AMD Xilinx - XC3S1000-5FT256C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	1920
Number of Logic Elements/Cells	17280
Total RAM Bits	442368
Number of I/O	173
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1000-5ft256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.

	Available User I/Os and Differential (Diff) I/O Pairs by Package Type																			
Package	VQ1 VQG		CP13 CPG		TQ1 TQG		PQ2 PQG		FT2 FTG		FG3 FGG		FG4 FGG		FG6 FGG		FG9 FGG			156 <mark>(1)</mark> 1156
Footprint (mm)	16 x	16	8 x	8	22 x	22	30.6 x	30.6	17 x	17	19 x	19	23 x	23	27 x	27	31 x	31	35 3	x 35
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XC3S50	63	29	89 <mark>(1)</mark>	44 <mark>(1)</mark>	97	46	124	56	-	-	-	-	-	-	-	-	-	-	-	-
XC3S200	63	29	-	-	97	46	141	62	173	76	-	_	-	_	-	-	-	I	-	-
XC3S400	-	_	-	-	97	46	141	62	173	76	221	100	264	116	-	-	-	-	-	-
XC3S1000	-	-	-	-	-	-	-	-	173	76	221	100	333	149	391	175	-	1	Ι	-
XC3S1500	-	-	-	-	-	-	-	-	-	-	221	100	333	149	487	221	-	-	-	-
XC3S2000	-	-	-	-	-	-	-	-	-	-	-	-	333	149	489	221	565	270	-	-
XC3S4000	-	-	1	-	-	-	-	-	-	-	-	-	-	-	489	221	633	300	712 <mark>(1)</mark>	312 <mark>(1)</mark>
XC3S5000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	489	221	633	300	784 ⁽¹⁾	344 ⁽¹⁾

Table 3: Spartan-3 Device I/O Chart

Notes:

1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

2. All device options listed in a given package column are pin-compatible.

3. User = Single-ended user I/O pins. Diff = Differential I/O pairs.

Package Marking

Figure 2 shows the top marking for Spartan-3 FPGAs in the quad-flat packages. Figure 3 shows the top marking for Spartan-3 FPGAs in BGA packages except the 132-ball chip-scale package (CP132 and CPG132). The markings for the BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Figure 4 shows the top marking for Spartan-3 FPGAs in the CP132 and CPG132 packages.

The "5c" and "41" part combinations may be dual marked as "5c/41". Devices with the dual mark can be used as either -5C or -4I devices. Devices with a single mark are only guaranteed for the marked speed grade and temperature range. Some specifications vary according to mask revision. Mask revision E devices are errata-free. All shipments since 2006 have been mask revision E.

Figure 2: Spartan-3 FPGA QFP Package Marking Example for Part Number XC3S400-4PQ208C

In contrast, the 144-pin Thin Quad Flat Pack (TQ144) package and the 132-pin Chip-Scale Package (CP132) tie V_{CCO} together internally for the pair of banks on each side of the device. For example, the V_{CCO} Bank 0 and the V_{CCO} Bank 1 lines are tied together. The interconnected bank-pairs are 0/1, 2/3, 4/5, and 6/7. As a result, Spartan-3 devices in the CP132 and TQ144 packages support four independent V_{CCO} supplies.

Note: The CP132 package is discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

Spartan-3 FPGA Compatibility

Within the Spartan-3 family, all devices are pin-compatible by package. When the need for future logic resources outgrows the capacity of the Spartan-3 device in current use, a larger device in the same package can serve as a direct replacement. Larger devices may add extra V_{REF} and V_{CCO} lines to support a greater number of I/Os. In the larger device, more pins can convert from user I/Os to V_{REF} lines. Also, additional V_{CCO} lines are bonded out to pins that were "not connected" in the smaller device. Thus, it is important to plan for future upgrades at the time of the board's initial design by laying out connections to the extra pins.

The Spartan-3 family is not pin-compatible with any previous Xilinx FPGA family or with other platforms among the Spartan-3 Generation FPGAs.

Rules Concerning Banks

When assigning I/Os to banks, it is important to follow the following V_{CCO} rules:

- Leave no V_{CCO} pins unconnected on the FPGA.
- Set all V_{CCO} lines associated with the (interconnected) bank to the same voltage level.
- The V_{CCO} levels used by all standards assigned to the I/Os of the (interconnected) bank(s) must agree. The Xilinx development software checks for this. Tables 8, 9, and 10 describe how different standards use the V_{CCO} supply.
- Only one of the following standards is allowed on outputs per bank: LVDS, LDT, LVDS_EXT, or RSDS. This restriction is
 for the eight banks in each device, even if the V_{CCO} levels are shared across banks, as in the CP132 and TQ144
 packages.
- If none of the standards assigned to the I/Os of the (interconnected) bank(s) uses V_{CCO}, tie all associated V_{CCO} lines to 2.5V.
- In general, apply 2.5V to V_{CCO} Bank 4 from power-on to the end of configuration. Apply the same voltage to V_{CCO} Bank 5 during parallel configuration or a Readback operation. For information on how to program the FPGA using 3.3V signals and power, see the 3.3V-Tolerant Configuration Interface section.

If any of the standards assigned to the Inputs of the bank use V_{REF} then observe the following additional rules:

- Connect all V_{REF} pins within the bank to the same voltage level.
- The V_{REF} levels used by all standards assigned to the Inputs of the bank must agree. The Xilinx development software checks for this. Tables 8 and 10 describe how different standards use the V_{REF} supply.

If none of the standards assigned to the Inputs of a bank use V_{REF} for biasing input switching thresholds, all associated V_{REF} pins function as User I/Os.

Exceptions to Banks Supporting I/O Standards

Bank 5 of any Spartan-3 device in a VQ100, CP132, or TQ144 package does not support DCI signal standards. In this case, bank 5 has neither VRN nor VRP pins.

Furthermore, banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using V_{REF} (see Table 8). In this case, the two banks do not have any V_{REF} pins.

DFS Clock Output Connections

There are two basic cases that determine how to connect the DFS clock outputs: on-chip and off-chip, which are illustrated in sections [a] and [c], respectively, of Figure 21. This is similar to what has already been described for the DLL component. See DLL Clock Output and Feedback Connections, page 34.

In the on-chip case, it is possible to connect either of the DFS's two output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. The optional feedback loop is formed in this way, routing CLK0 to a global clock net, which in turn drives the CLKFB input.

In the off-chip case, the DFS's two output clock signals, plus CLK0 for an optional feedback loop, can exit the FPGA using output buffers (OBUF) to drive a clock network plus registers on the board. The feedback loop is formed by feeding the CLK0 signal back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global clock net is connected directly to the CLKFB input.

Phase Shifter (PS)

The DCM provides two approaches to controlling the phase of a DCM clock output signal relative to the CLKIN signal: First, there are nine clock outputs that employ the DLL to achieve a desired phase relationship: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV CLKFX, and CLKFX180. These outputs afford "coarse" phase control.

