

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status	Active	
Number of LABs/CLBs	1920	
Number of Logic Elements/Cells	17280	
Total RAM Bits	442368	
Number of I/O	221	
Number of Gates	1000000	
Voltage - Supply	1.14V ~ 1.26V	
Mounting Type	Surface Mount	
Operating Temperature	-40°C ~ 100°C (TJ)	
Package / Case	320-BGA	
Supplier Device Package	320-FBGA (19x19)	
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1000-4fgg320i	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4: Example Ordering Information

Device		Speed Grade	l	Package Type/Number of Pins	T	emperature Range (T _j)
XC3S50	-4	Standard Performance	VQ(G)100	100-pin Very Thin Quad Flat Pack (VQFP)	С	Commercial (0°C to 85°C)
XC3S200	-5	High Performance ⁽¹⁾	CP(G)132 ⁽²⁾	132-pin Chip-Scale Package (CSP)	Ι	Industrial (-40°C to 100°C)
XC3S400			TQ(G)144	144-pin Thin Quad Flat Pack (TQFP)		·
XC3S1000			PQ(G)208	208-pin Plastic Quad Flat Pack (PQFP)		
XC3S1500			FT(G)256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)		
XC3S2000			FG(G)320	320-ball Fine-Pitch Ball Grid Array (FBGA)		
XC3S4000			FG(G)456	456-ball Fine-Pitch Ball Grid Array (FBGA)		
XC3S5000			FG(G)676	676-ball Fine-Pitch Ball Grid Array (FBGA)		
			FG(G)900	900-ball Fine-Pitch Ball Grid Array (FBGA)		
			FG(G)1156 ⁽²⁾	1156-ball Fine-Pitch Ball Grid Array (FBGA)		

Notes:

1. The -5 speed grade is exclusively available in the Commercial temperature range.

2. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

Revision History

Date	Version	Description
04/11/03	1.0	Initial Xilinx release.
04/24/03	1.1	Updated block RAM, DCM, and multiplier counts for the XC3S50.
12/24/03	1.2	Added the FG320 package.
07/13/04	1.3	Added information on Pb-free packaging options.
01/17/05	1.4	Referenced Spartan-3 XA Automotive FPGA families in Table 1. Added XC3S50CP132, XC3S2000FG456, XC3S4000FG676 options to Table 3. Updated Package Marking to show mask revision code, fabrication facility code, and process technology code.
08/19/05	1.5	Added package markings for BGA packages (Figure 3) and CP132/CPG132 packages (Figure 4). Added differential (complementary single-ended) HSTL and SSTL I/O standards.
04/03/06	2.0	Increased number of supported single-ended and differential I/O standards.
04/26/06	2.1	Updated document links.
05/25/07	2.2	Updated Package Marking to allow for dual-marking.
11/30/07	2.3	Added XC3S5000 FG(G)676 to Table 3. Noted that FG(G)1156 package is being discontinued and updated max I/O count.
06/25/08	2.4	Updated max I/O counts based on FG1156 discontinuation. Clarified dual mark in Package Marking. Updated formatting and links.
12/04/09	2.5	CP132 and CPG132 packages are being discontinued. Added link to Spartan-3 FPGA customer notices. Updated Table 3 with package footprint dimensions.
10/29/12	3.0	Added Notice of Disclaimer section. Per <u>XCN07022</u> , updated the discontinued FG1156 and FGG1156 package discussion throughout document. Per <u>XCN08011</u> , updated the discontinued CP132 and CPG132 package discussion throughout document. Although the package is discontinued, updated the marking on Figure 4. This product is not recommended for new designs.

ESD Protection

Clamp diodes protect all device pads against damage from Electro-Static Discharge (ESD) as well as excessive voltage transients. Each I/O has two clamp diodes: One diode extends P-to-N from the pad to V_{CCO} and a second diode extends N-to-P from the pad to GND. During operation, these diodes are normally biased in the off state. These clamp diodes are always connected to the pad, regardless of the signal standard selected. The presence of diodes limits the ability of Spartan-3 FPGA I/Os to tolerate high signal voltages. The V_{IN} absolute maximum rating in Table 28, page 58 specifies the voltage range that I/Os can tolerate.

Slew Rate Control and Drive Strength

Two options, FAST and SLOW, control the output slew rate. The FAST option supports output switching at a high rate. The SLOW option reduces bus transients. These options are only available when using one of the LVCMOS or LVTTL standards, which also provide up to seven different levels of current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choosing the appropriate drive strength level is yet another means to minimize bus transients.

Table 7 shows the drive strengths that the LVCMOS and LVTTL standards support.

Signal Standard	Current Drive (mA)								
(IOSTANDARD)	2	4	6	8	12	16	24		
LVTTL	1	1	1	1	1	1	1		
LVCMOS33	1	1	1	1	1	1	~		
LVCMOS25	1	1	1	1	1	1	1		
LVCMOS18	1	1	1	1	1	1	-		
LVCMOS15	1	1	1	1	1	_	-		
LVCMOS12	1	1	1	-	-	-	-		

Table 7: Programmable Output Drive Current

Boundary-Scan Capability

All Spartan-3 FPGA IOBs support boundary-scan testing compatible with IEEE 1149.1 standards. During boundary- scan operations such as EXTEST and HIGHZ the I/O pull-down resistor is active. For more information, see Boundary-Scan (JTAG) Mode, page 50, and refer to the "Using Boundary-Scan and BSDL Files" chapter in <u>UG331</u>.

SelectIO Interface Signal Standards

The IOBs support 18 different single-ended signal standards, as listed in Table 8. Furthermore, the majority of IOBs can be used in specific pairs supporting any of eight differential signal standards, as shown in Table 9.

To define the SelectIO[™] interface signaling standard in a design, set the IOSTANDARD attribute to the appropriate setting. Xilinx provides a variety of different methods for applying the IOSTANDARD for maximum flexibility. For a full description of different methods of applying attributes to control IOSTANDARD, refer to the "Using I/O Resources" chapter in <u>UG331</u>.

Together with placing the appropriate I/O symbol, two externally applied voltage levels, V_{CCO} and V_{REF} , select the desired signal standard. The V_{CCO} lines provide current to the output driver. The voltage on these lines determines the output voltage swing for all standards except GTL and GTLP.

All single-ended standards except the LVCMOS, LVTTL, and PCI varieties require a Reference Voltage (V_{REF}) to bias the input-switching threshold. Once a configuration data file is loaded into the FPGA that calls for the I/Os of a given bank to use such a signal standard, a few specifically reserved I/O pins on the same bank automatically convert to V_{REF} inputs. When using one of the LVCMOS standards, these pins remain I/Os because the V_{CCO} voltage biases the input-switching threshold, so there is no need for V_{REF} . Select the V_{CCO} and V_{REF} levels to suit the desired single-ended standard according to Table 8.

In contrast, the 144-pin Thin Quad Flat Pack (TQ144) package and the 132-pin Chip-Scale Package (CP132) tie V_{CCO} together internally for the pair of banks on each side of the device. For example, the V_{CCO} Bank 0 and the V_{CCO} Bank 1 lines are tied together. The interconnected bank-pairs are 0/1, 2/3, 4/5, and 6/7. As a result, Spartan-3 devices in the CP132 and TQ144 packages support four independent V_{CCO} supplies.

