

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4146axi-s445

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - □ AN57821: Mixed Signal Circuit Board Layout
 - □ AN81623: Digital Design Best Practices
 - □ AN73854: Introduction To Bootloaders
 - □ AN89610: Arm Cortex Code Optimization
 - □ AN85951: PSoC® 4 and PSoC Analog Coprocessor CapSense® Design Guide
- Technical Reference Manual (TRM) is in two documents:
 - ☐ Architecture TRM details each PSoC 4 functional block.
 - □ Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - □ CY8CKIT-041-41XX PSoC 4100S CapSense Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino™ compatible shields.
 - □ CY8CKIT-149 PSoC® 4100S Plus Prototyping Kit enables you to evaluate and develop with Cypress' fourth-generation, low-power CapSense solution using the PSoC 4100S Plus devices.

The MiniProg3 device provides an interface for flash programming and debug.

■ Software User Guide:

□ A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

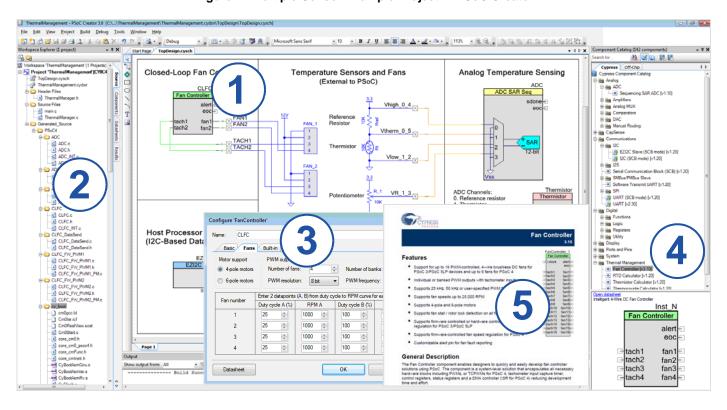
■ Component Datasheets:

□ The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component datasheets provide all the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

■ Online:

☐ In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Document Number: 002-19966 Rev. *G Page 2 of 42



PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator

Contents

Functional Definition	6
CPU and Memory Subsystem	6
System Resources	6
Analog Blocks	7
Programmable Digital Blocks	8
Fixed Function Digital Blocks	
GPIO	8
Special Function Peripherals	9
Pinouts	
Alternate Pin Functions	12
Power	14
Mode 1: 1.8 V to 5.5 V External Supply	14
Mode 2: 1.8 V ±5% External Supply	14
Electrical Specifications	15
Absolute Maximum Ratings	15
Device Level Specifications	15
Analog Peripherals	19
Digital Peripherals	
Memory	29
System Resources	

Ordering information	33
Packaging	35
Package Diagrams	
Acronyms	38
Document Conventions	40
Units of Measure	40
Revision History	41
Sales, Solutions, and Legal Information	42
Worldwide Sales and Design Support	42
Products	42
PSoC® Solutions	42
Cypress Developer Community	42
Technical Support	

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0+ CPU in the PSoC 4100S Plus is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the Thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor from Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in Deep Sleep mode.

The CPU subsystem includes an 8-channel DMA engine and also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG. The debug configuration used for PSoC 4100S Plus has four breakpoint (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4100S Plus device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver two wait-state (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average.

SRAM

16 KB of SRAM are provided with zero wait-state access at 48 MHz.

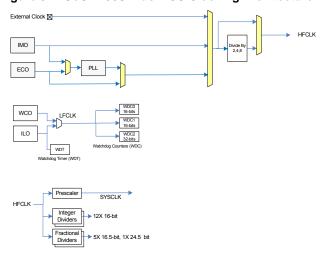
SROM

An 8-KB supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section Power. It provides assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). PSoC 4100S Plus operates with a single external supply over the range of either 1.8 V ±5% (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. PSoC 4100S Plus provides Active, Sleep, and Deep Sleep low-power modes.


All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 µs. The opamps can remain operational in Deep Sleep mode.