The second approach uses the PS component described in this section to provide a still finer degree of control. The PS component is only available when the DLL is operating in its low-frequency mode. The PS component phase shifts the DCM output clocks by introducing a "fine phase shift" (T_{PS}) between the CLKFB and CLKIN signals inside the DLL component. The user can control this fine phase shift down to a resolution of 1/256 of a CLKIN cycle or one tap delay (DCM_TAP), whichever is greater. When in use, the PS component shifts the phase of all nine DCM clock output signals together. If the PS component is used together with a DCM clock output such as the CLK90, CLK180, CLK270, CLK2X180 and CLKFX180, then the fine phase shift of the former gets added to the coarse phase shift of the latter.

PS Component Enabling and Mode Selection

The CLKOUT_PHASE_SHIFT attribute enables the PS component for use in addition to selecting between two operating modes. As described in Table 20, this attribute has three possible values: NONE, FIXED and VARIABLE. When CLKOUT_PHASE_SHIFT is set to NONE, the PS component is disabled and its inputs, PSEN, PSCLK, and PSINCDEC, must be tied to GND. The set of waveforms in section [a] of Figure 22 shows the disabled case, where the DLL maintains a zero-phase alignment of signals CLKFB and CLKIN upon which the PS component has no effect. The PS component is enabled by setting the attribute to either the FIXED or VARIABLE values, which select the Fixed Phase mode and the Variable Phase mode, respectively. These two modes are described in the sections that follow

Determining the Fine Phase Shift

The user controls the phase shift of CLKFB relative to CLKIN by setting and/or adjusting the value of the PHASE_SHIFT attribute. This value must be an integer ranging from –255 to +255. The PS component uses this value to calculate the desired fine phase shift (T_{PS}) as a fraction of the CLKIN period (T_{CLKIN}). Given values for PHASE-SHIFT and T_{CLKIN} , it is possible to calculate T_{PS} as follows:

$$T_{PS} = T_{CLKIN}(PHASE_SHIFT/256)$$
 Equation 4

Both the Fixed Phase and Variable Phase operating modes employ this calculation. If the PHASE_SHIFT value is zero, then CLKFB and CLKIN will be in phase, the same as when the PS component is disabled. When the PHASE_SHIFT value is positive, the CLKFB signal will be shifted later in time with respect to CLKIN. If the attribute value is negative, the CLKFB signal will be shifted earlier in time with respect to CLKIN.

The Fixed Phase Mode

This mode fixes the desired fine phase shift to a fraction of the T_{CLKIN} , as determined by Equation 4 and its user-selected PHASE_SHIFT value P. The set of waveforms insection [b] of Figure 22 illustrates the relationship between CLKFB and CLKIN in the Fixed Phase mode. In the Fixed Phase mode, the PSEN, PSCLK and PSINCDEC inputs are not used and must be tied to GND. Fixed phase shift requires ISE software version 10.1.03 or later.

Symbol	Description	Test Cond	litions	Min	Тур	Max	Units
I _L (2)(4)	Leakage current at User I/O,	Driver is Hi-Z, V _{IN} =	$V_{CCO} \ge 3.0V$	—	-	±25	μA
	Dual-Purpose, and Dedicated pins	0V or V _{CCO} max, sample-tested	V _{CCO} < 3.0V	-	-	±10	μA
I _{RPU} ⁽³⁾	Current through pull-up resistor at User I/O,	V _{IN} = 0V, V _{CC}	_{CO} = 3.3V	-0.84	-	-2.35	mA
	Dual-Purpose, and Dedicated pins	V _{IN} = 0V, V _{CC}	_{CO} = 3.0V	-0.69	-	-1.99	mA
		$V_{IN} = 0V, V_{CC}$	_{CO} = 2.5V	-0.47	-	-1.41	mA
		$V_{IN} = 0V, V_{CC}$	_{CO} = 1.8V	-0.21	-	-0.69	mA
		$V_{IN} = 0V, V_{CC}$	_{CO} = 1.5V	-0.13	-	-0.43	mA
		V _{IN} = 0V, V _{CC}	_{:O} = 1.2V	-0.06	-	-0.22	mA
R _{PU} ⁽³⁾	Equivalent resistance of pull-up resistor at	$V_{CCO} = 3.0V$	to 3.465V	1.27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.11	kΩ
	User I/O, Dual-Purpose, and Dedicated pins, derived from I _{BPU}	V _{CCO} = 2.3V	' to 2.7V	1.15		3.25	kΩ
		V _{CCO} = 1.7V	′ to 1.9V	2.45 -	9.10	kΩ	
		V _{CCO} = 1.4V	_O = 1.4V to 1.6V		-	12.10	kΩ
		V _{CCO} = 1.14	to 1.26V	5.15	-	21.00	kΩ
I _{RPD} ⁽³⁾	Current through pull-down resistor at User I/O, Dual-Purpose, and Dedicated pins	$V_{IN} = V_0$	000	0.37	-	1.67	mA
R _{PD} ⁽³⁾	Equivalent resistance of pull-down resistor	$V_{IN} = V_{CCO} = 3.0$	V to 3.465V	1.75	-	9.35	kΩ
	at User I/O, Dual-Purpose, and Dedicated pins, driven from I _{BPD}	$V_{IN} = V_{CCO} = 2$.3V to 2.7V	1.35	-	7.30	kΩ
		$V_{IN} = V_{CCO} = 1$.7V to 1.9V	1.00	-	5.15	kΩ
		$V_{IN} = V_{CCO} = 1$.4V to 1.6V	0.85	-	4.35	kΩ
		$V_{IN} = V_{CCO} = 1.$	14 to 1.26V	0.68	-	3.465	kΩ
R _{DCI}	Value of external reference resistor to supp	ort DCI I/O standards		20	-	100	Ω
I _{REF}	V _{REF} current per pin	$V_{CCO} \ge 3$	3.0V	—	-	±25	μA
		V _{CCO} < 3	3.0V	—	-	±10	μA
C _{IN}	Input capacitance			3	-	10	pF

Table 33: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

Notes:

1. The numbers in this table are based on the conditions set forth in Table 32.

2. The I_L specification applies to every I/O pin throughout power-on as long as the voltage on that pin stays between the absolute V_{IN} minimum and maximum values (Table 28). For hot-swap applications, at the time of card connection, be sure to keep all I/O voltages within this range before applying V_{CCO} power. Consider applying V_{CCO} power before connecting the signal lines, to avoid turning on the ESD protection diodes, shown in Module 2: Figure 7, page 11. When the FPGA is completely unpowered, the I/O pins are high impedance, but there is a path through the upper and lower ESD protection diodes.

3. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$. Spartan-3 family values for both resistances are stronger than they have been for previous FPGA families.

 For single-ended signals that are placed on a differential-capable I/O, V_{IN} of –0.2V to –0.3V is supported but can cause increased leakage between the two pins. See the *Parasitic Leakage* section in <u>UG331</u>, *Spartan-3 Generation FPGA User Guide*.