Note: The CP132 package is discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

Spartan-3 FPGA Compatibility

Within the Spartan-3 family, all devices are pin-compatible by package. When the need for future logic resources outgrows the capacity of the Spartan-3 device in current use, a larger device in the same package can serve as a direct replacement. Larger devices may add extra V_{REF} and V_{CCO} lines to support a greater number of I/Os. In the larger device, more pins can convert from user I/Os to V_{REF} lines. Also, additional V_{CCO} lines are bonded out to pins that were "not connected" in the smaller device. Thus, it is important to plan for future upgrades at the time of the board's initial design by laying out connections to the extra pins.

The Spartan-3 family is not pin-compatible with any previous Xilinx FPGA family or with other platforms among the Spartan-3 Generation FPGAs.

Rules Concerning Banks

When assigning I/Os to banks, it is important to follow the following V_{CCO} rules:

- Leave no V_{CCO} pins unconnected on the FPGA.
- Set all V_{CCO} lines associated with the (interconnected) bank to the same voltage level.
- The V_{CCO} levels used by all standards assigned to the I/Os of the (interconnected) bank(s) must agree. The Xilinx development software checks for this. Tables 8, 9, and 10 describe how different standards use the V_{CCO} supply.
- Only one of the following standards is allowed on outputs per bank: LVDS, LDT, LVDS_EXT, or RSDS. This restriction is
 for the eight banks in each device, even if the V_{CCO} levels are shared across banks, as in the CP132 and TQ144
 packages.
- If none of the standards assigned to the I/Os of the (interconnected) bank(s) uses V_{CCO}, tie all associated V_{CCO} lines to 2.5V.
- In general, apply 2.5V to V_{CCO} Bank 4 from power-on to the end of configuration. Apply the same voltage to V_{CCO} Bank 5 during parallel configuration or a Readback operation. For information on how to program the FPGA using 3.3V signals and power, see the 3.3V-Tolerant Configuration Interface section.

If any of the standards assigned to the Inputs of the bank use V_{REF} then observe the following additional rules:

- Connect all V_{REF} pins within the bank to the same voltage level.
- The V_{REF} levels used by all standards assigned to the Inputs of the bank must agree. The Xilinx development software checks for this. Tables 8 and 10 describe how different standards use the V_{REF} supply.

If none of the standards assigned to the Inputs of a bank use V_{REF} for biasing input switching thresholds, all associated V_{REF} pins function as User I/Os.

Exceptions to Banks Supporting I/O Standards

Bank 5 of any Spartan-3 device in a VQ100, CP132, or TQ144 package does not support DCI signal standards. In this case, bank 5 has neither VRN nor VRP pins.

Furthermore, banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using V_{REF} (see Table 8). In this case, the two banks do not have any V_{REF} pins.

Arrangement of RAM Blocks on Die

The XC3S50 has one column of block RAM. The Spartan-3 devices ranging from the XC3S200 to XC3S2000 have two columns of block RAM. The XC3S4000 and XC3S5000 have four columns. The position of the columns on the die is shown in Figure 1, page 3. For a given device, the total available RAM blocks are distributed equally among the columns. Table 12 shows the number of RAM blocks, the data storage capacity, and the number of columns for each device.

•							
Device	Total Number of RAM Blocks	Total Addressable Locations (Bits)	Number of Columns				
XC3S50	4	73,728	1				
XC3S200	12	221,184	2				
XC3S400	16	294,912	2				
XC3S1000	24	442,368	2				
XC3S1500	32	589,824	2				
XC3S2000	40	737,280	2				
XC3S4000	96	1,769,472	4				
XC3S5000	104	1,916,928	4				

Table 12: Number of RAM Blocks by Device

Block RAM and multipliers have interconnects between them that permit simultaneous operation; however, since the multiplier shares inputs with the upper data bits of block RAM, the maximum data path width of the block RAM is 18 bits in this case.

The Internal Structure of the Block RAM

The block RAM has a dual port structure. The two identical data ports called A and B permit independent access to the common RAM block, which has a maximum capacity of 18,432 bits—or 16,384 bits when no parity lines are used. Each port has its own dedicated set of data, control and clock lines for synchronous read and write operations. There are four basic data paths, as shown in Figure 13: (1) write to and read from Port A, (2) write to and read from Port B, (3) data transfer from Port A to Port B, and (4) data transfer from Port B to Port A.

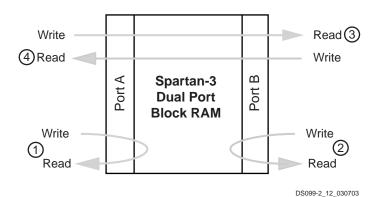


Figure 13: Block RAM Data Paths

Block RAM Port Signal Definitions

Representations of the dual-port primitive RAMB16_S[w_A]_S[w_B] and the single-port primitive RAMB16_S[w] with their associated signals are shown in Figure 14. These signals are defined in Table 13.

Table 13: Block RAM Port Signals (Cont'd)

Signal Description	Port A Signal Name	Port B Signal Name	Direction	Function
Data Output Bus	DOA	DOB	Output	Basic data access occurs whenever WE is inactive. The DO outputs mirror the data stored in the addressed memory location.
				Data access with WE asserted is also possible if one of the following two attributes is chosen: WRITE_FIRST and READ_FIRST. WRITE_FIRST simultaneously presents the new input data on the DO output port and writes the data to the address RAM location. READ_FIRST presents the previously stored RAM data on the DO output port while writing new data to RAM.
				A third attribute, NO_CHANGE, latches the DO outputs upon the assertion of WE.
				It is possible to configure a port's total data path width (w) to be 1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and DO paths. See the DI signal description.
Parity Data Output(s)	DOPA	DOPB	Output	Parity inputs represent additional bits included in the data input path to support error detection. The number of parity bits "p" included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 14.
Write Enable	WEA	WEB	Input	When asserted together with EN, this input enables the writing of data to the RAM. In this case, the data access attributes WRITE_FIRST, READ_FIRST or NO_CHANGE determines if and how data is updated on the DO outputs. See the DO signal description. When WE is inactive with EN asserted, read operations are still possible. In this case, a transparent latch passes data from the addressed memory location to the DO outputs.
Clock Enable	ENA	ENB	Input	When asserted, this input enables the CLK signal to synchronize Block RAM functions as follows: the writing of data to the DI inputs (when WE is also asserted), the updating of data at the DO outputs as well as the setting/resetting of the DO output latches. When de-asserted, the above functions are disabled.
Set/Reset	SSRA	SSRB	Input	When asserted, this pin forces the DO output latch to the value that the SRVAL attribute is set to. A Set/Reset operation on one port has no effect on the other ports functioning, nor does it disturb the memory's data contents. It is synchronized to the CLK signal.
Clock	CLKA	CLKB	Input	This input accepts the clock signal to which read and write operations are synchronized. All associated port inputs are required to meet setup times with respect to the clock signal's active edge. The data output bus responds after a clock-to-out delay referenced to the clock signal's active edge.