Clock System

The PSoC 4100S Plus clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC 4100S Plus consists of the IMO, ILO, a 32-kHz Watch Crystal Oscillator (WCO), MHz ECO and PLL, and provision for an external clock. The WCO block allows locking the IMO to the 32-kHz oscillator.

Figure 3. PSoC 4100S Plus MCU Clocking Architecture

The HFCLK signal can be divided down as shown to generate synchronous clocks for the Analog and Digital peripherals. There are 18 clock dividers for the PSoC 4100S Plus (six with fractional divide capability, twelve with integer divide only). The twelve 16-bit integer divide capability allows a lot of flexibility in generating fine-grained frequency. In addition, there are five 16-bit fractional dividers and one 24-bit fractional divider.

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4100S Plus. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Cypress-provided calibration settings is ±2% over the entire voltage and temperature range.

ILO Clock Source

The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Special Function Peripherals

CapSense

CapSense is supported in the PSoC 4100S Plus through a CapSense Sigma-Delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CapSense function can thus be provided on any available pin or group of pins in a system under software control. A PSoC Creator component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CapSense block has two IDACs, which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

The CapSense block also provides a 10-bit Slope ADC function which can be used in conjunction with the CapSense function.

The CapSense block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and ground to null out power-supply related noise.

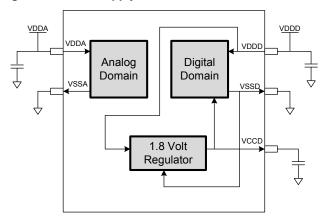
LCD Segment Drive

PSoC 4100S Plus has an LCD controller, which can drive up to 4 commons and up to 50 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as Digital Correlation and PWM. Digital Correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; one 32-bit register per

Alternate Pin Functions

Each Port pin has can be assigned to one of multiple functions; it can, for example, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin assignments are shown in the following table.

Port/Pin	Analog	Smart I/O	ACT #0	ACT #1	ACT #3	DS #2	DS #3
P0.0	lpcomp.in_p[0]			tcpwm.tr_in[0]	scb[2].uart_cts:0	scb[2].i2c_scl:0	scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]			tcpwm.tr_in[1]	scb[2].uart_rts:0	scb[2].i2c_sda:0	scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]						scb[2].spi_select0:1
P0.4	wco.wco_in			scb[1].uart_rx:0	scb[2].uart_rx:0	scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco.wco_out			scb[1].uart_tx:0	scb[2].uart_tx:0	scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6	exco.eco_in		srss.ext_clk:0	scb[1].uart_cts:0	scb[2].uart_tx:1		scb[1].spi_clk:1
P0.7	exco.eco_out		tcpwm.line[0]:3	scb[1].uart_rts:0			scb[1].spi_select0:1
P5.0			tcpwm.line[4]:2		scb[2].uart_rx:1	scb[2].i2c_scl:1	scb[2].spi_mosi:0
P5.1			tcpwm.line_compl[4]:2		scb[2].uart_tx:2	scb[2].i2c_sda:1	scb[2].spi_miso:0
P5.2			tcpwm.line[5]:2		scb[2].uart_cts:1	lpcomp.comp[0]:2	scb[2].spi_clk:0
P5.3			tcpwm.line_compl[5]:2		scb[2].uart_rts:1	lpcomp.comp[1]:0	scb[2].spi_select0:0
P5.4			tcpwm.line[6]:2				scb[2].spi_select1:0
P5.5			tcpwm.line_compl[6]:2				scb[2].spi_select2:0
P1.0	ctb0_oa0+	Smartlo[2].io[0]	tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	ctb0_oa0-	Smartlo[2].io[1]	tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0_oa0_out	Smartlo[2].io[2]	tcpwm.line[3]:1	scb[0].uart_cts:1	tcpwm.tr_in[2]	scb[2].i2c_scl:2	scb[0].spi_clk:1
P1.3	ctb0_oa1_out	Smartlo[2].io[3]	tcpwm.line_compl[3]:1	scb[0].uart_rts:1	tcpwm.tr_in[3]	scb[2].i2c_sda:2	scb[0].spi_select0:1
P1.4	ctb0_oa1-	Smartlo[2].io[4]	tcpwm.line[6]:1			scb[3].i2c_scl:0	scb[0].spi_select1:1
P1.5	ctb0_oa1+	Smartlo[2].io[5]	tcpwm.line_compl[6]:1			scb[3].i2c_sda:0	scb[0].spi_select2:1
P1.6	ctb0_oa0+	Smartlo[2].io[6]	tcpwm.line[7]:1				scb[0].spi_select3:1
P1.7	ctb0_oa1+ sar_ext_vref0 sar_ext_vref1	Smartlo[2].io[7]	tcpwm.line_compl[7]:1				scb[2].spi_clk:1
P2.0	sarmux[0]	Smartlo[0].io[0]	tcpwm.line[4]:0	csd.comp	tcpwm.tr_in[4]	scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux[1]	Smartlo[0].io[1]	tcpwm.line_compl[4]:0		tcpwm.tr_in[5]	scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux[2]	Smartlo[0].io[2]	tcpwm.line[5]:1				scb[1].spi_clk:2
P2.3	sarmux[3]	Smartlo[0].io[3]	tcpwm.line_compl[5]:1				scb[1].spi_select0:2