I/O Timing

Table 40: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				Speed Grade		
Symbol	Description	Conditions	Device	-5	-4	Units
				Max ⁽²⁾	Max ⁽²⁾	
Clock-to-Outpu	t Times					
T _{ICKOFDCM}	When reading from the Output Flip-Flop (OFF), the time from the active transition on the Global Clock pin	LVCMOS25 ⁽³⁾ , 12 mA	XC3S50	2.04	2.35	ns
		output drive, Fast slew rate, with DCM ⁽⁴⁾	XC3S200	1.45	1.75	ns
	to data appearing at the Output pin. The DCM is in use.		XC3S400	1.45	1.75	ns
			XC3S1000	2.07	2.39	ns
			XC3S1500	2.05	2.36	ns
			XC3S2000	2.03	2.34	ns
			XC3S4000	1.94	2.24	ns
			XC3S5000	2.00	2.30	ns
TICKOF	When reading from OFF, the time from	LVCMOS25 ⁽³⁾ , 12 mA	XC3S50	3.70	4.24	ns
	the active transition on the Global Clock pin to data appearing at the Output pin.	output drive, Fast slew rate, without DCM	XC3S200	3.89	4.46	ns
	The DCM is not in use.		XC3S400	3.91	4.48	ns
			XC3S1000	4.00	4.59	ns
			XC3S1500	4.07	4.66	ns
			XC3S2000	4.19	4.80	ns
			XC3S4000	4.44	5.09	ns
			XC3S5000	4.38	5.02	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in Table 32 and Table 35.

2. For minimums, use the values reported by the Xilinx timing analyzer.

3. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 44. If the latter is true, *add* the appropriate Output adjustment from Table 47.

4. DCM output jitter is included in all measurements.

Table 54: Synchronous 18 x 18 Multiplier Timing

					Units		
Symbol	Description	P Outputs	-5				-4
			Min	Max	Min	Max	
Clock-to-Outpu	ut Times						
T _{MULTCK}	When reading from the	P[0]	-	1.00	-	1.15	ns
	Multiplier, the time from the active transition at the C clock	P[15]	-	1.15	-	1.32	ns
	input to data appearing at the P	P[17]	-	1.30	-	1.50	ns
	outputs	P[19]	-	1.45	-	1.67	ns
		P[23]	-	1.76	-	2.02	ns
		P[31]	-	2.37	-	2.72	ns
		P[35]	-	2.67	-	3.07	ns
Setup Times							
T _{MULIDCK}	Time from the setup of data at the A and B inputs to the active transition at the C input of the Multiplier	-	1.84	-	2.11	-	ns
Hold Times							
T _{MULCKID}	Time from the active transition at the Multiplier's C input to the point where data is last held at the A and B inputs	-	0	-	0	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 32.

Table 55: Asynchronous 18 x 18 Multiplier Timing

			Speed		
Symbol	Description	P Outputs	-5	-4	Units
			Max	Max	
Propagation Tim	es				
	The time it takes for data to travel from the A and B inputs to the P outputs	P[0]	1.55	1.78	ns
		P[15]	3.15	3.62	ns
		P[17]	3.36	3.86	ns
		P[19]	3.49	4.01	ns
		P[23]	3.73	4.29	ns
		P[31]	4.23	4.86	ns
		P[35]	4.47	5.14	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 32.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Mechanical Drawings

Detailed mechanical drawings for each package type are available from the Xilinx website at the specified location in Table 83.

Material Declaration Data Sheets (MDDS) are also available on the Xilinx website for each package.

Table 83: Xilinx Package Mechanical Drawings

Package	Web Link (URL)
VQ100 and VQG100	http://www.xilinx.com/support/documentation/package_specs/vq100.pdf
CP132 and CPG132 ⁽¹⁾	http://www.xilinx.com/support/documentation/package_specs/cp132.pdf
TQ144 and TQG144	http://www.xilinx.com/support/documentation/package_specs/tq144.pdf
PQ208 and PQG208	http://www.xilinx.com/support/documentation/package_specs/pq208.pdf
FT256 and FTG256	http://www.xilinx.com/support/documentation/package_specs/ft256.pdf
FG320 and FGG320	http://www.xilinx.com/support/documentation/package_specs/fg320.pdf
FG456 and FGG456	http://www.xilinx.com/support/documentation/package_specs/fg456.pdf
FG676 and FGG676	http://www.xilinx.com/support/documentation/package_specs/fg676.pdf
FG900 and FGG900	http://www.xilinx.com/support/documentation/package_specs/fg900.pdf
FG1156 and FGG1156 ⁽¹⁾	http://www.xilinx.com/support/documentation/package_specs/fg1156.pdf

Notes:

1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

Power, Ground, and I/O by Package

Each package has three separate voltage supply inputs—VCCINT, VCCAUX, and VCCO—and a common ground return, GND. The numbers of pins dedicated to these functions varies by package, as shown in Table 84.

Package	VCCINT	VCCAUX	VCCO	GND
VQ100	4	4	8	10
CP132 ⁽¹⁾	4	4	12	12
TQ144	4	4	12	16
PQ208	4	8	12	28
FT256	8	8	24	32
FG320	12	8	28	40
FG456	12	8	40	52
FG676	20	16	64	76
FG900	32	24	80	120
FG1156 ⁽¹⁾	40	32	104	184

Notes:

1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

A majority of package pins are user-defined I/O pins. However, the numbers and characteristics of these I/O depends on the device type and the package in which it is available, as shown in Table 85. The table shows the maximum number of single-ended I/O pins available, assuming that all I/O-, DUAL-, DCI-, VREF-, and GCLK-type pins are used as general-purpose I/O. Likewise, the table shows the maximum number of differential pin-pairs available on the package. Finally, the table shows how the total maximum user I/Os are distributed by pin type, including the number of unconnected—i.e., N.C.—pins on the device.

Table 87: VQ100 Package Pinout (Cont'd)

Bank	XC3S50 XC3S200 Pin Name	VQ100 Pin Number	Туре
VCCAUX	TDO	P76	JTAG
VCCAUX	TMS	P78	JTAG

User I/Os by Bank

Table 88 indicates how the available user-I/O pins are distributed between the eight I/O banks on the VQ100 package.