Port Aspect Ratios

On a given port, it is possible to select a number of different possible widths (w - p) for the DI/DO buses as shown in Table 14. These two buses always have the same width. This data bus width selection is independent for each port. If the data bus width of Port A differs from that of Port B, the Block RAM automatically performs a bus-matching function. When data are written to a port with a narrow bus, then read from a port with a wide bus, the latter port will effectively combine "narrow" words to form "wide" words. Similarly, when data are written into a port with a wide bus, then read from a port with a narrow bus, the latter port will divide "wide" words to form "narrow" words. When the data bus width is eight bits or greater, extra parity bits become available. The width of the total data path (*w*) is the sum of the DI/DO bus width and any parity bits (*p*).

The width selection made for the DI/DO bus determines the number of address lines according to the relationship expressed below:

$$r = 14 - [\log(w - p)/\log(2)]$$

In turn, the number of address lines delimits the total number (n) of addressable locations or depth according to the following equation:

$$n = 2^r$$
 Equation 2

Equation 1

DLL Clock Input Connections

An external clock source enters the FPGA using a Global Clock Input Buffer (IBUFG), which directly accesses the global clock network or an Input Buffer (IBUF). Clock signals within the FPGA drive a global clock net using a Global Clock Multiplexer Buffer (BUFGMUX). The global clock net connects directly to the CLKIN input. The internal and external connections are shown in the [a] and [c] sections, respectively, of Figure 21. A differential clock (e.g., LVDS) can serve as an input to CLKIN.

DLL Clock Output and Feedback Connections

As many as four of the nine DCM clock outputs can simultaneously drive the four BUFGMUX buffers on the same die edge (top or bottom). All DCM clock outputs can simultaneously drive general routing resources, including interconnect leading to OBUF buffers.

The feedback loop is essential for DLL operation and is established by driving the CLKFB input with either the CLK0 or the CLK2X signal so that any undesirable clock distribution delay is included in the loop. It is possible to use either of these two signals for synchronizing any of the seven DLL outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X, or CLK2X180. The value assigned to the CLK_FEEDBACK attribute must agree with the physical feedback connection: a value of 1X for the CLK0 case, 2X for the CLK2X case. If the DCM is used in an application that does not require the DLL—i.e., only the DFS is used—then there is no feedback loop so CLK_FEEDBACK is set to NONE.

CLK2X feedback is only supported on all mask revision 'E' and later devices (see Mask and Fab Revisions, page 58), on devices with the "GQ" fabrication code, and on all versions of the XC3S50 and XC3S1000.

There are two basic cases that determine how to connect the DLL clock outputs and feedback connections: on-chip synchronization and off-chip synchronization, which are illustrated in Figure 21.

Configuration

Spartan-3 devices are configured by loading application specific configuration data into the internal configuration memory. Configuration is carried out using a subset of the device pins, some of which are "Dedicated" to one function only, while others, indicated by the term "Dual-Purpose", can be re-used as general-purpose User I/Os once configuration is complete.

Depending on the system design, several configuration modes are supported, selectable via mode pins. The mode pins M0, M1, and M2 are Dedicated pins. The mode pin settings are shown in Table 26.

Configuration Mode ⁽¹⁾	МО	M1	M2	Synchronizing Clock	Data Width	Serial DOUT ⁽²⁾
Master Serial	0	0	0	CCLK Output	1	Yes
Slave Serial	1	1	1	CCLK Input	1	Yes
Master Parallel	1	1	0	CCLK Output	8	No
Slave Parallel	0	1	1	CCLK Input	8	No
JTAG	1	0	1	TCK Input	1	No

Table 26: Spartan-3 FPGAs Configuration Mode Pin Settings

Notes:

1. The voltage levels on the M0, M1, and M2 pins select the configuration mode.

2. The daisy chain is possible only in the Serial modes when DOUT is used.

The HSWAP_EN input pin defines whether the I/O pins that are not actively used during configuration have pull-up resistors during configuration. By default, HSWAP_EN is tied High (via an internal pull-up resistor if left floating) which shuts off the pull-up resistors on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os have pull-ups during configuration. The Dedicated configuration pins (CCLK, DONE, PROG_B, M2, M1, M0, HSWAP_EN) and the JTAG pins (TDI, TMS, TCK, and TDO) always have a pull-up resistor to VCCAUX during configuration, regardless of the value on the HSWAP_EN pin. Similarly, the dual-purpose INIT_B pin has an internal pull-up resistor to VCCO_4 or VCCO_BOTTOM, depending on the package style.

Depending on the chosen configuration mode, the FPGA either generates a CCLK output, or CCLK is an input accepting an externally generated clock.

A persist option is available which can be used to force the configuration pins to retain their configuration function even after device configuration is complete. If the persist option is not selected then the configuration pins with the exception of CCLK, PROG_B, and DONE can be used as user I/O in normal operation. The persist option does not apply to the boundary-scan related pins. The persist feature is valuable in applications that readback configuration data after entering the User mode.

Table 27: Spartan-3 FPGA Configuration Data

Device	File Sizes	Xilinx Platfor	n Flash PROM
Device	File Sizes	Serial Configuration	Parallel Configuration
XC3S50	439,264	XCF01S	XCF08P
XC3S200	1,047,616	XCF01S	XCF08P
XC3S400	1,699,136	XCF02S	XCF08P
XC3S1000	3,223,488	XCF04S	XCF08P
XC3S1500	5,214,784	XCF08P	XCF08P
XC3S2000	7,673,024	XCF08P	XCF08P
XC3S4000	11,316,864	XCF16P	XCF16P
XC3S5000	13,271,936	XCF16P	XCF16P

The maximum bitstream length that Spartan-3 FPGAs support in serial daisy-chains is 4,294,967,264 bits (4 Gbits), roughly equivalent to a daisy-chain with 323 XC3S5000 FPGAs. This is a limit only for serial daisy-chains where configuration data is passed via the FPGA's DOUT pin. There is no such limit for JTAG chains.

Table 36: DC Characteristics of User I/Os Using Single-Ended Standards (Cont'd)

Signal Sta	andard	Test Co	nditions	Logic Level C	haracteristics	
(IOSTANDARD) and Current Drive Attribute (mA)		I _{OL} I _{OH} (mA) (mA)		V _{OL} Max (V)	V _{OH} Min (V)	
/CMOS33 ⁽⁴⁾ 2		2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4	_		
	6	6	6	_		
	8	8	-8			
	12	12	-12			
	16	16	-16	_		
	24	24	-24	_		
LVDCI_33, LVDCI_DV2_33		Note 3	Note 3	_		
LVTTL ⁽⁴⁾	2	2	-2	0.4	2.4	
	4	4	-4			
	6	6	6			
	8	8	8			
	12	12	-12			
	16	16	-16			
	24	24	-24			
PCI33_3		Note 6	Note 6	0.10V _{CCO}	0.90V _{CCO}	
SSTL18_I		6.7	-6.7	V _{TT} – 0.475	V _{TT} + 0.475	
SSTL18_I_DCI		Note 3	Note 3			
SSTL18_II		13.4	-13.4	V _{TT} – 0.475	V _{TT} + 0.475	
SSTL2_I		8.1	-8.1	V _{TT} – 0.61	V _{TT} + 0.61	
SSTL2_I_DCI		Note 3	Note 3			
SSTL2_II ⁽⁷⁾		16.2	-16.2	V _{TT} – 0.81	V _{TT} + 0.81	
SSTL2_II_DCI ⁽⁷⁾		Note 3	Note 3			

Notes:

2.