Document Number: 002-19966 Rev. *G Page 12 of 42

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4100S Plus. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the $V_{\rm DD}$ input.

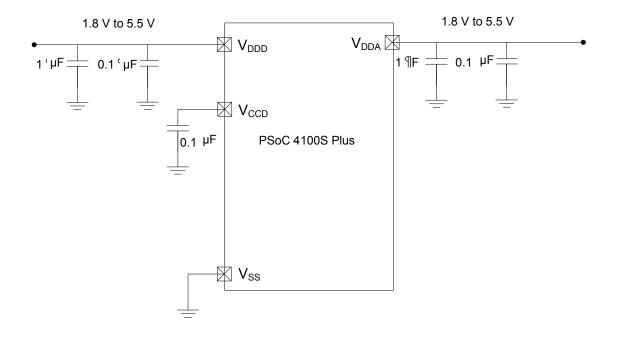
Figure 5. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is 1.8 V ±5% (externally regulated; 1.71 to 1.89, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, PSoC 4100S Plus is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC 4100S Plus supplies the internal logic and its output is connected to the V_{CCD} pin. The V_{CCD} pin must be bypassed to ground via an external capacitor (0.1 $\mu F;\, X5R$ ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, PSoC 4100S Plus is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 6. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SS}	-0.5	_	6		_
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V _{SS}	-0.5	-	1.95	V	-
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	_	V _{DD} +0.5		_
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	_	25		_
SID5	I _{GPIO_injection}	GPIO injection current, Max for $V_{IH} > V_{DDD}$, and Min for $V_{IL} < V_{SS}$	-0.5	-	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	_	V	-
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	_	V	-
BID46	LU	Pin current for latch-up	-140	-	140	mA	_

Device Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID53	V_{DD}	Power supply input voltage	1.8	_	5.5		Internally regulated supply
SID255	V _{DD}	Power supply input voltage ($V_{CCD} = V_{DDD} = V_{DDA}$)	1.71	_	1.89	V	Internally unregulated supply
SID54	V _{CCD}	Output voltage (for core logic)	_	1.8	_		_
SID55	C _{EFC}	External regulator voltage bypass	-	0.1	_		X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	-	1	_	μF	X5R ceramic or better
Active Mode, \	V _{DD} = 1.8 V to 5	.5 V. Typical values measured at VDD	= 3.3 V an	d 25 °C.			
SID10	I _{DD5}	Execute from flash; CPU at 6 MHz	_	1.8	2.4		Max is at 85 °C and 5.5 V
SID16	I _{DD8}	Execute from flash; CPU at 24 MHz	_	3.0	4.6	mA	Max is at 85 °C and 5.5 V
SID19	I _{DD11}	Execute from flash; CPU at 48 MHz	_	5.4	7.1		Max is at 85 °C and 5.5 V