Package Edge	I/O Bank	Maximum I/O	All Possible I/O Pins by Type					
Package Luge		Maximum 1/0	I/O	DUAL	DCI	VREF	GCLK	
Тор	0	6	1	0	2	1	2	
юр	1	7	2	0	L DCI	1	2	
Right	2	8	5	0	2	1	0	
night	3	8	5	0	2	1	0	
Bottom	4	10	0	6	2	0	2	
Bollom	5	8	0	6	0	0	2	
Left	6	8	4	0	2	2	0	
Leit	7	8	5	0	2	1	0	

Table 88: User I/Os Per Bank in VQ100 Package

Table 93: PQ208 Package Pinout (Cont'd)

Bank	XC3S50 Pin Name	XC3S200, XC3S400 Pin Names	PQ208 Pin Number	Туре
1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	P166	VREF
1	IO_L10P_1	IO_L10P_1	P165	I/O
1	IO_L27N_1	IO_L27N_1	P169	I/O
1	IO_L27P_1	IO_L27P_1	P168	I/O
1	IO_L28N_1	IO_L28N_1	P172	I/O
1	IO_L28P_1	IO_L28P_1	P171	I/O
1	IO_L31N_1/VREF_1	IO_L31N_1/VREF_1	P178	VREF
1	IO_L31P_1	IO_L31P_1	P176	I/O
1	IO_L32N_1/GCLK5	IO_L32N_1/GCLK5	P181	GCLK
1	IO_L32P_1/GCLK4	IO_L32P_1/GCLK4	P180	GCLK
1	VCCO_1	VCCO_1	P164	VCCO
1	VCCO_1	VCCO_1	P177	VCCO
2	N.C. (�)	IO/VREF_2	P154	VREF
2	IO_L01N_2/VRP_2	IO_L01N_2/VRP_2	P156	DCI
2	IO_L01P_2/VRN_2	IO_L01P_2/VRN_2	P155	DCI
2	IO_L19N_2	IO_L19N_2	P152	I/O
2	IO_L19P_2	IO_L19P_2	P150	I/O
2	IO_L20N_2	IO_L20N_2	P149	I/O
2	IO_L20P_2	IO_L20P_2	P148	I/O
2	IO_L21N_2	IO_L21N_2	P147	I/O
2	IO_L21P_2	IO_L21P_2	P146	I/O
2	IO_L22N_2	IO_L22N_2	P144	I/O
2	IO_L22P_2	IO_L22P_2	P143	I/O
2	IO_L23N_2/VREF_2	IO_L23N_2/VREF_2	P141	VREF
2	IO_L23P_2	IO_L23P_2	P140	I/O
2	IO_L24N_2	IO_L24N_2	P139	I/O
2	IO_L24P_2	IO_L24P_2	P138	I/O
2	N.C. (�)	IO_L39N_2	P137	I/O
2	N.C. (�)	IO_L39P_2	P135	I/O
2	IO_L40N_2	IO_L40N_2	P133	I/O
2	IO_L40P_2/VREF_2	IO_L40P_2/VREF_2	P132	VREF
2	VCCO_2	VCCO_2	P136	VCCO
2	VCCO_2	VCCO_2	P153	VCCO
3	IO_L01N_3/VRP_3	IO_L01N_3/VRP_3	P107	DCI
3	IO_L01P_3/VRN_3	IO_L01P_3/VRN_3	P106	DCI
3	N.C. (�)	IO_L17N_3	P109	I/O
3	N.C. (�)	IO_L17P_3/VREF_3	P108	VREF
3	IO_L19N_3	IO_L19N_3	P113	I/O
3	IO_L19P_3	IO_L19P_3	P111	I/O
3	IO_L20N_3	IO_L20N_3	P115	I/O

FT256: 256-lead Fine-pitch Thin Ball Grid Array

The 256-lead fine-pitch thin ball grid array package, FT256, supports three different Spartan-3 devices, including the XC3S200, the XC3S400, and the XC3S1000. The footprints for all three devices are identical, as shown in Table 96 and Figure 49.

All the package pins appear in Table 96 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_sheets/s3_pin.zip.

Pinout Table

Table 96: FT256 Package Pinout

Bank	XC3S200, XC3S400, XC3S1000 Pin Name	FT256 Pin Number	Туре
0	ю	A5	I/O
0	IO	A7	I/O
0	IO/VREF_0	A3	VREF
0	IO/VREF_0	D5	VREF
0	IO_L01N_0/VRP_0	B4	DCI
0	IO_L01P_0/VRN_0	A4	DCI
0	IO_L25N_0	C5	I/O
0	IO_L25P_0	B5	I/O
0	IO_L27N_0	E6	I/O
0	IO_L27P_0	D6	I/O
0	IO_L28N_0	C6	I/O
0	IO_L28P_0	B6	I/O
0	IO_L29N_0	E7	I/O
0	IO_L29P_0	D7	I/O
0	IO_L30N_0	C7	I/O
0	IO_L30P_0	B7	I/O
0	IO_L31N_0	D8	I/O
0	IO_L31P_0/VREF_0	C8	VREF
0	IO_L32N_0/GCLK7	B8	GCLK
0	IO_L32P_0/GCLK6	A8	GCLK
0	VCCO_0	E8	VCCO
0	VCCO_0	F7	VCCO
0	VCCO_0	F8	VCCO
1	10	A9	I/O
1	10	A12	I/O
1	Ю	C10	I/O
1	IO/VREF_1	D12	VREF
1	IO_L01N_1/VRP_1	A14	DCI
1	IO_L01P_1/VRN_1	B14	DCI

