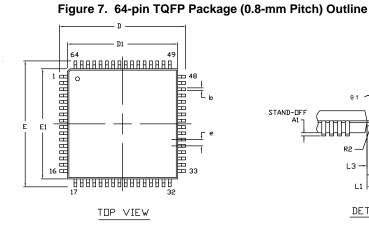
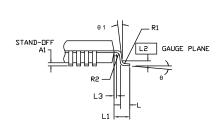

Package Maximum Peak Temperature		Maximum Time at Peak Temperature			
All	260 °C	30 seconds			

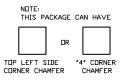
Table 43. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All	MSL 3

Package Diagrams


SIDE VIEW

SEATING PLANE


Ĺ c

۲A

0.10

SYMBOL	DIMENSIONS				
STMBOL	MIN.	NOM.	MAX.		
Α	—	—	1.60		
A1	0.05	—	0.15		
A2	1.35	1.40	1.45		
D	15.75	16.00	16.25		
D1	13.95	14.00	14.05		
E	15.75	16.00	16.25		
E1	13.95	14.00	14.05		
R1	0.08	—	0.20		
R2	0.08	—	0.20		
θ	0°	—	7°		
θ1	0°	—	—		
θ2	11°	12°	13°		
с	—	—	0.20		
b	0.30	0.35	0.40		
L	0.45	0.60	0.75		
L1	1.00 REF				
L2	0.25 BSC		C		
L3	0.20 —		—		
е	0	.80 TY	P		

θ2-(8X)

SEE DETAIL A

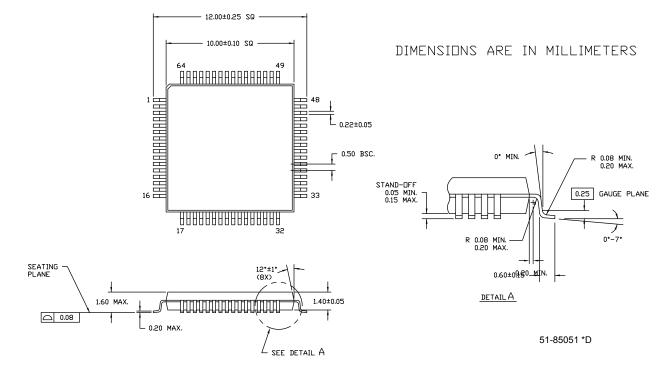
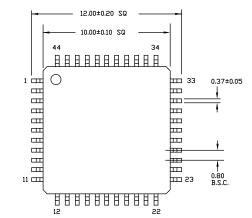
NOTE:

A2

- 1. JEDEC STD REF MS-026 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIONS ARE MAX PLASTIC
- BODY SIZE INCLUDING MOLD MISMATCH 3. DIMENSIONS IN MILLIMETERS

51-85046 *H

Figure 8. 64-pin TQFP Package (0.5-mm Pitch) Outline

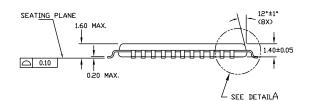


Figure 9. 44-Pin TQFP Package Outline

NDTE:

- 1. JEDEC STD REF MS-026
- BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
 DIMENSIONS IN MILLIMETERS

51-85064 *G

Acronyms

Table 44. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
AHB	AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
Arm [®]	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC cyclic redundancy check, an error-checking protocol	
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO digital input/output, GPIO with only digital capabilities, no analog. See GPIO.	
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM electrically erasable programmable read-only memory	
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 44. Acronyms Used in this Document (continued)

Acronym	Description	
ETM	embedded trace macrocell	
FIR	finite impulse response, see also IIR	
FPB	flash patch and breakpoint	
FS	full-speed	
GPIO	general-purpose input/output, applies to a PSoC pin	
HVI	high-voltage interrupt, see also LVI, LVD	
IC	integrated circuit	
IDAC	current DAC, see also DAC, VDAC	
IDE	integrated development environment	
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol	
lir	infinite impulse response, see also FIR	
ILO	internal low-speed oscillator, see also IMO	
IMO	internal main oscillator, see also ILO	
INL	integral nonlinearity, see also DNL	
I/O	input/output, see also GPIO, DIO, SIO, USBIO	
IPOR	initial power-on reset	
IPSR	interrupt program status register	
IRQ	interrupt request	
ITM	instrumentation trace macrocell	
LCD	liquid crystal display	
LIN	Local Interconnect Network, a communications protocol.	
LR	link register	
LUT	lookup table	
LVD	low-voltage detect, see also LVI	
LVI	low-voltage interrupt, see also HVI	
LVTTL	low-voltage transistor-transistor logic	
MAC	multiply-accumulate	
MCU	microcontroller unit	
MISO	master-in slave-out	
NC	no connect	
NMI	nonmaskable interrupt	
NRZ	non-return-to-zero	
NVIC	nested vectored interrupt controller	
NVL	nonvolatile latch, see also WOL	
opamp	operational amplifier	
PAL programmable array logic, see also PLD		

Revision History

Descriptio Document	Description Title: PSoC [®] 4: PSoC 4100S Plus Datasheet Programmable System-on-Chip (PSoC) Document Number: 002-19966					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*E	5995731	WKA	12/15/2017	New release		
*F	6069640	JIAO	02/13/2018	Updated Pinouts and DC Specifications.		
*G	6169676	WKA	05/09/2018	Updated Clock Diagram to show Watchdog details and clock divider infor- mation. Removed preliminary statement in Pinouts.		