Note

Document Number: 002-19966 Rev. *G Page 15 of 42

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended
periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature
Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 2. DC Specifications (continued)

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions				
Sleep Mode, V	Sleep Mode, VDDD = 1.8 V to 5.5 V (Regulator on)										
SID22	I _{DD17}	I ² C wakeup WDT, and Comparators on	_	1.1	1.8	mA	6 MHZ. Max is at 85 °C and 5.5 V				
SID25	I _{DD20}	I ² C wakeup, WDT, and Comparators on	_	1.5	2.1		12 MHZ. Max is at 85 °C and 5.5 V				
Sleep Mode, V	_{DDD} = 1.71 V to	1.89 V (Regulator bypassed)									
SID28	I _{DD23}	I ² C wakeup, WDT, and Comparators on	_	1.1	1.8	mA	6 MHZ. Max is at 85 °C and 1.89 V				
SID28A	I _{DD23A}	I ² C wakeup, WDT, and Comparators on	_	1.5	2.1	mA	12 MHZ. Max is at 85 °C and 1.89 V				
Deep Sleep Mo	ode, V _{DD} = 1.8 \	/ to 3.6 V (Regulator on)				•					
SID30	I _{DD25}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	-	2.5	40	μA	T = -40 °C to 60 °C				
SID31	I _{DD26}	I ² C wakeup and WDT on	_	2.5	125	μA	Max is at 3.6 V and 85 °C				
Deep Sleep Mo	ode, V _{DD} = 3.6 \	/ to 5.5 V (Regulator on)				•					
SID33	I _{DD28}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	_	2.5	40	μA	T = -40 °C to 60 °C				
SID34	I _{DD29}	I ² C wakeup and WDT on	_	2.5	125	μA	Max is at 5.5 V and 85 °C				
Deep Sleep Mo	ode, V _{DD} = V _{CCI}	c) = 1.71 V to 1.89 V (Regulator bypasse	d)								
SID36	I _{DD31}	I^2C wakeup and WDT on; T = -40 °C to 60 °C	_	2.5	60	μA	T = -40 °C to 60 °C				
SID37	I _{DD32}	I ² C wakeup and WDT on	_	2.5	180	μA	Max is at 1.89 V and 85 °C				
XRES Current	•			•		•	•				
SID307	I _{DD_XR}	Supply current while XRES asserted	-	2	5	mA	_				

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	_	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[2]	T _{SLEEP}	Wakeup from Sleep mode	_	0	_	us	
SID50 ^[2]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	35	_	μδ	

Document Number: 002-19966 Rev. *G Page 16 of 42

Note
2. Guaranteed by characterization.

Table 8. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID300	TPD1	Response time; power=hi	_	150	ı		Input is 0.2 V to V _{DDA} -0.2 V
SID301	TPD2	Response time; power=med	_	500	1	ns	Input is 0.2 V to V _{DDA} -0.2 V
SID302	TPD3	Response time; power=lo	_	2500	ı		Input is 0.2 V to V _{DDA} -0.2 V
SID303	VHYST_OP	Hysteresis	_	10	-	mV	_
SID304	WUP_CTB	Wake-up time from Enabled to Usable	_	_	25	μs	_
	Deep Sleep Mode	Mode 2 is lowest current range. Mode 1 has higher GBW.					
SID_DS_1	I _{DD_HI_M1}	Mode 1, High current	-	1400	-		25 °C
SID_DS_2	I _{DD_MED_M1}	Mode 1, Medium current	-	700	-		25 °C
SID_DS_3	I _{DD_LOW_M1}	Mode 1, Low current	-	200	ı		25 °C
SID_DS_4	I _{DD_HI_M2}	Mode 2, High current	_	120	1	μA	25 °C
SID_DS_5	I _{DD_MED_M2}	Mode 2, Medium current	_	60	-		25 °C
SID_DS_6	I _{DD_LOW_M2}	Mode 2, Low current	-	15	-		25 °C
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	-	4	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	-	2	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M1}	Mode 1, Low current	-	0.5	-	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	_	0.5	-	IVITIZ	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	_	0.2	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	-	0.1	ı		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	_	5	1		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	-	5		mV	With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	_	5	_		With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	_	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V