www.xilinx.com

FT256 Footprint

			2		4		nk 0 6	7	0	9	10		nk 1	10	14	15	16	
	A	1 GND	TDI	3 IO VREF_0	4 I/O L01P_0	5 I/O	VCCAUX	I/O	8 I/O L32P_0	I/O	10 I/O L31N_1	11 VCCAUX	12 I/O	13 I/O L10N_1	14 I/O L01N_1	15 TDO	16 GND	
	B	I/O L01P_7	GND	PROG_B	VRN_0 I/O L01N_0	I/O L25P 0	I/O L28P_0	I/O L30P_0	GCLK6 I/O L32N_0	GND	VREF_1 I/O L31P 1	I/O L29N 1	I/O L27N_1	VREF_1 I/O L10P 1	VRP_1 I/O L01P_1	GND	l/O L01N_2	
	С	VRN_7 I/O L01N_7	I/O L16N_7	I/O L16P_7	VRP_0 HSWAP_	I/O L25N_0	I/O	I/O L30N_0	I/O L31P_0	I/O L32N_1	I/O	I/O L29P 1	I/O L27P_1	TMS	VRN_1	I/O L16N_2	VRP_2 I/O L01P_2	
	D	VRP_7	I/O	VREF_7	VCCINT	10	I/O	I/O	I/O	GCLK5 I/O L32P 1	I/O	I/O	IO VREF_1	VCCINT	I/O	I/O	VRN_2 I/O L17P_2	
Bank 7	E	L17N_7 I/O	L17P_7 I/O	L19P_7 I/O L19N_7	I/O	VCCINT	L27P_0	L29P_0 I/O			L30N_1 I/O	L28N_1	VCCINT	I/O	L16P_2 I/O	L17N_2	VREF_2	nk 2
Bai		L20N_7	L20P_7	VREF_7	L21P_7	1/0	L27N_0	L29N_0			L30P_1	L28P_1	1/0	L19N_2	L19P_2	L20N_2	L20P_2	Bank
	F	VCCAUX	L22N_7	L22P_7	L21N_7	L23P_7	GND	VCCO_0	VCCO_0			GND	L21N_2	L21P_2	L22N_2	L22P_2	VCCAUX	
	G	L40P_7	I/O	L24N_7	L24P_7	L23N_7	VCCO_7	GND	GND	GND	GND	VCCO_2	L23N_2 VREF_2	L23P_2	L24N_2	L24P_2	I/O I/O	
	н	L40N_7 VREF_7	GND	I/O L39N_7	I/O L39P_7	VCCO_7	VCCO_7	GND	GND	GND	GND	VCCO_2	VCCO_2	I/O L39N_2	I/O L39P_2	I/O L40N_2	L40P_2 VREF_2	_
	J	I/O L40P_6 VREF_6	I/O L40N_6	I/O L39P_6	I/O L39N_6	VCCO_6	VCCO_6	GND	GND	GND	GND	VCCO_3	VCCO_3	I/O L39P_3	I/O L39N_3	GND	I/O L40N_3 VREF_3	
	κ	I/O	I/O L24P_6	I/O L24N_6 VREF_6	I/O L23P_6	I/O L23N_6	VCCO_6	GND	GND	GND	GND	VCCO_3	I/O L23N_3	I/O L24P_3	I/O L24N_3	I/O	I/O L40P_3	
	L	VCCAUX	I/O L22P_6	I/O L22N_6	I/O L21P_6	I/O L21N_6	GND	VCCO_5	VCCO_5	VCCO_4	VCCO_4	GND	I/O L23P_3 VREF_3	I/O L21N_3	I/O L22P_3	I/O L22N_3	VCCAUX	
Bank 6	М	I/O L20P_6	I/O L20N_6	I/O L19P_6	I/O L19N_6	VCCINT	I/O L28P_5 D7	I/O L30P_5	VCCO_5	VCCO_4	I/O L29N_4	I/O L27N_4 DIN D0	VCCINT	I/O L21P_3	I/O L19N_3	I/O L20P_3	I/O L20N_3	Bank 3
	N	I/O L17P_6 VREF 6	I/O L17N_6	I/O L16P_6	VCCINT	I/O	I/O L28N_5 D6	I/O L30N_5	I/O L32P_5 GCLK2	I/O L31N_4 INIT B	I/O L29P_4	I/O L27P_4 D1	IO VREF_4	VCCINT	I/O L19P_3	I/O L17P_3 VREF 3	I/O L17N_3	_
	Ρ	I/O L01P_6 VRN_6	I/O L16N_6	МО	M2	l/O L27P_5	I/O L29P_5 VREF 5	I/O	I/O L32N_5 GCLK3	DOUT	I/O L30N_4 D2	I/O L28N_4	I/O L25N_4	IO VREF_4	I/O L16P_3	I/O L16N_3	I/O L01N_3 VRP 3	
	R	I/O	GND	I/O L01P_5 CS_B	I/O L10P_5 VRN_5	I/O L27N_5 VREF_5	I/O L29N_5	I/O L31P_5 D5	GND	BUSY I/O L32N_4 GCLK1	I/O L30P_4 D3	I/O L28P_4	I/O L25P_4	I/O L01N_4 VRP_4	DONE	GND	I/O L01P_3 VRN_3	
	т	GND	M1	I/O L01N_5 RDWR_B	I/O L10N_5	I/O	VCCAUX	I/O	IO VREF_5	I/O L32P_4 GCLK0	IO VREF_4	VCCAUX	I/O	I/O L01P_4 VRN_4	I/O	CCLK	GND	
							nk 5		Deelee				nk 4			DS099	-4_10_030503	
<u></u>	п.	-				-	re 49: I			-	en possib			F : User	I/O or inr	out voltac	le referer	nce
113		O: Unres	-			ļ	us	er I/O	-				for b	ank				
16	b	ank								-	ock buffer			:O: Outp	U	,		
7		ONFIG:		-		l			licated JT	IAG port	pins		• (+1.	2V) CAUX: Au		-		
0		Ι. C.: Νο ι	unconneo	cted pins	in this p	ackage	32 GN	ND: Grou	Ind				8 (+2.		annar y V	snaye su	אאי	

www.xilinx.com

Table 98: FG320 Package Pinout (Cont'd)

Bank	XC3S400, XC3S1000, XC3S1500 Pin Name	FG320 Pin Number	Туре
N/A	VCCINT	N6	VCCINT
N/A	VCCINT	N7	VCCINT
VCCAUX	CCLK	T15	CONFIG
VCCAUX	DONE	R15	CONFIG
VCCAUX	HSWAP_EN	E6	CONFIG
VCCAUX	МО	P5	CONFIG
VCCAUX	M1	U3	CONFIG
VCCAUX	M2	R4	CONFIG
VCCAUX	PROG_B	E5	CONFIG
VCCAUX	тск	E14	JTAG
VCCAUX	TDI	D4	JTAG
VCCAUX	TDO	D15	JTAG
VCCAUX	TMS	B16	JTAG

User I/Os by Bank

Table 99 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FG320 package.

Package Edge	I/O Bank	Maximum	Maximum	All Possible I/O Pins by Type				
Fackage Euge		I/O	LVDS Pairs	I/O	DUAL	DCI	VREF	GCLK
Тор	0	26	11	19	0	2	3	2
юр	1	26	11	19	0	2	3	2
Right	2	29	14	23	0	2	4	0
night	3	29	14	23	0	2	4	0
Bottom	4	27	11	13	6	2	4	2
Dottom	5	26	11	13	6	2	3	2
Left	6	29	14	23	0	2	4	0
Leit	7	29	14	23	0	2	4	0

Table 99: User I/Os Per Bank in FG320 Package

FG676: 676-lead Fine-pitch Ball Grid Array

The 676-lead fine-pitch ball grid array package, FG676, supports five different Spartan-3 devices, including the XC3S1000, XC3S1500, XC3S2000, XC3S4000, and XC3S5000. All five have nearly identical footprints but are slightly different, primarily due to unconnected pins on the XC3S1000 and XC3S1500. For example, because the XC3S1000 has fewer I/O pins, this device has 98 unconnected pins on the FG676 package, labeled as "N.C." In Table 103 and Figure 53, these unconnected pins are indicated with a black diamond symbol (♦). The XC3S1500, however, has only two unconnected pins, also labeled "N.C." in the pinout table but indicated with a black square symbol (■).

All the package pins appear in Table 103 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

If there is a difference between the XC3S1000, XC3S1500, XC3S2000, XC3S4000, and XC3S5000 pinouts, then that difference is highlighted in Table 103. If the table entry is shaded grey, then there is an unconnected pin on either the XC3S1000 or XC3S1500 that maps to a user-I/O pin on the XC3S2000, XC3S4000, and XC3S5000. If the table entry is shaded tan, then the unconnected pin on either the XC3S1000 or XC3S1500 maps to a VREF-type pin on the XC3S2000, XC3S4000, and XC3S5000. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S1000 or XC3S1500 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S1000 through to the XC3S5000 FPGA without changing the printed circuit board.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_sheets/s3_pin.zip.

