

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4127azi-s445

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Functional Definition	6
CPU and Memory Subsystem	6
System Resources	6
Analog Blocks	7
Programmable Digital Blocks	8
Fixed Function Digital Blocks	
GPIO	8
Special Function Peripherals	
Pinouts	
Alternate Pin Functions	12
Power	14
Mode 1: 1.8 V to 5.5 V External Supply	14
Mode 2: 1.8 V ±5% External Supply	
Electrical Specifications	15
Absolute Maximum Ratings	
Device Level Specifications	
Analog Peripherals	19
Digital Peripherals	
Memory	
System Resources	

Ordering Information Packaging	
Package Diagrams	
Acronyms	
Document Conventions	40
Units of Measure	40
Revision History	41
Sales, Solutions, and Legal Information	42
Worldwide Sales and Design Support	42
Products	
PSoC® Solutions	42
Cypress Developer Community	42
Technical Support	

Programmable Digital Blocks

Smart I/O Block

The Smart I/O block is a fabric of switches and LUTs that allows Boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

Fixed Function Digital Blocks

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. Each block also incorporates a Quadrature decoder. There are eight TCPWM blocks in PSoC 4100S Plus.

Serial Communication Block (SCB)

PSoC 4100S Plus has five serial communication blocks, which can be programmed to have SPI, 1^{2} C, or UART functionality.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates a mailbox address range in the memory of PSoC 4100S Plus and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I²C peripheral is compatible with the I²C Standard-mode and Fast-mode devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

PSoC 4100S Plus is not completely compliant with the I²C spec in the following respect:

GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system. **UART Mode**: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

CAN

There is a CAN 2.0B block with support for TT-CAN.

GPIO

PSoC 4100S Plus has up to 54 GPIOs. The GPIO block implements the following:

- Eight drive modes:
- □ Analog input mode (input and output buffers disabled)
- Input only
- Weak pull-up with strong pull-down
- Strong pull-up with weak pull-down
- Open drain with strong pull-down
- Open drain with strong pull-up
- □ Strong pull-up with strong pull-down
- Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for Ports 5 and 6). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it.

	64-TQFP		44-TQFP
Pin	Name	Pin	Name
14	P6.2		
15	P6.4		
16	P6.5		
17	VSSD		
17	VSSD		
18	P3.0	11	P3.0
19	P3.1	12	P3.1
20	P3.2	13	P3.2
21	P3.3	14	P3.3
22	P3.4	15	P3.4
23	P3.5	16	P3.5
24	P3.6	17	P3.6
25	P3.7	18	P3.7
26	VDDD	19	VDDD
27	P4.0	20	P4.0
28	P4.1	21	P4.1
29	P4.2	22	P4.2
30	P4.3	23	P4.3
31	P4.4		
32	P4.5		
33	P4.6		
34	P4.7		
35	P5.6		
36	P5.7		
37	P7.0		
38	P7.1		

Descriptions of the Power pins are as follows:

VDDD: Power supply for the digital section.

VDDA: Power supply for the analog section.

VSSD, VSSA: Ground pins for the digital and analog sections respectively.

VCCD: Regulated digital supply (1.8 V ±5%)

VDD: Power supply to all sections of the chip

VSS: Ground for all sections of the chip

GPIOs by package:

	64 TQFP	44 TQFP		
Number	54	37		

PSoC[®] 4: PSoC 4100S Plus Datasheet

Port/Pin	Analog	Smart I/O	ACT #0	ACT #1	ACT #3	DS #2	DS #3
P2.4	sarmux[4]	Smartlo[0].io[4]	tcpwm.line[0]:1	scb[3].uart_rx:1			scb[1].spi_select1:1
P2.5	sarmux[5]	Smartlo[0].io[5]	tcpwm.line_compl[0]:1	scb[3].uart_tx:1			scb[1].spi_select2:1
P2.6	sarmux[6]	Smartlo[0].io[6]	tcpwm.line[1]:1	scb[3].uart_cts:1			scb[1].spi_select3:1
P2.7	sarmux[7]	Smartlo[0].io[7]	tcpwm.line_compl[1]:1	scb[3].uart rts:1		lpcomp.comp[0]:0	scb[2].spi_mosi:1
1 2.7	odimax[/]			000[0].001(_10.1		ipoomp.comp[o].o	000[2].0pi_m00i.1
P6.0			tcpwm.line[4]:1	scb[3].uart_rx:0	can.can_tx_enb_n:0	scb[3].i2c_scl:1	scb[3].spi_mosi:0
P6.1			tcpwm.line_compl[4]:1	scb[3].uart_tx:0	can.can_rx:0	scb[3].i2c_sda:1	scb[3].spi_miso:0
P6.2			tcpwm.line[5]:0	scb[3].uart_cts:0	can.can_tx:0		scb[3].spi_clk:0
P6.3			tcpwm.line_compl[5]:0	scb[3].uart_rts:0			scb[3].spi_select0:0
P6.4			tcpwm.line[6]:0			scb[4].i2c_scl	scb[3].spi_select1:0
P6.5			tcpwm.line_compl[6]:0			scb[4].i2c_sda	scb[3].spi_select2:0
P3.0		Smartlo[1].io[0]	tcpwm.line[0]:0	scb[1].uart_rx:1		scb[1].i2c_scl:2	scb[1].spi_mosi:0
P3.1		Smartlo[1].io[1]	tcpwm.line_compl[0]:0	scb[1].uart_tx:1		scb[1].i2c_sda:2	scb[1].spi_miso:0
P3.2		Smartlo[1].io[2]	tcpwm.line[1]:0	scb[1].uart_cts:1		cpuss.swd_data	scb[1].spi_clk:0
P3.3		Smartlo[1].io[3]	tcpwm.line_compl[1]:0	scb[1].uart_rts:1		cpuss.swd_clk	scb[1].spi_select0:0
P3.4		Smartlo[1].io[4]	tcpwm.line[2]:0		tcpwm.tr_in[6]		scb[1].spi_select1:0
P3.5		Smartlo[1].io[5]	tcpwm.line_compl[2]:0				scb[1].spi_select2:0
P3.6		Smartlo[1].io[6]	tcpwm.line[3]:0			scb[4].spi_select3	scb[1].spi_select3:0
P3.7		Smartlo[1].io[7]	tcpwm.line_compl[3]:0			lpcomp.comp[1]:1	scb[2].spi_miso:1
P4.0	csd.vref_ext			scb[0].uart_rx:0	can.can_rx:1	scb[0].i2c_scl:1	scb[0].spi_mosi:0
P4.1	csd.cshield			scb[0].uart_tx:0	can.can_tx:1	scb[0].i2c_sda:1	scb[0].spi_miso:0
P4.2	csd.cmod			scb[0].uart_cts:0	can.can_tx_enb_n:1	lpcomp.comp[0]:1	scb[0].spi_clk:0
P4.3	csd.csh_tank			scb[0].uart_rts:0		lpcomp.comp[1]:2	scb[0].spi_select0:0
P4.4				scb[4].uart_rx		scb[4].spi_mosi	scb[0].spi_select1:2
P4.5				scb[4].uart_tx		scb[4].spi_miso	scb[0].spi_select2:2
P4.6				scb[4].uart_cts		scb[4].spi_clk	scb[0].spi_select3:2
P4.7				scb[4].uart_rts		scb[4].spi_select0	
P5.6			tcpwm.line[7]:0			scb[4].spi_select1	scb[2].spi_select3:0
P5.7			tcpwm.line_compl[7]:0			scb[4].spi_select2	
P7.0			tcpwm.line[0]:2	scb[3].uart_rx:2		scb[3].i2c_scl:2	scb[3].spi_mosi:1
P7.1			tcpwm.line_compl[0]:2	scb[3].uart_tx:2		scb[3].i2c_sda:2	scb[3].spi_miso:1
P7.2			tcpwm.line[1]:2	scb[3].uart_cts:2			scb[3].spi_clk:1

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V_{SS}	-0.5	-	6		_
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SS}	-0.5	-	1.95	V	-
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5		_
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25		_
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V_{DDD} , and Min for V _{IL} < V _{SS}	-0.5	-	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	-
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-		-
BID46	LU	Pin current for latch-up	-140	-	140	mA	_