Document Number: 002-19966 Rev. *G Page 21 of 42

Table 8. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID_DS_19	I _{OUT_HI_M1}	Mode 1, High current	ı	10	ı		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	I _{OUT_MED_M1}	Mode 1, Medium current	-	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	-	4	ı	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	_	1	_		
SID_DS_23	I _{OU_MED_M2}	Mode 2, Medium current	ı	1	1		
SID_DS_24	I _{OU_LOW_M2}	Mode 2, Low current	-	0.5	_		

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID84	V _{OFFSET1}	Input offset voltage, Factory trim	_	_	±10		
SID85	V _{OFFSET2}	Input offset voltage, Custom trim	-	_	±4	mV	
SID86	V _{HYST}	Hysteresis when enabled	-	10	35		
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} -0.1		Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	_	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} -1.15		V _{DDD} ≥ 2.2 V at –40 °C
SID88	C _{MRR}	Common mode rejection ratio	50	_	_	dB	V _{DDD} ≥ 2.7V
SID88A	C _{MRR}	Common mode rejection ratio	42	_	_	uБ	V _{DDD} ≤ 2.7V
SID89	I _{CMP1}	Block current, normal mode	_	_	400		
SID248	I _{CMP2}	Block current, low power mode	_	_	100	μΑ	
SID259	I _{CMP3}	Block current in ultra low-power mode	_	_	6		V _{DDD} ≥ 2.2 V at –40 °C
SID90	Z _{CMP}	DC Input impedance of comparator	35	-	_	ΜΩ	

Table 10. Comparator AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID91	TRESP1	Response time, normal mode, 50 mV overdrive	1	38	110	ne	
SID258	TRESP2	Response time, low power mode, 50 mV overdrive	_	70	200	ns	
SID92	TRESP3	Response time, ultra-low power mode, 200 mV overdrive	-	2.3	15	μs	V _{DDD} ≥ 2.2 V at –40 °C

Note

Document Number: 002-19966 Rev. *G Page 22 of 42

^{6.} Guaranteed by characterization.

Temperature Sensor

Table 11. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID93	TSENSACC	Temperature sensor accuracy	– 5	±1	5	°C	–40 to +85 °C

SAR ADC

Table 12. SAR ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SAR ADC	DC Specification	ons			•		
SID94	A_RES	Resolution	_	_	12	bits	
SID95	A_CHNLS_S	Number of channels - single ended	_	_	16		
SID96	A-CHNKS_D	Number of channels - differential	-	_	4		Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	_	_	_		Yes
SID98	A_GAINERR Gain error		-	_	±0.1	%	With external reference
SID99	A_OFFSET	Input offset voltage	_	_	2	mV	Measured with 1-V reference
SID100	A_ISAR	Current consumption	_	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V_{SS}	_	V_{DDA}	V	
SID102	A_VIND	Input voltage range - differential	V_{SS}	_	V_{DDA}	V	
SID103	A_INRES	Input resistance	_	-	2.2	ΚΩ	
SID104	A_INCAP	Input capacitance	_	-	10	pF	
SID260	VREFSAR	Trimmed internal reference to SAR	-	_	TBD	V	
SAR ADC	AC Specification	ons					•
SID106	A_PSRR	Power supply rejection ratio	70	-	_	dB	
SID107	A_CMRR	Common mode rejection ratio	66	_	_	dB	Measured at 1 V
SID108	A_SAMP	Sample rate	_	_	1	Msps	
SID109	A_SNR	Signal-to-noise and distortion ratio (SINAD)	65	_	_	dB	F _{IN} = 10 kHz
SID110	A_BW	Input bandwidth without aliasing	_	_	A_samp/2	kHz	
SID111	A_INL	Integral non linearity. V_{DD} = 1.71 to 5.5, 1 Msps	-1.7	_	2	LSB	V_{REF} = 1 to V_{DD}
SID111A	A_INL	Integral non linearity. V _{DDD} = 1.71 to 3.6, 1 Msps		ı	1.7	LSB	V_{REF} = 1.71 to V_{DD}
SID111B	A_INL	Integral non linearity. $V_{DD} = 1.71$ to 5.5, 500 ksps	-1.5	_	1.7	LSB	V_{REF} = 1 to V_{DD}
SID112	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 1 Msps	-1	_	2.2	LSB	$V_{REF} = 1 \text{ to } V_{DD}$
SID112A	A_DNL	Differential non linearity. V _{DD} = 1.71 to 3.6, 1 Msps	– 1	-	2	LSB	V _{REF} = 1.71 to V _{DD}
SID112B	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 500 ksps	– 1	_	2.2	LSB	$V_{REF} = 1 \text{ to } V_{DD}$
SID113	A_THD	Total harmonic distortion	_	_	-65	dB	Fin = 10 kHz
SID261	FSARINTREF	SAR operating speed without external reference bypass	_	_	100	ksps	12-bit resolution