The numbers in this table are based on the conditions set forth in Table 32 and Table 35. 1.

The numbers in this table are based on the conditions set for Descriptions of the symbols used in this table are as follows: I_{OL} – the output current condition under which VOL is tested V_{OL} – the output current condition under which VOH is tested V_{OL} – the output voltage that indicates a Low logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the supply voltage for output drivers as well as LVCM

 V_{CCO} – the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs V_{REF} – the reference voltage for setting the input switching threshold V_{TT} – the voltage applied to a resistor termination

Tested according to the standard's relevant specifications. When using the DCI version of a standard on a given I/O bank, that bank will consume more power than if the non-DCI version had been used instead. The additional power is drawn for the purpose of impedance-matching at the I/O pins. A portion of this power is dissipated in the two RREF resistors. 3.

For the LVCMOS and LVTTL standards: the same V_{OL} and V_{OH} limits apply for both the Fast and Slow slew attributes. 4.

All dedicated output pins (CCLK, DONE, and TDO) and dual-purpose totem-pole output pins (D0-D7 and BUSY/DOUT) exhibit the characteristics of 5. LVCMOS25 with 12 mA drive and slow slew rate. For information concerning the use of 3.3V signals, see 3.3V-Tolerant Configuration Interface, page 47.

Tested according to the relevant PCI specifications. For more information, see XAPP457. 6.

7. The minimum usable V_{TT} voltage is 1.25V.

Table 52: CLB Distributed RAM Switching Characteristics

Symbol	Description	-4	5	-4		Units
Symbol	Description	Min	Max	Min	Max	Units
Clock-to-Output	Times	·				
Т _{SHCKO}	Time from the active edge at the CLK input to data appearing on the distributed RAM output		1.87	-	2.15	ns
Setup Times						
T _{DS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the distributed RAM		-	0.52	-	ns
T _{AS}	Setup time of the F/G address inputs before the active transition at the CLK input of the distributed RAM		-	0.53	-	ns
T _{WS}	Setup time of the write enable input before the active transition at the CLK input of the distributed RAM		-	0.37	-	ns
Hold Times						
T _{DH,} T _{AH,} T _{WH}	Hold time of the BX, BY data inputs, the F/G address inputs, or the write enable input after the active transition at the CLK input of the distributed RAM		-	0	-	ns
Clock Pulse Wid	Ith	1				
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	0.85	-	0.97	-	ns

Table 53: CLB Shift Register Switching Characteristics

Symbol	Description		5	-4		Units
Symbol		Min	Max	Min	Max	Units
Clock-to-Output	t Times					
T _{REG}	Time from the active edge at the CLK input to data appearing on the shift register output		3.30	-	3.79	ns
Setup Times						
T _{SRLDS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the shift register		-	0.52	-	ns
Hold Times		L	-		I	
T _{SRLDH}	Hold time of the BX or BY data input after the active transition at the CLK input of the shift register		-	0	_	ns
Clock Pulse Wig	dth	1		u		
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	0.85	-	0.97	-	ns

www.xilinx.com

Digital Clock Manager (DCM) Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 58 and Table 59) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 60 through Table 63) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 58 and Table 59.

Period jitter and cycle-cycle jitter are two (of many) different ways of characterizing clock jitter. Both specifications describe statistical variation from a mean value.

Period jitter is the worst-case deviation from the average clock period of all clock cycles in the collection of clock periods sampled (usually from 100,000 to more than a million samples for specification purposes). In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Delay-Locked Loop (DLL)

Table 58: Recommended Operating Conditions for the DLL

Symbol				Speed Grade				
		Description	Frequency Mode/ F _{CLKIN} Range	-5		-4		Units
				Min	Max	Min	Max	
Input Fi	requency Ranges							
F _{CLKIN}	CLKIN_FREQ_DLL_LF	Frequency for the CLKIN input	Low	18 <mark>(2)</mark>	167 <mark>(3)</mark>	18 <mark>(2)</mark>	167 <mark>(3)</mark>	MHz
	CLKIN_FREQ_DLL_HF		High	48	280 ⁽³⁾	48	280 ⁽³⁾⁽⁴⁾	MHz
Input P	ulse Requirements							
CLKIN_	PULSE	CLKIN pulse width as a percentage of the CLKIN period	$F_{CLKIN} \le 100 \text{ MHz}$	40%	60%	40%	60%	-
			F _{CLKIN} > 100 MHz	45%	55%	45%	55%	-
Input C	lock Jitter Tolerance and	Delay Path Variation ⁽⁵⁾						
CLKIN_	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the CLKIN	Low	-	±300	-	±300	ps
CLKIN_	CYC_JITT_DLL_HF	input	High	-	±150	-	±150	ps
CLKIN_PER_JITT_DLL_LF		Period jitter at the CLKIN input	All	-	±1	-	±1	ns
CLKIN_PER_JITT_DLL_HF				-		-		
CLKFB_DELAY_VAR_EXT		Allowable variation of off-chip feedback delay from the DCM output to the CLKFB input	All	-	±1	-	±1	ns

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower F_{CLKIN} frequencies. See Table 60.

 The CLKIN_DIVIDE_BY_2 attribute can be used to increase the effective input frequency range up to F_{BUFG}. When set to TRUE, CLKIN_DIVIDE_BY_2 divides the incoming clock frequency by two as it enters the DCM.

4. Industrial temperature range devices have additional requirements for continuous clocking, as specified in Table 64.

5. CLKIN input jitter beyond these limits may cause the DCM to lose lock. See UG331 for more details.

Miscellaneous DCM Timing

Table 64: Miscellaneous DCM Timing

0 miliol	Barrista	DLL	Temperatu		
Symbol	Description	Frequency Mode	Commercial	Industrial	Units
DCM_INPUT_CLOCK_STOP	Maximum duration that the CLKIN and CLKFB signals can be stopped ^{$(1,2)$}	Any	100	100	ms
DCM_RST_PW_MIN	Minimum duration of a RST pulse width	Any	3	3	CLKIN cycles
DCM_RST_PW_MAX ⁽³⁾	Maximum duration of a RST pulse width ^(1,2)	Low	N/A	N/A	seconds
		High	N/A	10	seconds
DCM_CONFIG_LAG_TIME ⁽⁴⁾	Maximum duration from V _{CCINT} applied to FPGA configuration successfully completed	Low	N/A	N/A	minutes
	(DONE pin goes High) and clocks applied to DCM DLL ^(1,2)	High	N/A	10	minutes

Notes:

 These limits only apply to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected. Required due to effects of device cooling: see "Momentarily Stopping CLKIN" in Chapter 3 of UG331.

2. Industrial-temperature applications that use the DLL in High-Frequency mode must use a continuous or increasing operating frequency. The DLL under these conditions does not support reducing the operating frequency once establishing an initial operating frequency.

3. This specification is equivalent to the Virtex-4 FPGA DCM_RESET specification.

4. This specification is equivalent to the Virtex-4 FPGA TCONFIG specification.

VREF: User I/O or Input Buffer Reference Voltage for Special Interface Standards

These pins are individual user-I/O pins unless collectively they supply an input reference voltage, VREF_#, for any SSTL, HSTL, GTL, or GTLP I/Os implemented in the associated I/O bank. The '#' character in the pin name represents an integer, 0 through 7, that indicates the associated I/O bank.