Device Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage	1.8	-	5.5		Internally regulated supply
SID255	V _{DD}	Power supply input voltage (V_{CCD} = V_{DDD} = V_{DDA})	1.71	-	1.89	V	Internally unregulated supply
SID54	V _{CCD}	Output voltage (for core logic)	-	1.8	-		_
SID55	C _{EFC}	External regulator voltage bypass	-	0.1	-		X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	_	1	-	μF	X5R ceramic or better
Active Mode, V	/ _{DD} = 1.8 V to 5	.5 V. Typical values measured at VDD	= 3.3 V an	d 25 °C.		•	
SID10	I _{DD5}	Execute from flash; CPU at 6 MHz	-	1.8	2.4		Max is at 85 °C and 5.5 V
SID16	I _{DD8}	Execute from flash; CPU at 24 MHz	-	3.0	4.6	mA	Max is at 85 °C and 5.5 V
SID19	I _{DD11}	Execute from flash; CPU at 48 MHz	_	5.4	7.1		Max is at 85 °C and 5.5 V

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 5. GPIO AC Specifications (continued)

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	-	3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V Fast strong mode	_	-	33		90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO F _{OUT} ; 1.71 V≤ V _{DDD} ≤ 3.3 V Fast strong mode	_	_	16.7		90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V Slow strong mode	_	_	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO F_{OUT} ; 1.71 V \leq V _{DDD} \leq 3.3 V Slow strong mode.	_	-	3.5	-	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	_	48		90/10% V _{IO}

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	$0.7 \times V_{DDD}$	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	$0.3\times V_{DDD}$	v	CINIOS Input
SID79	R _{PULLUP}	Pull-up resistor	-	60	-	kΩ	-
SID80	C _{IN}	Input capacitance	-	-	7	pF	-
SID81 ^[5]	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5 V
SID82	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	_	_	100	μA	

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[5]	T _{RESETWIDTH}	Reset pulse width	1	-	-	μs	-
BID194 ^[5]	TRESETWAKE	Wake-up time from reset release	-	-	2.7	ms	-

Analog Peripherals

CTBm Opamp

Table 8. CTBm Opamp Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current, External load					
SID269	I _{DD_HI}	power=hi	-	1100	1850		-
SID270	I _{DD_MED}	power=med	-	550	950	μA	_
SID271	I _{DD_LOW}	power=lo	-	150	350		_
	G _{BW}	Load = 20 pF, 0.1 mA V _{DDA} = 2.7 V		-			
SID272	G _{BW_HI}	power=hi	6	-	-		Input and output are 0.2 V to V _{DDA} -0.2 V
SID273	G _{BW_MED}	power=med	3	-	-	MHz	Input and output are 0.2 V to V _{DDA} -0.2 V
SID274	G _{BW_LO}	power=lo	-	1	-		Input and output are 0.2 V to V _{DDA} -0.2 V
	I _{OUT_MAX}	V_{DDA} = 2.7 V, 500 mV from rail					
SID275	I _{OUT_MAX_HI}	power=hi	10	-	-		Output is 0.5 V to V _{DDA} -0.5 V
SID276	I _{OUT_MAX_MID}	power=mid	10	-	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID277	I _{OUT_MAX_LO}	power=lo	-	5	-		Output is 0.5 V to V _{DDA} -0.5 V
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail					
SID278	I _{OUT_MAX_HI}	power=hi	4	_	-		Output is 0.5 V to V _{DDA} -0.5 V
SID279	I _{OUT_MAX_MID}	power=mid	4	_	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID280	I _{OUT_MAX_LO}	power=lo	_	2	-		Output is 0.5 V to V _{DDA} -0.5 V
	I _{DD_Int}	Opamp block current Internal Load					
SID269_I	I _{DD_HI_Int}	power=hi	-	1500	1700		-
SID270_I	I _{DD_MED_Int}	power=med	-	700	900	μA	_
	I _{DD_LOW_Int}	power=lo	-	-	-		_
SID271_I	G _{BW}	V _{DDA} = 2.7 V	-	_	_		-
SID272_I	G _{BW_HI_Int}	power=hi	8	_	_	MHz	Output is 0.25 V to V _{DDA} -0.25 V
		General opamp specs for both internal and external modes			·I		
SID281	V _{IN}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	-	V _{DDA} -0 .2		-
SID282	V _{CM}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	-	V _{DDA} -0 .2	V	_
	V _{OUT}	V _{DDA} = 2.7 V		1	<u> </u>		1