Pinout Table

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
0	Ю	Ю	Ю	Ю	IO_L04N_0 ⁽³⁾	A3	I/O
0	Ю	Ю	Ю	Ю	Ю	A5	I/O
0	IO	IO	Ю	Ю	Ю	A6	I/O
0	IO	Ю	Ю	Ю	IO_L04P_0 ⁽³⁾	C4	I/O
0	N.C. (�)	IO	IO	IO	IO_L13N_0 ⁽³⁾	C8	I/O
0	Ю	Ю	Ю	Ю	Ю	C12	I/O
0	IO	Ю	Ю	IO	IO	E13	I/O
0	IO	Ю	Ю	IO	IO	H11	I/O
0	Ю	Ю	Ю	Ю	Ю	H12	I/O
0	IO/VREF_0	IO/VREF_0	IO/VREF_0	IO/VREF_0	IO/VREF_0	B3	VREF
0	IO/VREF_0	IO/VREF_0	IO/VREF_0	IO/VREF_0	IO/VREF_0	F7	VREF
0	IO/VREF_0	IO/VREF_0	IO/VREF_0	IO/VREF_0	IO/VREF_0	G10	VREF
0	IO_L01N_0/VRP_0	IO_L01N_0/VRP_0	IO_L01N_0/VRP_0	IO_L01N_0/VRP_0	IO_L01N_0/VRP_0	E5	DCI
0	IO_L01P_0/VRN_0	IO_L01P_0/VRN_0	IO_L01P_0/VRN_0	IO_L01P_0/VRN_0	IO_L01P_0/VRN_0	D5	DCI
0	IO_L05N_0	IO_L05N_0	IO_L05N_0	IO_L05N_0	IO_L05N_0	B4	I/O
0	IO_L05P_0/VREF_0	IO_L05P_0/VREF_0	IO_L05P_0/VREF_0	IO_L05P_0/VREF_0	IO_L05P_0/VREF_0	A4	VREF
0	IO_L06N_0	IO_L06N_0	IO_L06N_0	IO_L06N_0	IO_L06N_0	C5	I/O
0	IO_L06P_0	IO_L06P_0	IO_L06P_0	IO_L06P_0	IO_L06P_0	B5	I/O
0	IO_L07N_0	IO_L07N_0	IO_L07N_0	IO_L07N_0	IO_L07N_0	E6	I/O
0	IO_L07P_0	IO_L07P_0	IO_L07P_0	IO_L07P_0	IO_L07P_0	D6	I/O
0	IO_L08N_0	IO_L08N_0	IO_L08N_0	IO_L08N_0	IO_L08N_0	C6	I/O
0	IO_L08P_0	IO_L08P_0	IO_L08P_0	IO_L08P_0	IO_L08P_0	B6	I/O

Table 103: FG676 Package Pinout

Table 103: FG676 Package Pinout (Cont'd)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	H9	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	H10	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	J11	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	J12	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	J13	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	K13	VCCO
1	Ю	Ю	IO	IO	Ю	A14	I/O
1	Ю	Ю	IO	IO	Ю	A22	I/O
1	Ю	Ю	IO	IO	Ю	A23	I/O
1	Ю	Ю	IO	IO	Ю	D16	I/O
1	IO	IO	IO	IO	IO_L17P_1 ⁽³⁾	E18	I/O
1	IO	IO	IO	IO	10	F14	I/O
1	IO	IO	IO	IO	10	F20	I/O
1	IO	IO	IO	IO	IO	G19	I/O
1	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO/VREF_1	C15	VREF
1	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO/VREF_1	C17	VREF
1	N.C. (�)	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO_L17N_1/VREF_1 ⁽³⁾	D18	VREF
1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	D22	DCI
1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	E22	DCI
1	IO_L04N_1	IO_L04N_1	IO_L04N_1	IO_L04N_1	IO_L04N_1	B23	I/O
1	IO_L04P_1	IO_L04P_1	IO_L04P_1	IO_L04P_1	IO_L04P_1	C23	I/O
1	IO_L05N_1	IO_L05N_1	IO_L05N_1	IO_L05N_1	IO_L05N_1	E21	I/O
1	IO_L05P_1	IO_L05P_1	IO_L05P_1	IO_L05P_1	IO_L05P_1	F21	I/O
1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	B22	VREF
1	IO_L06P_1	IO_L06P_1	IO_L06P_1	IO_L06P_1	IO_L06P_1	C22	I/O
1	IO_L07N_1	IO_L07N_1	IO_L07N_1	IO_L07N_1	IO_L07N_1	C21	I/O
1	IO_L07P_1	IO_L07P_1	IO_L07P_1	IO_L07P_1	IO_L07P_1	D21	I/O
1	IO_L08N_1	IO_L08N_1	IO_L08N_1	IO_L08N_1	IO_L08N_1	A21	I/O
1	IO_L08P_1	IO_L08P_1	IO_L08P_1	IO_L08P_1	IO_L08P_1	B21	I/O
1	IO_L09N_1	IO_L09N_1	IO_L09N_1	IO_L09N_1	IO_L09N_1	D20	I/O
1	IO_L09P_1	IO_L09P_1	IO_L09P_1	IO_L09P_1	IO_L09P_1	E20	I/O
1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	A20	VREF
1	IO_L10P_1	IO_L10P_1	IO_L10P_1	IO_L10P_1	IO_L10P_1	B20	I/O
1	N.C. (�)	IO_L11N_1	IO_L11N_1	IO_L11N_1	IO_L11N_1	E19	I/O
1	N.C. (�)	IO_L11P_1	IO_L11P_1	IO_L11P_1	IO_L11P_1	F19	I/O
1	N.C. (�)	IO_L12N_1	IO_L12N_1	IO_L12N_1	IO_L12N_1	C19	I/O
1	N.C. (�)	IO_L12P_1	IO_L12P_1	IO_L12P_1	IO_L12P_1	D19	I/O
1	IO_L15N_1	IO_L15N_1	IO_L15N_1	IO_L15N_1	IO_L15N_1	A19	I/O
1	IO_L15P_1	IO_L15P_1	IO_L15P_1	IO_L15P_1	IO_L15P_1	B19	I/O
1	IO_L16N_1	IO_L16N_1	IO_L16N_1	IO_L16N_1	IO_L16N_1	F18	I/O
1	IO_L16P_1	IO_L16P_1	IO_L16P_1	IO_L16P_1	IO_L16P_1	G18	I/O
1	N.C. (�)	IO_L18N_1	IO_L18N_1	IO_L18N_1	IO ⁽³⁾	B18	I/O