Document Number: 002-19966 Rev. *G Page 23 of 42

SPI

Table 18. SPI DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	ISPI1	Block current consumption at 1 Mbps	_	-	360		-
SID164	ISPI2	Block current consumption at 4 Mbps	_	-	560	μΑ	-
SID165	ISPI3	Block current consumption at 8 Mbps	ı	-	600		-

Table 19. SPI AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions			
SID166	FSPI	SPI Operating frequency (Master; 6X Oversampling)	-	_	8	MHz				
Fixed SPI	Fixed SPI Master Mode AC Specifications									
SID167	TDMO	MOSI Valid after SClock driving edge	_	_	15		-			
SID168	TDSI	MISO Valid before SClock capturing edge	20	-	-	ns	Full clock, late MISO sampling			
SID169	тнмо	Previous MOSI data hold time	0	-	-		Referred to Slave capturing edge			
Fixed SPI	Slave Mode AC	Specifications								
SID170	ТОМІ	MOSI Valid before Sclock Capturing edge	40	_	_		_			
SID171	TDSO	MISO Valid after Sclock driving edge	-	-	42 + 3*Tcpu	ns	T _{CPU} = 1/F _{CPU}			
SID171A	TDSO_EXT	MISO Valid after Sclock driving edge in Ext. Clk mode	-	-	48		-			
SID172	THSO	Previous MISO data hold time	0	_	_		_			
SID172A	TSSELSSCK	SSEL Valid to first SCK Valid edge	-	_	100	ns	_			

UART

Table 20. UART DC Specifications $^{[8]}$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbps	ı	-	55	μΑ	-
SID161	I _{UART2}	Block current consumption at 1000 Kbps			312	μΑ	-

Table 21. UART AC Specifications $^{[8]}$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	ı	ı	1	Mbps	1

Note

Document Number: 002-19966 Rev. *G Page 27 of 42

^{8.} Guaranteed by characterization.

Memory

Table 24. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V_{PE}	Erase and program voltage	1.71	ı	5.5	V	_

Table 25. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[10]	Row (block) write time (erase and program)	-	_	20		Row (block) = 256 bytes
SID175	T _{ROWERASE} ^[10]	Row erase time	-	_	16	ms	_
SID176	T _{ROWPROGRAM} ^[10]	Row program time after erase	-	_	4		-
SID178	T _{BULKERASE} ^[10]	Bulk erase time (64 KB)	_	_	35		_
SID180 ^[11]	T _{DEVPROG} ^[10]	Total device program time	_	_	7	Seconds	-
SID181 ^[11]	F _{END}	Flash endurance	100 K	_	_	Cycles	-
SID182 ^[11]	F _{RET}	Flash retention. $T_A \le 55$ °C, 100 K P/E cycles	20	_	_	Years	-
SID182A ^[11]	_	Flash retention. $T_A \le 85$ °C, 10 K P/E cycles	10	_	_	rears	-
SID256	TWS48	Number of Wait states at 48 MHz	2	_	_		CPU execution from Flash
SID257	TWS24	Number of Wait states at 24 MHz	1	_	-		CPU execution from Flash