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID300	TPD1	Response time; power=hi	-	150	-		Input is 0.2 V to V _{DDA} -0.2 V
SID301	TPD2	Response time; power=med	-	500	-	ns	Input is 0.2 V to V _{DDA} -0.2 V
SID302	TPD3	Response time; power=lo	-	2500	_		Input is 0.2 V to V _{DDA} -0.2 V
SID303	VHYST_OP	Hysteresis	-	10	Ι	mV	_
SID304	WUP_CTB	Wake-up time from Enabled to Usable	-	-	25	μs	_
	Deep Sleep Mode	Mode 2 is lowest current range. Mode 1 has higher GBW.					
SID_DS_1	I _{DD_HI_M1}	Mode 1, High current	-	1400	-		25 °C
SID_DS_2	I _{DD_MED_M1}	Mode 1, Medium current	-	700	-		25 °C
SID_DS_3	I _{DD_LOW_M1}	Mode 1, Low current	-	200	I		25 °C
SID_DS_4	I _{DD_HI_M2}	Mode 2, High current	-	120	-	μA	25 °C
SID_DS_5	I _{DD_MED_M2}	Mode 2, Medium current	-	60	-		25 °C
SID_DS_6	I _{DD_LOW_M2}	Mode 2, Low current	-	15	-		25 °C
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	-	4	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	-	2	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M1}	Mode 1, Low current	-	0.5	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	-	0.5	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	-	0.2	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	-	0.1	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	-	5	_		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	_	5	_	mV	With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	-	5	_		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V

Table 8. CTBm Opamp Specifications (continued)

Temperature Sensor

Table 11. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details / Conditions
SID93	TSENSACC	Temperature sensor accuracy	-5	±1	5	°C	–40 to +85 °C

SAR ADC

Table 12. SAR ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SAR ADC	DC Specification	ons					
SID94	A_RES	Resolution	-	-	12	bits	
SID95	A_CHNLS_S	Number of channels - single ended	-	-	16		
SID96	A-CHNKS_D	Number of channels - differential	-	_	4		Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	-	-	-		Yes
SID98	A_GAINERR	Gain error	-	_	±0.1	%	With external reference
SID99	A_OFFSET	Input offset voltage	-	_	2	mV	Measured with 1-V reference
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V_{SS}	-	V _{DDA}	V	
SID102	A_VIND	Input voltage range - differential	V_{SS}	-	V _{DDA}	V	
SID103	A_INRES	Input resistance	_	-	2.2	KΩ	
SID104	A_INCAP	Input capacitance	_	-	10	pF	
SID260	VREFSAR	Trimmed internal reference to SAR	-	-	TBD	V	
SAR ADC	AC Specification	ons					
SID106	A_PSRR	Power supply rejection ratio	70	-	-	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V
SID108	A_SAMP	Sample rate	-	-	1	Msps	
SID109	A_SNR	Signal-to-noise and distortion ratio (SINAD)	65	—	-	dB	F _{IN} = 10 kHz
SID110	A_BW	Input bandwidth without aliasing	-	-	A_samp/2	kHz	
SID111	A_INL	Integral non linearity. V _{DD} = 1.71 to 5.5, 1 Msps	-1.7	-	2	LSB	V_{REF} = 1 to V_{DD}
SID111A	A_INL	Integral non linearity. V _{DDD} = 1.71 to 3.6, 1 Msps	-1.5	-	1.7	LSB	V _{REF} = 1.71 to V _{DD}
SID111B	A_INL	Integral non linearity. V_{DD} = 1.71 to 5.5, 500 ksps	-1.5	-	1.7	LSB	V_{REF} = 1 to V_{DD}
SID112	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 1 Msps	–1	-	2.2	LSB	V _{REF} = 1 to V _{DD}
SID112A	A_DNL	Differential non linearity. V _{DD} = 1.71 to 3.6, 1 Msps	-1	-	2	LSB	V _{REF} = 1.71 to V _{DD}
SID112B	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 500 ksps	–1	-	2.2	LSB	V _{REF} = 1 to V _{DD}
SID113	A_THD	Total harmonic distortion	-	—	-65	dB	Fin = 10 kHz
SID261	FSARINTREF	SAR operating speed without external reference bypass	I	_	100	ksps	12-bit resolution