Table 103: FG676 Package Pinout (Cont'd)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
N/A	GND	GND	GND	GND	GND	D15	GND
N/A	GND	GND	GND	GND	GND	D23	GND
N/A	GND	GND	GND	GND	GND	K11	GND
N/A	GND	GND	GND	GND	GND	K12	GND
N/A	GND	GND	GND	GND	GND	K15	GND
N/A	GND	GND	GND	GND	GND	K16	GND
N/A	GND	GND	GND	GND	GND	L10	GND
N/A	GND	GND	GND	GND	GND	L11	GND
N/A	GND	GND	GND	GND	GND	L12	GND
N/A	GND	GND	GND	GND	GND	L13	GND
N/A	GND	GND	GND	GND	GND	L14	GND
N/A	GND	GND	GND	GND	GND	L15	GND
N/A	GND	GND	GND	GND	GND	L16	GND
N/A	GND	GND	GND	GND	GND	L17	GND
N/A	GND	GND	GND	GND	GND	M4	GND
N/A	GND	GND	GND	GND	GND	M10	GND
N/A	GND	GND	GND	GND	GND	M11	GND
N/A	GND	GND	GND	GND	GND	M12	GND
N/A	GND	GND	GND	GND	GND	M13	GND
N/A	GND	GND	GND	GND	GND	M14	GND
N/A	GND	GND	GND	GND	GND	M15	GND
N/A	GND	GND	GND	GND	GND	M16	GND
N/A	GND	GND	GND	GND	GND	M17	GND
N/A	GND	GND	GND	GND	GND	M23	GND
N/A	GND	GND	GND	GND	GND	N11	GND
N/A	GND	GND	GND	GND	GND	N12	GND
N/A	GND	GND	GND	GND	GND	N13	GND
N/A	GND	GND	GND	GND	GND	N14	GND
N/A	GND	GND	GND	GND	GND	N15	GND
N/A	GND	GND	GND	GND	GND	N16	GND
N/A	GND	GND	GND	GND	GND	P11	GND
N/A	GND	GND	GND	GND	GND	P12	GND
N/A	GND	GND	GND	GND	GND	P13	GND
N/A	GND	GND	GND	GND	GND	P14	GND
N/A	GND	GND	GND	GND	GND	P15	GND
N/A	GND	GND	GND	GND	GND	P16	GND
N/A	GND	GND	GND	GND	GND	R4	GND
N/A	GND	GND	GND	GND	GND	R10	GND
N/A	GND	GND	GND	GND	GND	R11	GND
N/A	GND	GND	GND	GND	GND	R12	GND
N/A	GND	GND	GND	GND	GND	R13	GND
N/A	GND	GND	GND	GND	GND	R14	GND
N/A	GND	GND	GND	GND	GND	R15	GND

www.xilinx.com

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
3	N.C. (�)	IO_L50P_3	V26	I/O
3	VCCO_3	VCCO_3	U20	VCCO
3	VCCO_3	VCCO_3	V20	VCCO
3	VCCO_3	VCCO_3	W20	VCCO
3	VCCO_3	VCCO_3	Y22	VCCO
3	VCCO_3	VCCO_3	V24	VCCO
3	VCCO_3	VCCO_3	AB24	VCCO
3	VCCO_3	VCCO_3	AD26	VCCO
3	VCCO_3	VCCO_3	V28	VCCO
3	VCCO_3	VCCO_3	AB28	VCCO
3	VCCO_3	VCCO_3	AF28	VCCO
4	IO	IO	AA16	I/O
4	IO	IO	AG18	I/O
4	IO	Ю	AA18	I/O
4	IO	Ю	AE22	I/O
4	IO	IO	AD23	I/O
4	IO	Ю	AH27	I/O
4	IO/VREF_4	IO/VREF_4	AF16	VREF
4	IO/VREF_4	IO/VREF_4	AK28	VREF
4	IO_L01N_4/VRP_4	IO_L01N_4/VRP_4	AJ27	DCI
4	IO_L01P_4/VRN_4	IO_L01P_4/VRN_4	AK27	DCI
4	IO_L02N_4	IO_L02N_4	AJ26	I/O
4	IO_L02P_4	IO_L02P_4	AK26	I/O
4	IO_L03N_4	IO_L03N_4	AG26	I/O
4	IO_L03P_4	IO_L03P_4	AF25	I/O
4	IO_L04N_4	IO_L04N_4	AD24	I/O
4	IO_L04P_4	IO_L04P_4	AC23	I/O
4	IO_L05N_4	IO_L05N_4	AE23	I/O
4	IO_L05P_4	IO_L05P_4	AF23	I/O
4	IO_L06N_4/VREF_4	IO_L06N_4/VREF_4	AG23	VREF
4	IO_L06P_4	IO_L06P_4	AH23	I/O
4	IO_L07N_4	IO_L07N_4	AJ23	I/O
4	IO_L07P_4	IO_L07P_4	AK23	I/O
4	IO_L08N_4	IO_L08N_4	AB22	I/O
4	IO_L08P_4	IO_L08P_4	AC22	I/O
4	IO_L09N_4	IO_L09N_4	AF22	I/O
4	IO_L09P_4	IO_L09P_4	AG22	I/O
4	IO_L10N_4	IO_L10N_4	AJ22	I/O
4	IO_L10P_4	IO_L10P_4	AK22	I/O
4	IO_L11N_4	IO_L11N_4	AD21	I/O

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
0	VCCO_0	VCCO_0	F13	VCCO
0	VCCO_0	VCCO_0	G8	VCCO
0	VCCO_0	VCCO_0	H11	VCCO
0	VCCO_0	VCCO_0	H15	VCCO
0	VCCO_0	VCCO_0	M13	VCCO
0	VCCO_0	VCCO_0	M14	VCCO
0	VCCO_0	VCCO_0	M15	VCCO
0	VCCO_0	VCCO_0	M16	VCCO
1	IO	Ю	B26	I/O
1	IO	Ю	A18	I/O
1	IO	Ю	C23	I/O
1	IO	IO	E21	I/O
1	IO	Ю	E25	I/O
1	IO	Ю	F18	I/O
1	IO	IO	F27	I/O
1	IO	IO	F29	I/O
1	IO	IO	H23	I/O
1	IO	IO	H26	I/O
1	N.C. (�)	IO	J26	I/O
1	IO	IO	K19	I/O
1	IO	IO	L19	I/O
1	IO	IO	L20	I/O
1	IO	IO	L21	I/O
1	N.C. (�)	IO	L23	I/O
1	IO	IO	L24	I/O
1	IO/VREF_1	IO/VREF_1	D30	VREF
1	IO/VREF_1	IO/VREF_1	K21	VREF
1	IO/VREF_1	IO/VREF_1	L18	VREF
1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	A32	DCI
1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	B32	DCI
1	IO_L02N_1	IO_L02N_1	A31	I/O
1	IO_L02P_1	IO_L02P_1	B31	I/O
1	IO_L03N_1	IO_L03N_1	B30	I/O
1	IO_L03P_1	IO_L03P_1	C30	I/O
1	IO_L04N_1	IO_L04N_1	C29	I/O
1	IO_L04P_1	IO_L04P_1	D29	I/O
1	IO_L05N_1	IO_L05N_1	A29	I/O
1	IO_L05P_1	IO_L05P_1	B29	I/O
1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	E28	VREF
1	IO_L06P_1	IO_L06P_1	F28	I/O