System Resources

Power-on Reset (POR)

Table 26. Power On Reset (PRES)

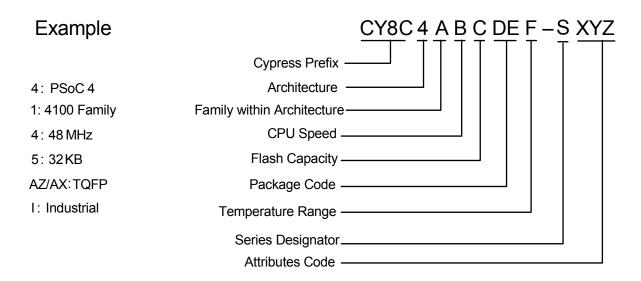
Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	1	67	V/ms	At power-up
SID185 ^[11]	V _{RISEIPOR}	Rising trip voltage	0.80	1	1.5	V	_
SID186 ^[11]	V _{FALLIPOR}	Falling trip voltage	0.70	-	1.4		_

Table 27. Brown-out Detect (BOD) for V_{CCD}

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190 ^[11]	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	1	1.62	V	_
SID192 ^[11]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11	-	1.5		_

Document Number: 002-19966 Rev. *G Page 29 of 42

Notes


10. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

The nomenclature used in the preceding table is based on the following part numbering convention:

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
Α	Family	1	4100 Family
В	CPU Speed	2	24 MHz
		4	48 MHz
С	Flash Capacity	4	16 KB
		5	32 KB
		6	64 KB
		7	128 KB
DE	Package Code	AX	TQFP (0.8-mm pitch)
		AZ	TQFP (0.5-mm pitch)
		LQ	QFN
		PV	SSOP
		FN	CSP
F	Temperature Range	I	Industrial
S	Series Designator	S	PSoC 4 S-Series
		М	PSoC 4 M-Series
		L	PSoC 4 L-Series
		BL	PSoC 4 BLE-Series
XYZ	Attributes Code	000-999	Code of feature set in the specific family

The following is an example of a part number:

Document Number: 002-19966 Rev. *G Page 34 of 42

Packaging

The PSoC 4100S Plus will be offered in 44 TQFP, 64 TQFP Normal pitch, and 64 TQFP Fine Pitch packages.

Package dimensions and Cypress drawing numbers are in the following table.

Table 40. Package List

Spec ID#	Package	Description	Package Dwg
BID20	64-pin TQFP	14 × 14 × 1.4-mm height with 0.8-mm pitch	51-85046
BID27	64-pin TQFP	10 × 10 × 1.6-mm height with 0.5-mm pitch	51-85051
BID34A	44-pin TQFP	10 × 10 × 1.4-mm height with 0.8-mm pitch	51-85064

Table 41. Package Thermal Characteristics

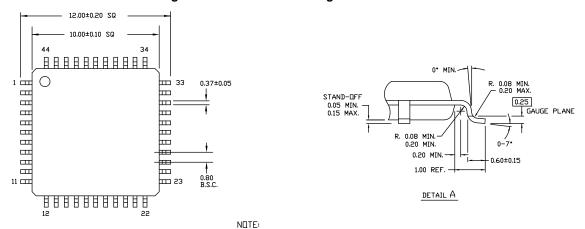
Parameter	Description	Package	Min	Тур	Max	Units
Та	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	_	100	°C
TJA	Package θ_{JA}	44-pin TQFP	_	55.6	_	°C/Watt
TJC	Package θ_{JC}	44-pin TQFP	_	14.4	_	°C/Watt
TJA	Package θ_{JA}	64-pin TQFP (0.5-mm pitch)	_	46	_	°C/Watt
TJC	Package θ _{JC}	64-pin TQFP (0.5-mm pitch)	_	10	_	°C/Watt
TJA	Package θ _{JA}	64-pin TQFP (0.8-mm pitch)	_	36.8	_	°C/Watt
TJC	Package θ_{JC}	64-pin TQFP (0.8-mm pitch)	_	9.4	_	°C/Watt