The VREF function becomes active for this pin whenever a signal standard requiring a reference voltage is used in the associated bank. If used as a user I/O, then each pin behaves as an independent I/O described in the I/O type section. If used for a reference voltage within a bank, then *all* VREF pins within the bank must be connected to the same reference voltage.

Spartan-3 devices are designed and characterized to support certain I/O standards when VREF is connected to +1.25V, +1.10V, +1.00V, +0.90V, +0.80V, and +0.75V. During configuration, the VREF pins behave exactly like user-I/O pins.

If designing for footprint compatibility across the range of devices in a specific package, and if the VREF_# pins within a bank connect to an input reference voltage, then also connect any N.C. (not connected) pins on the smaller devices in that package to the input reference voltage. More details are provided later for each package type.

N.C. Type: Unconnected Package Pins

Pins marked as "N.C." are unconnected for the specific device/package combination. For other devices in this same package, this pin may be used as an I/O or VREF connection. In both the pinout tables and the footprint diagrams, unconnected pins are noted with either a black diamond symbol (\blacklozenge) or a black square symbol (\blacksquare).

If designing for footprint compatibility across multiple device densities, check the pin types of the other Spartan-3 devices available in the same footprint. If the N.C. pin matches to VREF pins in other devices, and the VREF pins are used in the associated I/O bank, then connect the N.C. to the VREF voltage source.

VCCO Type: Output Voltage Supply for I/O Bank

Each I/O bank has its own set of voltage supply pins that determines the output voltage for the output buffers in the I/O bank. Furthermore, for some I/O standards such as LVCMOS, LVCMOS25, LVTTL, etc., VCCO sets the input threshold voltage on the associated input buffers.

Spartan-3 devices are designed and characterized to support various I/O standards for VCCO values of +1.2V, +1.5V, +1.8V, +2.5V, and +3.3V.

Most VCCO pins are labeled as VCCO_# where the '#' symbol represents the associated I/O bank number, an integer ranging from 0 to 7. In the 144-pin TQFP package (TQ144) however, the VCCO pins along an edge of the device are combined into a single VCCO input. For example, the VCCO inputs for Bank 0 and Bank 1 along the top edge of the package are combined and relabeled VCCO_TOP. The bottom, left, and right edges are similarly combined.

In Serial configuration mode, VCCO_4 must be at a level compatible with the attached configuration memory or data source. In Parallel configuration mode, both VCCO_4 and VCCO_5 must be at the same compatible voltage level.

All VCCO inputs to a bank must be connected together and to the voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in <u>XAPP623</u>: *Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors*.

VCCINT Type: Voltage Supply for Internal Core Logic

Internal core logic circuits such as the configurable logic blocks (CLBs) and programmable interconnect operate from the VCCINT voltage supply inputs. VCCINT must be +1.2V.

All VCCINT inputs must be connected together and to the +1.2V voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in <u>XAPP623</u>.

VCCAUX Type: Voltage Supply for Auxiliary Logic

The VCCAUX pins supply power to various auxiliary circuits, such as to the Digital Clock Managers (DCMs), the JTAG pins, and to the dedicated configuration pins (CONFIG type). VCCAUX must be +2.5V.

Table 86: Spartan-3 FPGA Package Thermal Characteristics (Cont'd)

		Junction-to-		Junction-to-A				
Package	Device	Case (θ_{JC})	oard (θ _{JB})	Still Air (0 LFM)	250 LFM	500 LFM	750 LFM	Units
FG(G)1156 ⁽¹⁾	XC3S4000	1.9	-	14.7	11.4	10.1	9.0	°C/Watt
FG(G)1150(9)	XC3S5000	1.9	8.9	14.5	11.3	10.0	8.9	°C/Watt

Notes:

1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

VQ100: 100-lead Very-Thin Quad Flat Package

The XC3S50 and the XC3S200 devices are available in the 100-lead very-thin quad flat package, VQ100. Both devices share a common footprint for this package as shown in Table 87 and Figure 44.

All the package pins appear in Table 87 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_sheets/s3_pin.zip.

Pinout Table

Table 87: VQ100 Package Pinout

Bank	XC3S50 XC3S200 Pin Name	VQ100 Pin Number	Туре
0	IO_L01N_0/VRP_0	P97	DCI
0	IO_L01P_0/VRN_0	P96	DCI
0	IO_L31N_0	P92	I/O
0	IO_L31P_0/VREF_0	P91	VREF
0	IO_L32N_0/GCLK7	P90	GCLK
0	IO_L32P_0/GCLK6	P89	GCLK
0	VCCO_0	P94	VCCO
1	10	P81	I/O
1	IO_L01N_1/VRP_1	P80	DCI
1	IO_L01P_1/VRN_1	P79	DCI
1	IO_L31N_1/VREF_1	P86	VREF
1	IO_L31P_1	P85	I/O
1	IO_L32N_1/GCLK5	P88	GCLK
1	IO_L32P_1/GCLK4	P87	GCLK
1	VCCO_1	P83	VCCO
2	IO_L01N_2/VRP_2	P75	DCI
2	IO_L01P_2/VRN_2	P74	DCI
2	IO_L21N_2	P72	I/O
2	IO_L21P_2	P71	I/O
2	IO_L24N_2	P68	I/O
2	IO_L24P_2	P67	I/O

www.xilinx.com

TQ144: 144-lead Thin Quad Flat Package

The XC3S50, the XC3S200, and the XC3S400 are available in the 144-lead thin quad flat package, TQ144. All devices share a common footprint for this package as shown in Table 91 and Figure 46.

The TQ144 package only has four separate VCCO inputs, unlike the BGA packages, which have eight separate VCCO inputs. The TQ144 package has a separate VCCO input for the top, bottom, left, and right. However, there are still eight separate I/O banks, as shown in Table 91 and Figure 46. Banks 0 and 1 share the VCCO_TOP input, Banks 2 and 3 share the VCCO_RIGHT input, Banks 4 and 5 share the VCCO_BOTTOM input, and Banks 6 and 7 share the VCCO_LEFT input.

All the package pins appear in Table 91 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_sheets/s3_pin.zip.

Pinout Table

Bank	XC3S50, XC3S200, XC3S400 Pin Name	TQ144 Pin Number	Туре
0	IO_L01N_0/VRP_0	P141	DCI
0	IO_L01P_0/VRN_0	P140	DCI
0	IO_L27N_0	P137	I/O
0	IO_L27P_0	P135	I/O
0	IO_L30N_0	P132	I/O
0	IO_L30P_0	P131	I/O
0	IO_L31N_0	P130	I/O
0	IO_L31P_0/VREF_0	P129	VREF
0	IO_L32N_0/GCLK7	P128	GCLK
0	IO_L32P_0/GCLK6	P127	GCLK
1	Ю	P116	I/O
1	IO_L01N_1/VRP_1	P113	DCI
1	IO_L01P_1/VRN_1	P112	DCI
1	IO_L28N_1	P119	I/O
1	IO_L28P_1	P118	I/O
1	IO_L31N_1/VREF_1	P123	VREF
1	IO_L31P_1	P122	I/O
1	IO_L32N_1/GCLK5	P125	GCLK
1	IO_L32P_1/GCLK4	P124	GCLK
2	IO_L01N_2/VRP_2	P108	DCI
2	IO_L01P_2/VRN_2	P107	DCI
2	IO_L20N_2	P105	I/O
2	IO_L20P_2	P104	I/O
2	IO_L21N_2	P103	I/O
2	IO_L21P_2	P102	I/O
2	IO_L22N_2	P100	I/O
2	IO_L22P_2	P99	I/O