Table 14. 10-bit CapSense ADC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SIDA109	A_SND	Signal-to-noise and Distortion ratio (SINAD)	-	61	-		With 10-Hz input sine wave, external 2.4-V reference, V _{REF} (2.4 V) mode
SIDA110	A_BW	Input bandwidth without aliasing	_	-	22.4	KHz	8-bit resolution
SIDA111	A_INL	Integral Non Linearity. 1 ksps	-	-	2	LSB	V _{REF} = 2.4 V or greater
SIDA112	A_DNL	Differential Non Linearity. 1 ksps	-	—	1	LSB	

Digital Peripherals

Timer Counter Pulse-Width Modulator (TCPWM)

Table 15. TCPWM Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	-	45		All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	-	-	155	μA	All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	-	650		All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	_	-	Fc	MHz	Fc max = CLK_SYS Maximum = 48 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width	2/Fc	-	-		For all trigger events ^[7]
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	2/Fc	-	_		Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	TC _{RES}	Resolution of counter	1/Fc	_	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	-	_		Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_		Minimum pulse width between Quadrature phase inputs

ľC

Table 16. Fixed I²C DC Specifications^[7]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50		-
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135		_
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μA	_
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	1	-		

Table 17. Fixed I²C AC Specifications^[7]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Msps	-

Note 7. Guaranteed by characterization.

SPI

Table 18. SPI DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	ISPI1	Block current consumption at 1 Mbps	-	-	360		-
SID164	ISPI2	Block current consumption at 4 Mbps	-	-	560	μA	-
SID165	ISPI3	Block current consumption at 8 Mbps	-	-	600		-

Table 19. SPI AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	FSPI	SPI Operating frequency (Master; 6X Oversampling)	-	-	8	MHz	
Fixed SPI	Master Mode A	C Specifications					
SID167	TDMO	MOSI Valid after SClock driving edge	-	-	15		-
SID168	TDSI	MISO Valid before SClock capturing edge	20	-	-	ns	Full clock, late MISO sampling
SID169	тнмо	Previous MOSI data hold time	0	-	-		Referred to Slave capturing edge
Fixed SPI	Slave Mode AC	Specifications					
SID170	томі	MOSI Valid before Sclock Capturing edge	40	-	-		-
SID171	TDSO	MISO Valid after Sclock driving edge	-	-	42 + 3*Tcpu	ns	T _{CPU} = 1/F _{CPU}
SID171A	TDSO_EXT	MISO Valid after Sclock driving edge in Ext. Clk mode	_	-	48		_
SID172	THSO	Previous MISO data hold time	0	_	_		_
SID172A	TSSELSSCK	SSEL Valid to first SCK Valid edge	-	-	100	ns	-

UART

Table 20. UART DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbps	-	-	55	μA	_
SID161	I _{UART2}	Block current consumption at 1000 Kbps	-	-	312	μA	-

Table 21. UART AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	_	1	1	Mbps	_

LCD Direct Drive

Table 22. LCD Direct Drive DC Specifications^[9]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	-	5	-	μA	16 \times 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	_	500	5000	pF	-
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	-
SID157	I _{LCDOP1}	LCD system operating current Vbias = 5 V	_	2	-	mA	32 × 4 segments at 50 Hz 25 °C
SID158	I _{LCDOP2}	LCD system operating current Vbias = 3.3 V	_	2	Ι	ШĄ	32 × 4 segments at 50 Hz 25 °C

Table 23. LCD Direct Drive AC Specifications^[9]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	-