Table 42. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds

Table 43. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All	MSL 3


Document Number: 002-19966 Rev. *G Page 35 of 42

12.00±0.25 SQ 10.00±0.10 SQ DIMENSIONS ARE IN MILLIMETERS 16 L 0.22±0.05 ┌ 0.50 BSC. 0.08 MIN. 0.20 MAX. STAND-DFF 0.05 MIN. 0.15 MAX. 0.25 GAUGE PLANE 17 3: J 0°-7° 0.08 MIN. 0.20 MAX SEATING PLANE 0.60±09.€0_MN. (8X) DETAILA 1.40±0.05 1.60 MAX. 0.08 0.20 MAX. 51-85051 *D L SEE DETAIL A

Figure 8. 64-pin TQFP Package (0.5-mm Pitch) Outline

Figure 9. 44-Pin TQFP Package Outline

SEATING PLANE
1.60 MAX.

1.40±0.05

0.20 MAX.

SEE DETAILA

1. JEDEC STD REF MS-026

2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH

3. DIMENSIONS IN MILLIMETERS

51-85064 *G

Acronyms

Table 44. Acronyms Used in this Document

Table 44. Acronyms Used in this Document				
Acronym	Description			
abus	analog local bus			
ADC	analog-to-digital converter			
AG	analog global			
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data transfer bus			
ALU	arithmetic logic unit			
AMUXBUS	analog multiplexer bus			
API	application programming interface			
APSR	application program status register			
Arm [®]	advanced RISC machine, a CPU architecture			
ATM	automatic thump mode			
BW	bandwidth			
CAN	Controller Area Network, a communications protocol			
CMRR	common-mode rejection ratio			
CPU	central processing unit			
CRC	cyclic redundancy check, an error-checking protocol			
DAC	digital-to-analog converter, see also IDAC, VDAC			
DFB	digital filter block			
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.			
DMIPS	Dhrystone million instructions per second			
DMA	direct memory access, see also TD			
DNL	differential nonlinearity, see also INL			
DNU	do not use			
DR	port write data registers			
DSI	digital system interconnect			
DWT	data watchpoint and trace			
ECC	error correcting code			
ECO	external crystal oscillator			
EEPROM	electrically erasable programmable read-only memory			
EMI	electromagnetic interference			
EMIF	external memory interface			
EOC	end of conversion			
EOF	end of frame			
EPSR	execution program status register			
ESD	electrostatic discharge			

Table 44. Acronyms Used in this Document (continued)

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
IIR	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD

Document Number: 002-19966 Rev. *G Page 38 of 42

Document Conventions

Units of Measure

Table 45. Units of Measure

Table 45. Units of Measure		
Symbol	Unit of Measure	
°C	degrees Celsius	
dB	decibel	
fF	femto farad	
Hz	hertz	
KB	1024 bytes	
kbps	kilobits per second	
Khr	kilohour	
kHz	kilohertz	
kΩ	kilo ohm	
ksps	kilosamples per second	
LSB	least significant bit	
Mbps	megabits per second	
MHz	megahertz	
ΜΩ	mega-ohm	
Msps	megasamples per second	
μΑ	microampere	
μF	microfarad	
μH	microhenry	
μs	microsecond	
μV	microvolt	
μW	microwatt	
mA	milliampere	
ms	millisecond	
mV	millivolt	
nA	nanoampere	
ns	nanosecond	
nV	nanovolt	
Ω	ohm	
pF	picofarad	
ppm	parts per million	
ps	picosecond	
s	second	
sps	samples per second	
sqrtHz	square root of hertz	
V	volt	

Document Number: 002-19966 Rev. *G Page 40 of 42

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation 2017-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure: Therefore, despite security measures implemented in Cypress hardware or software products. Cypress does not assume any liability arising out of fany security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and y

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-19966 Rev. *G Revised May 9, 2018 Page 42 of 42