Table 91: TQ144 Package Pinout

www.xilinx.com

Table 103: FG676 Package Pinout (Cont'd)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
1	N.C. (�)	IO_L18P_1	IO_L18P_1	IO_L18P_1	IO ⁽³⁾	C18	I/O
1	IO_L19N_1	IO_L19N_1	IO_L19N_1	IO_L19N_1	IO_L19N_1	F17	I/O
1	IO_L19P_1	IO_L19P_1	IO_L19P_1	IO_L19P_1	IO_L19P_1	G17	I/O
1	IO_L22N_1	IO_L22N_1	IO_L22N_1	IO_L22N_1	IO_L22N_1	D17	I/O
1	IO_L22P_1	IO_L22P_1	IO_L22P_1	IO_L22P_1	IO_L22P_1	E17	I/O
1	N.C. (�)	IO_L23N_1	IO_L23N_1	IO_L23N_1	IO_L23N_1	A17	I/O
1	N.C. (�)	IO_L23P_1	IO_L23P_1	IO_L23P_1	IO_L23P_1	B17	I/O
1	IO_L24N_1	IO_L24N_1	IO_L24N_1	IO_L24N_1	IO_L24N_1	G16	I/O
1	IO_L24P_1	IO_L24P_1	IO_L24P_1	IO_L24P_1	IO_L24P_1	H16	I/O
1	IO_L25N_1	IO_L25N_1	IO_L25N_1	IO_L25N_1	IO_L25N_1	E16	I/O
1	IO_L25P_1	IO_L25P_1	IO_L25P_1	IO_L25P_1	IO_L25P_1	F16	I/O
1	N.C. (�)	IO_L26N_1	IO_L26N_1	IO_L26N_1	IO_L26N_1	A16	I/O
1	N.C. (�)	IO_L26P_1	IO_L26P_1	IO_L26P_1	IO_L26P_1	B16	I/O
1	IO_L27N_1	IO_L27N_1	IO_L27N_1	IO_L27N_1	IO_L27N_1	G15	I/O
1	IO_L27P_1	IO_L27P_1	IO_L27P_1	IO_L27P_1	IO_L27P_1	H15	I/O
1	IO_L28N_1	IO_L28N_1	IO_L28N_1	IO_L28N_1	IO_L28N_1	E15	I/O
1	IO_L28P_1	IO_L28P_1	IO_L28P_1	IO_L28P_1	IO_L28P_1	F15	I/O
1	IO_L29N_1	IO_L29N_1	IO_L29N_1	IO_L29N_1	IO_L29N_1	A15	I/O
1	IO_L29P_1	IO_L29P_1	IO_L29P_1	IO_L29P_1	IO_L29P_1	B15	I/O
1	IO_L30N_1	IO_L30N_1	IO_L30N_1	IO_L30N_1	IO_L30N_1	G14	I/O
1	IO_L30P_1	IO_L30P_1	IO_L30P_1	IO_L30P_1	IO_L30P_1	H14	I/O
1	IO_L31N_1/VREF_1	IO_L31N_1/VREF_1	IO_L31N_1/VREF_1	IO_L31N_1/VREF_1	IO_L31N_1/VREF_1	D14	VREF
1	IO_L31P_1	IO_L31P_1	IO_L31P_1	IO_L31P_1	IO_L31P_1	E14	I/O
1	IO_L32N_1/GCLK5	IO_L32N_1/GCLK5	IO_L32N_1/GCLK5	IO_L32N_1/GCLK5	IO_L32N_1/GCLK5	B14	GCLK
1	IO_L32P_1/GCLK4	IO_L32P_1/GCLK4	IO_L32P_1/GCLK4	IO_L32P_1/GCLK4	IO_L32P_1/GCLK4	C14	GCLK
1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	C16	VCCO
1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	C20	VCCO
1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	H17	VCCO
1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	H18	VCCO
1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	J14	VCCO
1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	J15	VCCO
1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	J16	VCCO
1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCO_1	K14	VCCO
2	N.C. (�)	N.C. (■)	Ю	Ю	IO	F22	I/O
2	IO_L01N_2/VRP_2	IO_L01N_2/VRP_2	IO_L01N_2/VRP_2	IO_L01N_2/VRP_2	IO_L01N_2/VRP_2	C25	DCI
2	IO_L01P_2/VRN_2	IO_L01P_2/VRN_2	IO_L01P_2/VRN_2	IO_L01P_2/VRN_2	IO_L01P_2/VRN_2	C26	DCI
2	IO_L02N_2	IO_L02N_2	IO_L02N_2	IO_L02N_2	IO_L02N_2	E23	I/O
2	IO_L02P_2	IO_L02P_2	IO_L02P_2	IO_L02P_2	IO_L02P_2	E24	I/O
2	IO_L03N_2/VREF_2	IO_L03N_2/VREF_2 ⁽¹⁾	IO_L03N_2/VREF_2	IO_L03N_2/VREF_2	IO_L03N_2/VREF_2	D25	VREF ⁽¹⁾
2	IO_L03P_2	IO_L03P_2	IO_L03P_2	IO_L03P_2	IO_L03P_2	D26	I/O
2	N.C. (�)	IO_L05N_2	IO_L05N_2	IO_L05N_2	IO_L05N_2	E25	I/O
2	N.C. (�)	IO_L05P_2	IO_L05P_2	IO_L05P_2	IO_L05P_2	E26	I/O