Memory

Table 24. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	-

Table 25. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID174	T _{ROWWRITE} ^[10]	Row (block) write time (erase and program)	-	_	20		Row (block) = 256 bytes	
SID175	T _{ROWERASE} ^[10]	Row erase time	-	_	16	ms	-	
SID176	T _{ROWPROGRAM} ^[10]	Row program time after erase	-	_	4		-	
SID178	T _{BULKERASE} ^[10]	Bulk erase time (64 KB)	-	_	35		_	
SID180 ^[11]	T _{DEVPROG} ^[10]	Total device program time	-	-	7	Seconds	-	
SID181 ^[11]	F _{END}	Flash endurance	100 K	-	-	Cycles	-	
SID182 ^[11]	F _{RET}	Flash retention. $T_A \le 55 \degree$ C, 100 K P/E cycles	20	_	-	Years	_	
SID182A ^[11]	-	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	-	Tears	_	
SID256	TWS48	Number of Wait states at 48 MHz	2	_	-		CPU execution from Flash	
SID257	TWS24	Number of Wait states at 24 MHz	1	_	_		CPU execution from Flash	

System Resources

Power-on Reset (POR)

Table 26. Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	-	67	V/ms	At power-up	
SID185 ^[11]	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.5	V	-	
SID186 ^[11]	V _{FALLIPOR}	Falling trip voltage	0.70	-	1.4		-	

Table 27. Brown-out Detect (BOD) for $V_{\mbox{\scriptsize CCD}}$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190 ^[11]	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	-	1.62	V	-
SID192 ^[11]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11	_	1.5		-

Notes
10. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Watch Crystal Oscillator (WCO)

Table 33. WCO Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID398	FWCO	Crystal frequency	-	32.768	-	kHz	
SID399	FTOL	Frequency tolerance	-	50	250	ppm	With 20-ppm crystal
SID400	ESR	Equivalent series resistance	-	50	-	kΩ	
SID401	PD	Drive Level	-	-	1	μW	
SID402	TSTART	Startup time	-	-	500	ms	
SID403	CL	Crystal Load Capacitance	6	-	12.5	pF	
SID404	C0	Crystal Shunt Capacitance	-	1.35	-	pF	
SID405	IWCO1	Operating Current (high power mode)	-	_	8	uA	

External Clock

Table 34. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	1	External clock input frequency	0	-	48	MHz	-
SID306 ^[13]	ExtClkDuty	Duty cycle; measured at $V_{DD/2}$	45	1	55	%	_

External Crystal Oscillator and PLL

Table 35. External Crystal Oscillator (ECO) Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID316 ^[13]	IECO1	External clock input frequency	-	-	1.5	mA	_
SID317 ^[13]	FECO	Crystal frequency range	4	-	33	MHz	-

Table 36. PLL Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID410	IDD_PLL_48	In = 3 MHz, Out = 48 MHz	-	530	610	uA	
SID411	IDD_PLL_24	In = 3 MHz, Out = 24 MHz	-	300	405	uA	
SID412	Fpllin	PLL input frequency	1	-	48	MHz	
SID413	Fpllint	PLL intermediate frequency; prescaler out	1	-	3	MHz	
SID414	Fpllvco	VCO output frequency before post-divide	22.5	-	104	MHz	
SID415	Divvco	VCO Output post-divider range; PLL output frequency is Fpplvco/Divvco	1	_	8		
SID416	PIIIocktime	Lock time at startup	-	-	250	μs	
SID417	Jperiod_1	Period jitter for VCO ≥ 67 MHz	_	_	150	ps	Guaranteed by design
SID416A	Jperiod_2	Period jitter for VCO ≤ 67 MHz	_	_	200	ps	Guaranteed by design

System Clock

Table 37. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID262 ^[13]	T _{CLKSWITCH}	System clock source switching time	3	-	4	Periods	_

13. Guaranteed by characterization.

Packaging

The PSoC 4100S Plus will be offered in 44 TQFP, 64 TQFP Normal pitch, and 64 TQFP Fine Pitch packages.

Package dimensions and Cypress drawing numbers are in the following table.