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
N/A	VCCAUX	VCCAUX	Y5	VCCAUX
N/A	VCCINT	VCCINT	AA13	VCCINT
N/A	VCCINT	VCCINT	AA22	VCCINT
N/A	VCCINT	VCCINT	AB13	VCCINT
N/A	VCCINT	VCCINT	AB14	VCCINT
N/A	VCCINT	VCCINT	AB15	VCCINT
N/A	VCCINT	VCCINT	AB16	VCCINT
N/A	VCCINT	VCCINT	AB19	VCCINT
N/A	VCCINT	VCCINT	AB20	VCCINT
N/A	VCCINT	VCCINT	AB21	VCCINT
N/A	VCCINT	VCCINT	AB22	VCCINT
N/A	VCCINT	VCCINT	AC12	VCCINT
N/A	VCCINT	VCCINT	AC17	VCCINT
N/A	VCCINT	VCCINT	AC18	VCCINT
N/A	VCCINT	VCCINT	AC23	VCCINT
N/A	VCCINT	VCCINT	M12	VCCINT
N/A	VCCINT	VCCINT	M17	VCCINT
N/A	VCCINT	VCCINT	M18	VCCINT
N/A	VCCINT	VCCINT	M23	VCCINT
N/A	VCCINT	VCCINT	N13	VCCINT
N/A	VCCINT	VCCINT	N14	VCCINT
N/A	VCCINT	VCCINT	N15	VCCINT
N/A	VCCINT	VCCINT	N16	VCCINT
N/A	VCCINT	VCCINT	N19	VCCINT
N/A	VCCINT	VCCINT	N20	VCCINT
N/A	VCCINT	VCCINT	N21	VCCINT
N/A	VCCINT	VCCINT	N22	VCCINT
N/A	VCCINT	VCCINT	P13	VCCINT
N/A	VCCINT	VCCINT	P22	VCCINT
N/A	VCCINT	VCCINT	R13	VCCINT
N/A	VCCINT	VCCINT	R22	VCCINT
N/A	VCCINT	VCCINT	T13	VCCINT
N/A	VCCINT	VCCINT	T22	VCCINT
N/A	VCCINT	VCCINT	U12	VCCINT
N/A	VCCINT	VCCINT	U23	VCCINT
N/A	VCCINT	VCCINT	V12	VCCINT
N/A	VCCINT	VCCINT	V23	VCCINT
N/A	VCCINT	VCCINT	W13	VCCINT
N/A	VCCINT	VCCINT	W22	VCCINT
N/A	VCCINT	VCCINT	Y13	VCCINT

Revision History

Date	Version	Description
04/03/03	1.0	Initial Xilinx release.
04/21/03	1.1	Added information on the VQ100 package footprint, including a complete pinout table (Table 87) and footprint diagram (Figure 44). Updated Table 85 with final I/O counts for the VQ100 package. Also added final differential I/O pair counts for the TQ144 package. Added clarifying comments to HSWAP_EN pin description on page 119. Updated the footprint diagram for the FG900 package shown in Figure 55a and Figure 55b. Some thick lines separating I/O banks were incorrect. Made cosmetic changes to Figure 40, Figure 42, and Figure 43. Updated Xilinx hypertext links. Added XC3S200 and XC3S400 to Pin Name column in Table 91.
05/12/03	1.1.1	AM32 pin was missing GND label in FG1156 package diagram (Figure 53).
07/11/03	1.1.2	Corrected misspellings of GCLK in Table 69 and Table 70. Changed CMOS25 to LVCMOS25 in Dual-Purpose Pin I/O Standard During Configuration section. Clarified references to Module 2. For XC3S5000 in FG1156 package, corrected N.C. symbol to a black square in Table 110, key, and package drawing.
07/29/03	1.2	Corrected pin names on FG1156 package. Some package balls incorrectly included LVDS pair names. The affected balls on the FG1156 package include G1, G2, G33, G34, U9, U10, U25, U26, V9, V10, V25 V26, AH1, AH2, AH33, AH34. The number of LVDS pairs is unaffected. Modified affected balls and re-sorted rows in Table 110. Updated affected balls in Figure 53. Also updated ASCII and Excel electronic versions of FG1156 pinout.
08/19/03	1.2.1	Removed 100 MHz ConfigRate option in CCLK: Configuration Clock section and in Table 80. Added note that TDO is a totem-pole output in Table 77.
10/09/03	1.2.2	Some pins had incorrect bank designations and were improperly sorted in Table 93. No pin names or functions changed. Renamed DCI_IN to DCI and added black diamond to N.C. pins in Table 93. In Figure 47, removed some extraneous text from pin 106 and corrected spelling of pins 45, 48, and 81.
12/17/03	1.3	Added FG320 pin tables and pinout diagram (FG320: 320-lead Fine-pitch Ball Grid Array). Made cosmetic changes to the TQ144 footprint (Figure 46), the PQ208 footprint (Figure 47), the FG676 footprint (Figure 53), and the FG900 footprint (Figure 55). Clarified wording in Precautions When Using the JTAG Port in 3.3V Environments section.
02/27/04	1.4	Clarified wording in Using JTAG Port After Configuration section. In Table 81, reduced package height for FG320 and increased maximum I/O values for the FG676, FG900, and FG1156 packages.
07/13/04	1.5	Added information on lead-free (Pb-free) package options to the Package Overview section plus Table 81 and Table 83. Clarified the VRN_# reference resistor requirements for I/O standards that use single termination as described in the DCI Termination Types section and in Figure 42b. Graduated from Advance Product Specification to Product Specification.
08/24/04	1.5.1	Removed XC3S2000 references from FG1156: 1156-lead Fine-pitch Ball Grid Array.
01/17/05	1.6	Added XC3S50 in CP132 package option. Added XC3S2000 in FG456 package option. Added XC3S4000 in FG676 package option. Added Selecting the Right Package Option section. Modified or added Table 81, Table 83, Table 84, Table 85, Table 89, Table 90, Table 100, Table 102, Table 103, Table 106, Figure 45, and Figure 53.
08/19/05	1.7	Removed term "weak" from the description of pull-up and pull-down resistors. Added IDCODE Register values. Added signal integrity precautions to CCLK: Configuration Clock and indicated that CCLK should be treated as an I/O during Master mode in Table 79.
04/03/06	2.0	Added Package Thermal Characteristics. Updated Figure 41 to make it a more obvious example. Added detail about which pins have dedicated pull-up resistors during configuration, regardless of the HSWAP_EN value to Table 70 and to Pin Behavior During Configuration. Updated Precautions When Using the JTAG Port in 3.3V Environments.
04/26/06	2.1	Corrected swapped data row in Table 86. The Theta-JA with zero airflow column was swapped with the Theta-JC column. Made additional notations on CONFIG and JTAG pins that have pull-up resistors during configuration, regardless of the HSWAP_EN input.
05/25/07	2.2	Added link on page 128 to Material Declaration Data Sheets. Corrected units typo in Table 74. Added Note 1 to Table 103 about VREF for XC3S1500 in FG676.

www.xilinx.com