Table 103: FG676 Package Pinout (Cont'd)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
3	IO_L19N_3	IO_L19N_3	IO_L19N_3	IO_L19N_3	IO_L19N_3	W26	I/O
3	IO_L19P_3	IO_L19P_3	IO_L19P_3	IO_L19P_3	IO_L19P_3	W25	I/O
3	IO_L20N_3	IO_L20N_3	IO_L20N_3	IO_L20N_3	IO_L20N_3	U20	I/O
3	IO_L20P_3	IO_L20P_3	IO_L20P_3	IO_L20P_3	IO_L20P_3	V20	I/O
3	IO_L21N_3	IO_L21N_3	IO_L21N_3	IO_L21N_3	IO_L21N_3	V23	I/O
3	IO_L21P_3	IO_L21P_3	IO_L21P_3	IO_L21P_3	IO_L21P_3	V22	I/O
3	IO_L22N_3	IO_L22N_3	IO_L22N_3	IO_L22N_3	IO_L22N_3	V25	I/O
3	IO_L22P_3	IO_L22P_3	IO_L22P_3	IO_L22P_3	IO_L22P_3	V24	I/O
3	IO_L23N_3	IO_L23N_3	IO_L23N_3	IO_L23N_3	IO_L23N_3	U22	I/O
3	IO_L23P_3/VREF_3	IO_L23P_3/VREF_3	IO_L23P_3/VREF_3	IO_L23P_3/VREF_3	IO_L23P_3/VREF_3	U21	VREF
3	IO_L24N_3	IO_L24N_3	IO_L24N_3	IO_L24N_3	IO_L24N_3	U24	I/O
3	IO_L24P_3	IO_L24P_3	IO_L24P_3	IO_L24P_3	IO_L24P_3	U23	I/O
3	IO_L26N_3	IO_L26N_3	IO_L26N_3	IO_L26N_3	IO_L26N_3	U26	I/O
3	IO_L26P_3	IO_L26P_3	IO_L26P_3	IO_L26P_3	IO_L26P_3	U25	I/O
3	IO_L27N_3	IO_L27N_3	IO_L27N_3	IO_L27N_3	IO_L27N_3	T20	I/O
3	IO_L27P_3	IO_L27P_3	IO_L27P_3	IO_L27P_3	IO_L27P_3	T19	I/O
3	IO_L28N_3	IO_L28N_3	IO_L28N_3	IO_L28N_3	IO_L28N_3	T22	I/O
3	IO_L28P_3	IO_L28P_3	IO_L28P_3	IO_L28P_3	IO_L28P_3	T21	I/O
3	IO_L29N_3	IO_L29N_3	IO_L29N_3	IO_L29N_3	IO_L29N_3	T26	I/O
3	IO_L29P_3	IO_L29P_3	IO_L29P_3	IO_L29P_3	IO_L29P_3	T25	I/O
3	IO_L31N_3	IO_L31N_3	IO_L31N_3	IO_L31N_3	IO_L31N_3	R20	I/O
3	IO_L31P_3	IO_L31P_3	IO_L31P_3	IO_L31P_3	IO_L31P_3	R19	I/O
3	IO_L32N_3	IO_L32N_3	IO_L32N_3	IO_L32N_3	IO_L32N_3	R22	I/O
3	IO_L32P_3	IO_L32P_3	IO_L32P_3	IO_L32P_3	IO_L32P_3	R21	I/O
3	IO_L33N_3	IO_L33N_3	IO_L33N_3	IO_L33N_3	IO_L33N_3	R24	I/O
3	IO_L33P_3	IO_L33P_3	IO_L33P_3	IO_L33P_3	IO_L33P_3	T23	I/O
3	IO_L34N_3	IO_L34N_3	IO_L34N_3	IO_L34N_3	IO_L34N_3	R26	I/O
3	IO_L34P_3/VREF_3	IO_L34P_3/VREF_3	IO_L34P_3/VREF_3	IO_L34P_3/VREF_3	IO_L34P_3/VREF_3	R25	VREF
3	IO_L35N_3	IO_L35N_3	IO_L35N_3	IO_L35N_3	IO_L35N_3	P20	I/O
3	IO_L35P_3	IO_L35P_3	IO_L35P_3	IO_L35P_3	IO_L35P_3	P19	I/O
3	IO_L38N_3	IO_L38N_3	IO_L38N_3	IO_L38N_3	IO_L38N_3	P22	I/O
3	IO_L38P_3	IO_L38P_3	IO_L38P_3	IO_L38P_3	IO_L38P_3	P21	I/O
3	IO_L39N_3	IO_L39N_3	IO_L39N_3	IO_L39N_3	IO_L39N_3	P24	I/O
3	IO_L39P_3	IO_L39P_3	IO_L39P_3	IO_L39P_3	IO_L39P_3	P23	I/O
3	IO_L40N_3/VREF_3	IO_L40N_3/VREF_3	IO_L40N_3/VREF_3	IO_L40N_3/VREF_3	IO_L40N_3/VREF_3	P26	VREF
3	IO_L40P_3	IO_L40P_3	IO_L40P_3	IO_L40P_3	IO_L40P_3	P25	I/O
3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	P17	VCCO
3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	P18	VCCO
3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	R18	VCCO
3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	T18	VCCO
3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	T24	VCCO
3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	U19	VCCO
3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	V19	VCCO

www.xilinx.com

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
2	VCCO_2	VCCO_2	J28	VCCO
2	VCCO_2	VCCO_2	N28	VCCO
3	IO	Ю	AB25	I/O
3	IO_L01N_3/VRP_3	IO_L01N_3/VRP_3	AH30	DCI
3	IO_L01P_3/VRN_3	IO_L01P_3/VRN_3	AH29	DCI
3	IO_L02N_3/VREF_3	IO_L02N_3/VREF_3	AG28	VREF
3	IO_L02P_3	IO_L02P_3	AG27	I/O
3	IO_L03N_3	IO_L03N_3	AG30	I/O
3	IO_L03P_3	IO_L03P_3	AG29	I/O
3	IO_L04N_3	IO_L04N_3	AF30	I/O
3	IO_L04P_3	IO_L04P_3	AF29	I/O
3	IO_L05N_3	IO_L05N_3	AE26	I/O
3	IO_L05P_3	IO_L05P_3	AF27	I/O
3	IO_L06N_3	IO_L06N_3	AE29	I/O
3	IO_L06P_3	IO_L06P_3	AE28	I/O
3	IO_L07N_3	IO_L07N_3	AD28	I/O
3	IO_L07P_3	IO_L07P_3	AD27	I/O
3	IO_L08N_3	IO_L08N_3	AD30	I/O
3	IO_L08P_3	IO_L08P_3	AD29	I/O
3	IO_L09N_3	IO_L09N_3	AC24	I/O
3	IO_L09P_3/VREF_3	IO_L09P_3/VREF_3	AD25	VREF
3	IO_L10N_3	IO_L10N_3	AC26	I/O
3	IO_L10P_3	IO_L10P_3	AC25	I/O
3	IO_L11N_3	IO_L11N_3	AC28	I/O
3	IO_L11P_3	IO_L11P_3	AC27	I/O
3	IO_L13N_3/VREF_3	IO_L13N_3/VREF_3	AC30	VREF
3	IO_L13P_3	IO_L13P_3	AC29	I/O
3	IO_L14N_3	IO_L14N_3	AB27	I/O
3	IO_L14P_3	IO_L14P_3	AB26	I/O
3	IO_L15N_3	IO_L15N_3	AB30	I/O
3	IO_L15P_3	IO_L15P_3	AB29	I/O
3	IO_L16N_3	IO_L16N_3	AA22	I/O
3	IO_L16P_3	IO_L16P_3	AB23	I/O
3	IO_L17N_3	IO_L17N_3	AA25	I/O
3	IO_L17P_3/VREF_3	IO_L17P_3/VREF_3	AA24	VREF
3	IO_L19N_3	IO_L19N_3	AA29	I/O
3	IO_L19P_3	IO_L19P_3	AA28	I/O
3	IO_L20N_3	IO_L20N_3	Y21	I/O
3	IO_L20P_3	IO_L20P_3	AA21	I/O
3	IO_L21N_3	IO_L21N_3	Y24	I/O