Table 40. Package List

Spec ID#	Package	Description	Package Dwg
BID20	64-pin TQFP	14 × 14 × 1.4-mm height with 0.8-mm pitch	51-85046
BID27	64-pin TQFP	10 × 10 × 1.6-mm height with 0.5-mm pitch	51-85051
BID34A	44-pin TQFP	10 × 10 × 1.4-mm height with 0.8-mm pitch	51-85064

Table 41. Package Thermal Characteristics

Parameter	Description	Package	Min	Тур	Max	Units
Та	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	-	100	°C
Tja	Package θ _{JA}	44-pin TQFP	-	55.6	-	°C/Watt
TJC	Package θ _{JC}	44-pin TQFP	_	14.4	-	°C/Watt
Tja	Package θ _{JA}	64-pin TQFP (0.5-mm pitch)	_	46	-	°C/Watt
TJC	Package θ _{JC}	64-pin TQFP (0.5-mm pitch)	_	10	-	°C/Watt
Tja	Package θ _{JA}	64-pin TQFP (0.8-mm pitch)	-	36.8	-	°C/Watt
TJC	Package θ _{JC}	64-pin TQFP (0.8-mm pitch)	_	9.4	-	°C/Watt

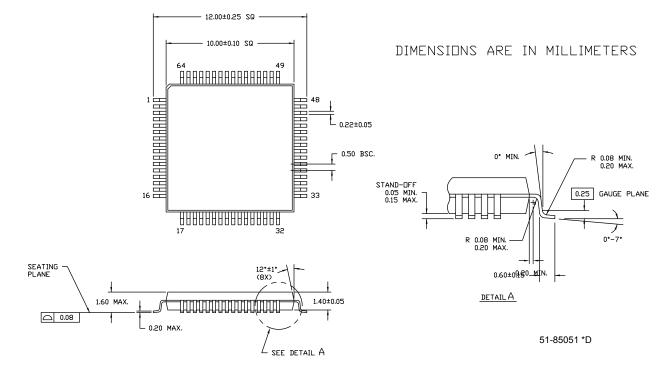
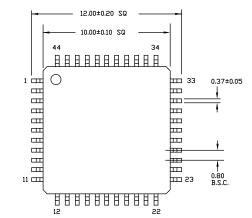
Table 42. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds

Table 43. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All	MSL 3

Figure 8. 64-pin TQFP Package (0.5-mm Pitch) Outline

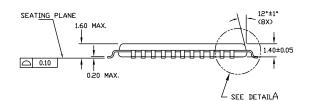


Figure 9. 44-Pin TQFP Package Outline

NDTE:

- 1. JEDEC STD REF MS-026
- BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
 DIMENSIONS IN MILLIMETERS

51-85064 *G

Acronyms

Table 44. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
Arm [®]	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 44. Acronyms Used in this Document (continued)

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
lir	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
	programmable array logic, see also PLD

Description
program counter
printed circuit board
programmable gain amplifier
peripheral hub
physical layer
port interrupt control unit
programmable logic array
programmable logic device, see also PAL
phase-locked loop
package material declaration data sheet
power-on reset
precise power-on reset
pseudo random sequence
port read data register
Programmable System-on-Chip™
power supply rejection ratio
pulse-width modulator
random-access memory
reduced-instruction-set computing
root-mean-square
real-time clock
register transfer language
remote transmission request
receive
successive approximation register
switched capacitor/continuous time
I ² C serial clock
I ² C serial data
sample and hold
signal to noise and distortion ratio
special input/output, GPIO with advanced features. See GPIO.
start of conversion
start of frame
Serial Peripheral Interface, a communications protocol
slew rate
static random access memory
software reset
serial wire debug, a test protocol

Table 44. Acronyms Used in this Document (continued)

Table 44. Acronyms Used in this Document (continued)

Acronym	Description	
SWV	single-wire viewer	
TD	transaction descriptor, see also DMA	
THD	total harmonic distortion	
TIA	transimpedance amplifier	
TRM	technical reference manual	
TTL	transistor-transistor logic	
TX	transmit	
UART	Universal Asynchronous Transmitter Receiver, a communications protocol	
UDB	universal digital block	
USB	Universal Serial Bus	
USBIO	USB input/output, PSoC pins used to connect to a USB port	
VDAC	voltage DAC, see also DAC, IDAC	
WDT	watchdog timer	
WOL	write once latch, see also NVL	
WRES	watchdog timer reset	
XRES	external reset I/O pin	
XTAL	crystal	

Document Conventions

Units of Measure

Table 45. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation 2017-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other countries intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, under the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of the applications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to the reform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from any conducts.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.