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
7	IO_L01N_7/VRP_7	IO_L01N_7/VRP_7	C1	DCI
7	IO_L01P_7/VRN_7	IO_L01P_7/VRN_7	C2	DCI
7	IO_L02N_7	IO_L02N_7	D3	I/O
7	IO_L02P_7	IO_L02P_7	D4	I/O
7	IO_L03N_7/VREF_7	IO_L03N_7/VREF_7	D1	VREF
7	IO_L03P_7	IO_L03P_7	D2	I/O
7	IO_L04N_7	IO_L04N_7	E1	I/O
7	IO_L04P_7	IO_L04P_7	E2	I/O
7	IO_L05N_7	IO_L05N_7	F5	I/O
7	IO_L05P_7	IO_L05P_7	E4	I/O
7	IO_L06N_7	IO_L06N_7	F2	I/O
7	IO_L06P_7	IO_L06P_7	F3	I/O
7	IO_L07N_7	IO_L07N_7	G3	I/O
7	IO_L07P_7	IO_L07P_7	G4	I/O
7	IO_L08N_7	IO_L08N_7	G1	I/O
7	IO_L08P_7	IO_L08P_7	G2	I/O
7	IO_L09N_7	IO_L09N_7	H7	I/O
7	IO_L09P_7	IO_L09P_7	G6	I/O
7	IO_L10N_7	IO_L10N_7	H5	I/O
7	IO_L10P_7/VREF_7	IO_L10P_7/VREF_7	H6	VREF
7	IO_L11N_7	IO_L11N_7	H3	I/O
7	IO_L11P_7	IO_L11P_7	H4	I/O
7	IO_L13N_7	IO_L13N_7	H1	I/O
7	IO_L13P_7	IO_L13P_7	H2	I/O
7	IO_L14N_7	IO_L14N_7	J4	I/O
7	IO_L14P_7	IO_L14P_7	J5	I/O
7	IO_L15N_7	IO_L15N_7	J1	I/O
7	IO_L15P_7	IO_L15P_7	J2	I/O
7	IO_L16N_7	IO_L16N_7	K9	I/O
7	IO_L16P_7/VREF_7	IO_L16P_7/VREF_7	J8	VREF
7	IO_L17N_7	IO_L17N_7	K6	I/O
7	IO_L17P_7	IO_L17P_7	K7	I/O
7	IO_L19N_7/VREF_7	IO_L19N_7/VREF_7	K2	VREF
7	IO_L19P_7	IO_L19P_7	K3	I/O
7	IO_L20N_7	IO_L20N_7	L10	I/O
7	IO_L20P_7	IO_L20P_7	K10	I/O
7	IO_L21N_7	IO_L21N_7	L7	I/O
7	IO_L21P_7	IO_L21P_7	L8	I/O
7	IO_L22N_7	IO_L22N_7	L5	I/O
7	IO_L22P_7	IO_L22P_7	L6	I/O

FG1156: 1156-lead Fine-pitch Ball Grid Array

Note: The FG(G)1156 package is discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

The 1,156-lead fine-pitch ball grid array package, FG1156, supports two different Spartan-3 devices, namely the XC3S4000 and the XC3S5000. The XC3S4000, however, has fewer I/O pins, which consequently results in 73 unconnected pins on the FG1156 package, labeled as "N.C." In Table 110 and Figure 53, these unconnected pins are indicated with a black diamond symbol (\blacklozenge).

The XC3S5000 has a single unconnected package pin, ball AK31, which is also unconnected for the XC3S4000.

All the package pins appear in Table 110 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

On ball L29 in I/O Bank 2, the unconnected pin on the XC3S4000 maps to a VREF-type pin on the XC3S5000. If the other VREF_2 pins all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S4000 to the same VREF_2 voltage.

Pinout Table

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
0	IO	IO	B9	I/O
0	IO	IO	E17	I/O
0	IO	IO	F6	I/O
0	IO	IO	F8	I/O
0	IO	IO	G12	I/O
0	IO	IO	H8	I/O
0	IO	IO	H9	I/O
0	IO	IO	J11	I/O
0	N.C. (�)	IO	J9	I/O
0	N.C. (�)	IO	K11	I/O
0	IO	IO	K13	I/O
0	IO	IO	K16	I/O
0	IO	IO	K17	I/O
0	IO	IO	L13	I/O
0	IO	IO	L16	I/O
0	IO	IO	L17	I/O
0	IO/VREF_0	IO/VREF_0	D5	VREF
0	IO/VREF_0	IO/VREF_0	E10	VREF
0	IO/VREF_0	IO/VREF_0	J14	VREF
0	IO/VREF_0	IO/VREF_0	L15	VREF
0	IO_L01N_0/VRP_0	IO_L01N_0/VRP_0	B3	DCI
0	IO_L01P_0/VRN_0	IO_L01P_0/VRN_0	A3	DCI
0	IO_L02N_0	IO_L02N_0	B4	I/O
0	IO_L02P_0	IO_L02P_0	A4	I/O
0	IO_L03N_0	IO_L03N_0	C5	I/O

Table 110: FG1156 Package Pinout

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
4	IO_L01N_4/VRP_4	IO_L01N_4/VRP_4	AN32	DCI
4	IO_L01P_4/VRN_4	IO_L01P_4/VRN_4	AP32	DCI
4	IO_L02N_4	IO_L02N_4	AN31	I/O
4	IO_L02P_4	IO_L02P_4	AP31	I/O
4	IO_L03N_4	IO_L03N_4	AM30	I/O
4	IO_L03P_4	IO_L03P_4	AN30	I/O
4	IO_L04N_4	IO_L04N_4	AN27	I/O
4	IO_L04P_4	IO_L04P_4	AP27	I/O
4	IO_L05N_4	IO_L05N_4	AH26	I/O
4	IO_L05P_4	IO_L05P_4	AJ26	I/O
4	IO_L06N_4/VREF_4	IO_L06N_4/VREF_4	AL26	VREF
4	IO_L06P_4	IO_L06P_4	AM26	I/O
4	IO_L07N_4	IO_L07N_4	AF25	I/O
4	IO_L07P_4	IO_L07P_4	AG25	I/O
4	IO_L08N_4	IO_L08N_4	AH25	I/O
4	IO_L08P_4	IO_L08P_4	AJ25	I/O
4	IO_L09N_4	IO_L09N_4	AL25	I/O
4	IO_L09P_4	IO_L09P_4	AM25	I/O
4	IO_L10N_4	IO_L10N_4	AN25	I/O
4	IO_L10P_4	IO_L10P_4	AP25	I/O
4	IO_L11N_4	IO_L11N_4	AD23	I/O
4	IO_L11P_4	IO_L11P_4	AE23	I/O
4	IO_L12N_4	IO_L12N_4	AF23	I/O
4	IO_L12P_4	IO_L12P_4	AG23	I/O
4	IO_L13N_4	IO_L13N_4	AJ23	I/O
4	IO_L13P_4	IO_L13P_4	AK23	I/O
4	IO_L14N_4	IO_L14N_4	AL23	I/O
4	IO_L14P_4	IO_L14P_4	AM23	I/O
4	IO_L15N_4	IO_L15N_4	AN23	I/O
4	IO_L15P_4	IO_L15P_4	AP23	I/O
4	IO_L16N_4	IO_L16N_4	AG22	I/O
4	IO_L16P_4	IO_L16P_4	AH22	I/O
4	IO_L17N_4	IO_L17N_4	AL22	I/O
4	IO_L17P_4	IO_L17P_4	AM22	I/O
4	IO_L18N_4	IO_L18N_4	AD21	I/O
4	IO_L18P_4	IO_L18P_4	AE21	I/O
4	IO_L19N_4	IO_L19N_4	AG21	I/O
4	IO_L19P_4	IO_L19P_4	AH21	I/O
4	IO_L20N_4	IO_L20N_4	AJ21	I/O
4	IO_L20P_4	IO_L20P_4	AK21	I/O